Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     __m128i          gbitab;
77     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
78     __m128           minushalf = _mm_set1_ps(-0.5);
79     real             *invsqrta,*dvda,*gbtab;
80     int              nvdwtype;
81     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
82     int              *vdwtype;
83     real             *vdwparam;
84     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
85     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
86     __m128i          vfitab;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m128           dummy_mask,cutoff_mask;
91     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
92     __m128           one     = _mm_set1_ps(1.0);
93     __m128           two     = _mm_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
113
114     invsqrta         = fr->invsqrta;
115     dvda             = fr->dvda;
116     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
117     gbtab            = fr->gbtab.data;
118     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }  
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151         
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
158         isai0            = _mm_load1_ps(invsqrta+inr+0);
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_ps();
163         vgbsum           = _mm_setzero_ps();
164         vvdwsum          = _mm_setzero_ps();
165         dvdasum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm_invsqrt_ps(rsq00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198                                                               charge+jnrC+0,charge+jnrD+0);
199             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
200                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm_mul_ps(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_ps(iq0,jq0);
214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,
216                                          vdwparam+vdwioffset0+vdwjidx0C,
217                                          vdwparam+vdwioffset0+vdwjidx0D,
218                                          &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm_mul_ps(r00,vftabscale);
222             vfitab           = _mm_cvttps_epi32(rt);
223             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
224             vfitab           = _mm_slli_epi32(vfitab,3);
225
226             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
227             isaprod          = _mm_mul_ps(isai0,isaj0);
228             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
229             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
230
231             /* Calculate generalized born table index - this is a separate table from the normal one,
232              * but we use the same procedure by multiplying r with scale and truncating to integer.
233              */
234             rt               = _mm_mul_ps(r00,gbscale);
235             gbitab           = _mm_cvttps_epi32(rt);
236             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
237             gbitab           = _mm_slli_epi32(gbitab,2);
238
239             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
240             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
241             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
242             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
243             _MM_TRANSPOSE4_PS(Y,F,G,H);
244             Heps             = _mm_mul_ps(gbeps,H);
245             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
246             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
247             vgb              = _mm_mul_ps(gbqqfactor,VV);
248
249             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
250             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
251             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
252             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
253             fjptrA           = dvda+jnrA;
254             fjptrB           = dvda+jnrB;
255             fjptrC           = dvda+jnrC;
256             fjptrD           = dvda+jnrD;
257             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
258             velec            = _mm_mul_ps(qq00,rinv00);
259             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
264             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
265             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
266             _MM_TRANSPOSE4_PS(Y,F,G,H);
267             Heps             = _mm_mul_ps(vfeps,H);
268             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
269             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
270             vvdw6            = _mm_mul_ps(c6_00,VV);
271             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
272             fvdw6            = _mm_mul_ps(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
278             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
279             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
280             _MM_TRANSPOSE4_PS(Y,F,G,H);
281             Heps             = _mm_mul_ps(vfeps,H);
282             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
283             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
284             vvdw12           = _mm_mul_ps(c12_00,VV);
285             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
286             fvdw12           = _mm_mul_ps(c12_00,FF);
287             vvdw             = _mm_add_ps(vvdw12,vvdw6);
288             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm_add_ps(velecsum,velec);
292             vgbsum           = _mm_add_ps(vgbsum,vgb);
293             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
294
295             fscal            = _mm_add_ps(felec,fvdw);
296
297             /* Calculate temporary vectorial force */
298             tx               = _mm_mul_ps(fscal,dx00);
299             ty               = _mm_mul_ps(fscal,dy00);
300             tz               = _mm_mul_ps(fscal,dz00);
301
302             /* Update vectorial force */
303             fix0             = _mm_add_ps(fix0,tx);
304             fiy0             = _mm_add_ps(fiy0,ty);
305             fiz0             = _mm_add_ps(fiz0,tz);
306
307             fjptrA             = f+j_coord_offsetA;
308             fjptrB             = f+j_coord_offsetB;
309             fjptrC             = f+j_coord_offsetC;
310             fjptrD             = f+j_coord_offsetD;
311             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
312             
313             /* Inner loop uses 92 flops */
314         }
315
316         if(jidx<j_index_end)
317         {
318
319             /* Get j neighbor index, and coordinate index */
320             jnrlistA         = jjnr[jidx];
321             jnrlistB         = jjnr[jidx+1];
322             jnrlistC         = jjnr[jidx+2];
323             jnrlistD         = jjnr[jidx+3];
324             /* Sign of each element will be negative for non-real atoms.
325              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
326              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
327              */
328             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
329             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
330             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
331             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
332             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
333             j_coord_offsetA  = DIM*jnrA;
334             j_coord_offsetB  = DIM*jnrB;
335             j_coord_offsetC  = DIM*jnrC;
336             j_coord_offsetD  = DIM*jnrD;
337
338             /* load j atom coordinates */
339             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
340                                               x+j_coord_offsetC,x+j_coord_offsetD,
341                                               &jx0,&jy0,&jz0);
342
343             /* Calculate displacement vector */
344             dx00             = _mm_sub_ps(ix0,jx0);
345             dy00             = _mm_sub_ps(iy0,jy0);
346             dz00             = _mm_sub_ps(iz0,jz0);
347
348             /* Calculate squared distance and things based on it */
349             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
350
351             rinv00           = gmx_mm_invsqrt_ps(rsq00);
352
353             /* Load parameters for j particles */
354             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
355                                                               charge+jnrC+0,charge+jnrD+0);
356             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
357                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
358             vdwjidx0A        = 2*vdwtype[jnrA+0];
359             vdwjidx0B        = 2*vdwtype[jnrB+0];
360             vdwjidx0C        = 2*vdwtype[jnrC+0];
361             vdwjidx0D        = 2*vdwtype[jnrD+0];
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r00              = _mm_mul_ps(rsq00,rinv00);
368             r00              = _mm_andnot_ps(dummy_mask,r00);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq00             = _mm_mul_ps(iq0,jq0);
372             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
373                                          vdwparam+vdwioffset0+vdwjidx0B,
374                                          vdwparam+vdwioffset0+vdwjidx0C,
375                                          vdwparam+vdwioffset0+vdwjidx0D,
376                                          &c6_00,&c12_00);
377
378             /* Calculate table index by multiplying r with table scale and truncate to integer */
379             rt               = _mm_mul_ps(r00,vftabscale);
380             vfitab           = _mm_cvttps_epi32(rt);
381             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
382             vfitab           = _mm_slli_epi32(vfitab,3);
383
384             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
385             isaprod          = _mm_mul_ps(isai0,isaj0);
386             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
387             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
388
389             /* Calculate generalized born table index - this is a separate table from the normal one,
390              * but we use the same procedure by multiplying r with scale and truncating to integer.
391              */
392             rt               = _mm_mul_ps(r00,gbscale);
393             gbitab           = _mm_cvttps_epi32(rt);
394             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
395             gbitab           = _mm_slli_epi32(gbitab,2);
396
397             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
398             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
399             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
400             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
401             _MM_TRANSPOSE4_PS(Y,F,G,H);
402             Heps             = _mm_mul_ps(gbeps,H);
403             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
404             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
405             vgb              = _mm_mul_ps(gbqqfactor,VV);
406
407             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
408             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
409             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
410             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
411             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
412             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
413             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
414             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
415             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
416             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
417             velec            = _mm_mul_ps(qq00,rinv00);
418             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
419
420             /* CUBIC SPLINE TABLE DISPERSION */
421             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
422             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
423             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
424             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
425             _MM_TRANSPOSE4_PS(Y,F,G,H);
426             Heps             = _mm_mul_ps(vfeps,H);
427             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
428             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
429             vvdw6            = _mm_mul_ps(c6_00,VV);
430             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
431             fvdw6            = _mm_mul_ps(c6_00,FF);
432
433             /* CUBIC SPLINE TABLE REPULSION */
434             vfitab           = _mm_add_epi32(vfitab,ifour);
435             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
436             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
437             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
438             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
439             _MM_TRANSPOSE4_PS(Y,F,G,H);
440             Heps             = _mm_mul_ps(vfeps,H);
441             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
442             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
443             vvdw12           = _mm_mul_ps(c12_00,VV);
444             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
445             fvdw12           = _mm_mul_ps(c12_00,FF);
446             vvdw             = _mm_add_ps(vvdw12,vvdw6);
447             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
448
449             /* Update potential sum for this i atom from the interaction with this j atom. */
450             velec            = _mm_andnot_ps(dummy_mask,velec);
451             velecsum         = _mm_add_ps(velecsum,velec);
452             vgb              = _mm_andnot_ps(dummy_mask,vgb);
453             vgbsum           = _mm_add_ps(vgbsum,vgb);
454             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
455             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
456
457             fscal            = _mm_add_ps(felec,fvdw);
458
459             fscal            = _mm_andnot_ps(dummy_mask,fscal);
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_ps(fscal,dx00);
463             ty               = _mm_mul_ps(fscal,dy00);
464             tz               = _mm_mul_ps(fscal,dz00);
465
466             /* Update vectorial force */
467             fix0             = _mm_add_ps(fix0,tx);
468             fiy0             = _mm_add_ps(fiy0,ty);
469             fiz0             = _mm_add_ps(fiz0,tz);
470
471             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
472             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
473             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
474             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
475             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
476             
477             /* Inner loop uses 93 flops */
478         }
479
480         /* End of innermost loop */
481
482         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
483                                               f+i_coord_offset,fshift+i_shift_offset);
484
485         ggid                        = gid[iidx];
486         /* Update potential energies */
487         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
488         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
489         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
490         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
491         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
492
493         /* Increment number of inner iterations */
494         inneriter                  += j_index_end - j_index_start;
495
496         /* Outer loop uses 10 flops */
497     }
498
499     /* Increment number of outer iterations */
500     outeriter        += nri;
501
502     /* Update outer/inner flops */
503
504     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*93);
505 }
506 /*
507  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
508  * Electrostatics interaction: GeneralizedBorn
509  * VdW interaction:            CubicSplineTable
510  * Geometry:                   Particle-Particle
511  * Calculate force/pot:        Force
512  */
513 void
514 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_single
515                     (t_nblist * gmx_restrict                nlist,
516                      rvec * gmx_restrict                    xx,
517                      rvec * gmx_restrict                    ff,
518                      t_forcerec * gmx_restrict              fr,
519                      t_mdatoms * gmx_restrict               mdatoms,
520                      nb_kernel_data_t * gmx_restrict        kernel_data,
521                      t_nrnb * gmx_restrict                  nrnb)
522 {
523     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
524      * just 0 for non-waters.
525      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
526      * jnr indices corresponding to data put in the four positions in the SIMD register.
527      */
528     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
529     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
530     int              jnrA,jnrB,jnrC,jnrD;
531     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
532     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
533     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
534     real             rcutoff_scalar;
535     real             *shiftvec,*fshift,*x,*f;
536     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
537     real             scratch[4*DIM];
538     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
539     int              vdwioffset0;
540     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
541     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
542     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
543     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
544     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
545     real             *charge;
546     __m128i          gbitab;
547     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
548     __m128           minushalf = _mm_set1_ps(-0.5);
549     real             *invsqrta,*dvda,*gbtab;
550     int              nvdwtype;
551     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
552     int              *vdwtype;
553     real             *vdwparam;
554     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
555     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
556     __m128i          vfitab;
557     __m128i          ifour       = _mm_set1_epi32(4);
558     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
559     real             *vftab;
560     __m128           dummy_mask,cutoff_mask;
561     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
562     __m128           one     = _mm_set1_ps(1.0);
563     __m128           two     = _mm_set1_ps(2.0);
564     x                = xx[0];
565     f                = ff[0];
566
567     nri              = nlist->nri;
568     iinr             = nlist->iinr;
569     jindex           = nlist->jindex;
570     jjnr             = nlist->jjnr;
571     shiftidx         = nlist->shift;
572     gid              = nlist->gid;
573     shiftvec         = fr->shift_vec[0];
574     fshift           = fr->fshift[0];
575     facel            = _mm_set1_ps(fr->epsfac);
576     charge           = mdatoms->chargeA;
577     nvdwtype         = fr->ntype;
578     vdwparam         = fr->nbfp;
579     vdwtype          = mdatoms->typeA;
580
581     vftab            = kernel_data->table_vdw->data;
582     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
583
584     invsqrta         = fr->invsqrta;
585     dvda             = fr->dvda;
586     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
587     gbtab            = fr->gbtab.data;
588     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
589
590     /* Avoid stupid compiler warnings */
591     jnrA = jnrB = jnrC = jnrD = 0;
592     j_coord_offsetA = 0;
593     j_coord_offsetB = 0;
594     j_coord_offsetC = 0;
595     j_coord_offsetD = 0;
596
597     outeriter        = 0;
598     inneriter        = 0;
599
600     for(iidx=0;iidx<4*DIM;iidx++)
601     {
602         scratch[iidx] = 0.0;
603     }  
604
605     /* Start outer loop over neighborlists */
606     for(iidx=0; iidx<nri; iidx++)
607     {
608         /* Load shift vector for this list */
609         i_shift_offset   = DIM*shiftidx[iidx];
610
611         /* Load limits for loop over neighbors */
612         j_index_start    = jindex[iidx];
613         j_index_end      = jindex[iidx+1];
614
615         /* Get outer coordinate index */
616         inr              = iinr[iidx];
617         i_coord_offset   = DIM*inr;
618
619         /* Load i particle coords and add shift vector */
620         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
621         
622         fix0             = _mm_setzero_ps();
623         fiy0             = _mm_setzero_ps();
624         fiz0             = _mm_setzero_ps();
625
626         /* Load parameters for i particles */
627         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
628         isai0            = _mm_load1_ps(invsqrta+inr+0);
629         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
630
631         dvdasum          = _mm_setzero_ps();
632
633         /* Start inner kernel loop */
634         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
635         {
636
637             /* Get j neighbor index, and coordinate index */
638             jnrA             = jjnr[jidx];
639             jnrB             = jjnr[jidx+1];
640             jnrC             = jjnr[jidx+2];
641             jnrD             = jjnr[jidx+3];
642             j_coord_offsetA  = DIM*jnrA;
643             j_coord_offsetB  = DIM*jnrB;
644             j_coord_offsetC  = DIM*jnrC;
645             j_coord_offsetD  = DIM*jnrD;
646
647             /* load j atom coordinates */
648             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
649                                               x+j_coord_offsetC,x+j_coord_offsetD,
650                                               &jx0,&jy0,&jz0);
651
652             /* Calculate displacement vector */
653             dx00             = _mm_sub_ps(ix0,jx0);
654             dy00             = _mm_sub_ps(iy0,jy0);
655             dz00             = _mm_sub_ps(iz0,jz0);
656
657             /* Calculate squared distance and things based on it */
658             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
659
660             rinv00           = gmx_mm_invsqrt_ps(rsq00);
661
662             /* Load parameters for j particles */
663             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
664                                                               charge+jnrC+0,charge+jnrD+0);
665             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
666                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
667             vdwjidx0A        = 2*vdwtype[jnrA+0];
668             vdwjidx0B        = 2*vdwtype[jnrB+0];
669             vdwjidx0C        = 2*vdwtype[jnrC+0];
670             vdwjidx0D        = 2*vdwtype[jnrD+0];
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r00              = _mm_mul_ps(rsq00,rinv00);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq00             = _mm_mul_ps(iq0,jq0);
680             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
681                                          vdwparam+vdwioffset0+vdwjidx0B,
682                                          vdwparam+vdwioffset0+vdwjidx0C,
683                                          vdwparam+vdwioffset0+vdwjidx0D,
684                                          &c6_00,&c12_00);
685
686             /* Calculate table index by multiplying r with table scale and truncate to integer */
687             rt               = _mm_mul_ps(r00,vftabscale);
688             vfitab           = _mm_cvttps_epi32(rt);
689             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
690             vfitab           = _mm_slli_epi32(vfitab,3);
691
692             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
693             isaprod          = _mm_mul_ps(isai0,isaj0);
694             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
695             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
696
697             /* Calculate generalized born table index - this is a separate table from the normal one,
698              * but we use the same procedure by multiplying r with scale and truncating to integer.
699              */
700             rt               = _mm_mul_ps(r00,gbscale);
701             gbitab           = _mm_cvttps_epi32(rt);
702             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
703             gbitab           = _mm_slli_epi32(gbitab,2);
704
705             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
706             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
707             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
708             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
709             _MM_TRANSPOSE4_PS(Y,F,G,H);
710             Heps             = _mm_mul_ps(gbeps,H);
711             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
712             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
713             vgb              = _mm_mul_ps(gbqqfactor,VV);
714
715             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
716             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
717             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
718             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
719             fjptrA           = dvda+jnrA;
720             fjptrB           = dvda+jnrB;
721             fjptrC           = dvda+jnrC;
722             fjptrD           = dvda+jnrD;
723             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
724             velec            = _mm_mul_ps(qq00,rinv00);
725             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
726
727             /* CUBIC SPLINE TABLE DISPERSION */
728             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
729             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
730             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
731             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
732             _MM_TRANSPOSE4_PS(Y,F,G,H);
733             Heps             = _mm_mul_ps(vfeps,H);
734             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
735             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
736             fvdw6            = _mm_mul_ps(c6_00,FF);
737
738             /* CUBIC SPLINE TABLE REPULSION */
739             vfitab           = _mm_add_epi32(vfitab,ifour);
740             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
741             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
742             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
743             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
744             _MM_TRANSPOSE4_PS(Y,F,G,H);
745             Heps             = _mm_mul_ps(vfeps,H);
746             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
747             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
748             fvdw12           = _mm_mul_ps(c12_00,FF);
749             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
750
751             fscal            = _mm_add_ps(felec,fvdw);
752
753             /* Calculate temporary vectorial force */
754             tx               = _mm_mul_ps(fscal,dx00);
755             ty               = _mm_mul_ps(fscal,dy00);
756             tz               = _mm_mul_ps(fscal,dz00);
757
758             /* Update vectorial force */
759             fix0             = _mm_add_ps(fix0,tx);
760             fiy0             = _mm_add_ps(fiy0,ty);
761             fiz0             = _mm_add_ps(fiz0,tz);
762
763             fjptrA             = f+j_coord_offsetA;
764             fjptrB             = f+j_coord_offsetB;
765             fjptrC             = f+j_coord_offsetC;
766             fjptrD             = f+j_coord_offsetD;
767             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
768             
769             /* Inner loop uses 82 flops */
770         }
771
772         if(jidx<j_index_end)
773         {
774
775             /* Get j neighbor index, and coordinate index */
776             jnrlistA         = jjnr[jidx];
777             jnrlistB         = jjnr[jidx+1];
778             jnrlistC         = jjnr[jidx+2];
779             jnrlistD         = jjnr[jidx+3];
780             /* Sign of each element will be negative for non-real atoms.
781              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
782              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
783              */
784             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
785             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
786             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
787             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
788             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
789             j_coord_offsetA  = DIM*jnrA;
790             j_coord_offsetB  = DIM*jnrB;
791             j_coord_offsetC  = DIM*jnrC;
792             j_coord_offsetD  = DIM*jnrD;
793
794             /* load j atom coordinates */
795             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
796                                               x+j_coord_offsetC,x+j_coord_offsetD,
797                                               &jx0,&jy0,&jz0);
798
799             /* Calculate displacement vector */
800             dx00             = _mm_sub_ps(ix0,jx0);
801             dy00             = _mm_sub_ps(iy0,jy0);
802             dz00             = _mm_sub_ps(iz0,jz0);
803
804             /* Calculate squared distance and things based on it */
805             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
806
807             rinv00           = gmx_mm_invsqrt_ps(rsq00);
808
809             /* Load parameters for j particles */
810             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
811                                                               charge+jnrC+0,charge+jnrD+0);
812             isaj0            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+0,invsqrta+jnrB+0,
813                                                               invsqrta+jnrC+0,invsqrta+jnrD+0);
814             vdwjidx0A        = 2*vdwtype[jnrA+0];
815             vdwjidx0B        = 2*vdwtype[jnrB+0];
816             vdwjidx0C        = 2*vdwtype[jnrC+0];
817             vdwjidx0D        = 2*vdwtype[jnrD+0];
818
819             /**************************
820              * CALCULATE INTERACTIONS *
821              **************************/
822
823             r00              = _mm_mul_ps(rsq00,rinv00);
824             r00              = _mm_andnot_ps(dummy_mask,r00);
825
826             /* Compute parameters for interactions between i and j atoms */
827             qq00             = _mm_mul_ps(iq0,jq0);
828             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
829                                          vdwparam+vdwioffset0+vdwjidx0B,
830                                          vdwparam+vdwioffset0+vdwjidx0C,
831                                          vdwparam+vdwioffset0+vdwjidx0D,
832                                          &c6_00,&c12_00);
833
834             /* Calculate table index by multiplying r with table scale and truncate to integer */
835             rt               = _mm_mul_ps(r00,vftabscale);
836             vfitab           = _mm_cvttps_epi32(rt);
837             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
838             vfitab           = _mm_slli_epi32(vfitab,3);
839
840             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
841             isaprod          = _mm_mul_ps(isai0,isaj0);
842             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq00,_mm_mul_ps(isaprod,gbinvepsdiff)));
843             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
844
845             /* Calculate generalized born table index - this is a separate table from the normal one,
846              * but we use the same procedure by multiplying r with scale and truncating to integer.
847              */
848             rt               = _mm_mul_ps(r00,gbscale);
849             gbitab           = _mm_cvttps_epi32(rt);
850             gbeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(gbitab));
851             gbitab           = _mm_slli_epi32(gbitab,2);
852
853             Y                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,0) );
854             F                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,1) );
855             G                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,2) );
856             H                = _mm_load_ps( gbtab + gmx_mm_extract_epi32(gbitab,3) );
857             _MM_TRANSPOSE4_PS(Y,F,G,H);
858             Heps             = _mm_mul_ps(gbeps,H);
859             Fp               = _mm_add_ps(F,_mm_mul_ps(gbeps,_mm_add_ps(G,Heps)));
860             VV               = _mm_add_ps(Y,_mm_mul_ps(gbeps,Fp));
861             vgb              = _mm_mul_ps(gbqqfactor,VV);
862
863             FF               = _mm_add_ps(Fp,_mm_mul_ps(gbeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
864             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
865             dvdatmp          = _mm_mul_ps(minushalf,_mm_add_ps(vgb,_mm_mul_ps(fgb,r00)));
866             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
867             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
868             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
869             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
870             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
871             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
872             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj0,isaj0)));
873             velec            = _mm_mul_ps(qq00,rinv00);
874             felec            = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(velec,rinv00),fgb),rinv00);
875
876             /* CUBIC SPLINE TABLE DISPERSION */
877             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
878             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
879             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
880             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
881             _MM_TRANSPOSE4_PS(Y,F,G,H);
882             Heps             = _mm_mul_ps(vfeps,H);
883             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
884             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
885             fvdw6            = _mm_mul_ps(c6_00,FF);
886
887             /* CUBIC SPLINE TABLE REPULSION */
888             vfitab           = _mm_add_epi32(vfitab,ifour);
889             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
890             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
891             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
892             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
893             _MM_TRANSPOSE4_PS(Y,F,G,H);
894             Heps             = _mm_mul_ps(vfeps,H);
895             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
896             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
897             fvdw12           = _mm_mul_ps(c12_00,FF);
898             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
899
900             fscal            = _mm_add_ps(felec,fvdw);
901
902             fscal            = _mm_andnot_ps(dummy_mask,fscal);
903
904             /* Calculate temporary vectorial force */
905             tx               = _mm_mul_ps(fscal,dx00);
906             ty               = _mm_mul_ps(fscal,dy00);
907             tz               = _mm_mul_ps(fscal,dz00);
908
909             /* Update vectorial force */
910             fix0             = _mm_add_ps(fix0,tx);
911             fiy0             = _mm_add_ps(fiy0,ty);
912             fiz0             = _mm_add_ps(fiz0,tz);
913
914             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
915             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
916             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
917             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
918             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
919             
920             /* Inner loop uses 83 flops */
921         }
922
923         /* End of innermost loop */
924
925         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
926                                               f+i_coord_offset,fshift+i_shift_offset);
927
928         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai0,isai0));
929         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
930
931         /* Increment number of inner iterations */
932         inneriter                  += j_index_end - j_index_start;
933
934         /* Outer loop uses 7 flops */
935     }
936
937     /* Increment number of outer iterations */
938     outeriter        += nri;
939
940     /* Update outer/inner flops */
941
942     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
943 }