Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwNone_GeomW4W4_sse2_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
89     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
91     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
93     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
94     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
95     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
96     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
97     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
98     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
99     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
100     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
101     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
102     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
103     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125
126     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136
137     jq1              = _mm_set1_ps(charge[inr+1]);
138     jq2              = _mm_set1_ps(charge[inr+2]);
139     jq3              = _mm_set1_ps(charge[inr+3]);
140     qq11             = _mm_mul_ps(iq1,jq1);
141     qq12             = _mm_mul_ps(iq1,jq2);
142     qq13             = _mm_mul_ps(iq1,jq3);
143     qq21             = _mm_mul_ps(iq2,jq1);
144     qq22             = _mm_mul_ps(iq2,jq2);
145     qq23             = _mm_mul_ps(iq2,jq3);
146     qq31             = _mm_mul_ps(iq3,jq1);
147     qq32             = _mm_mul_ps(iq3,jq2);
148     qq33             = _mm_mul_ps(iq3,jq3);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }  
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
181                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
182         
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189         fix3             = _mm_setzero_ps();
190         fiy3             = _mm_setzero_ps();
191         fiz3             = _mm_setzero_ps();
192
193         /* Reset potential sums */
194         velecsum         = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
212                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
213                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
214
215             /* Calculate displacement vector */
216             dx11             = _mm_sub_ps(ix1,jx1);
217             dy11             = _mm_sub_ps(iy1,jy1);
218             dz11             = _mm_sub_ps(iz1,jz1);
219             dx12             = _mm_sub_ps(ix1,jx2);
220             dy12             = _mm_sub_ps(iy1,jy2);
221             dz12             = _mm_sub_ps(iz1,jz2);
222             dx13             = _mm_sub_ps(ix1,jx3);
223             dy13             = _mm_sub_ps(iy1,jy3);
224             dz13             = _mm_sub_ps(iz1,jz3);
225             dx21             = _mm_sub_ps(ix2,jx1);
226             dy21             = _mm_sub_ps(iy2,jy1);
227             dz21             = _mm_sub_ps(iz2,jz1);
228             dx22             = _mm_sub_ps(ix2,jx2);
229             dy22             = _mm_sub_ps(iy2,jy2);
230             dz22             = _mm_sub_ps(iz2,jz2);
231             dx23             = _mm_sub_ps(ix2,jx3);
232             dy23             = _mm_sub_ps(iy2,jy3);
233             dz23             = _mm_sub_ps(iz2,jz3);
234             dx31             = _mm_sub_ps(ix3,jx1);
235             dy31             = _mm_sub_ps(iy3,jy1);
236             dz31             = _mm_sub_ps(iz3,jz1);
237             dx32             = _mm_sub_ps(ix3,jx2);
238             dy32             = _mm_sub_ps(iy3,jy2);
239             dz32             = _mm_sub_ps(iz3,jz2);
240             dx33             = _mm_sub_ps(ix3,jx3);
241             dy33             = _mm_sub_ps(iy3,jy3);
242             dz33             = _mm_sub_ps(iz3,jz3);
243
244             /* Calculate squared distance and things based on it */
245             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
246             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
247             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
248             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
249             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
250             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
251             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
252             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
253             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
254
255             rinv11           = sse2_invsqrt_f(rsq11);
256             rinv12           = sse2_invsqrt_f(rsq12);
257             rinv13           = sse2_invsqrt_f(rsq13);
258             rinv21           = sse2_invsqrt_f(rsq21);
259             rinv22           = sse2_invsqrt_f(rsq22);
260             rinv23           = sse2_invsqrt_f(rsq23);
261             rinv31           = sse2_invsqrt_f(rsq31);
262             rinv32           = sse2_invsqrt_f(rsq32);
263             rinv33           = sse2_invsqrt_f(rsq33);
264
265             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
266             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
267             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
268             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
269             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
270             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
271             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
272             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
273             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
274
275             fjx1             = _mm_setzero_ps();
276             fjy1             = _mm_setzero_ps();
277             fjz1             = _mm_setzero_ps();
278             fjx2             = _mm_setzero_ps();
279             fjy2             = _mm_setzero_ps();
280             fjz2             = _mm_setzero_ps();
281             fjx3             = _mm_setzero_ps();
282             fjy3             = _mm_setzero_ps();
283             fjz3             = _mm_setzero_ps();
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             r11              = _mm_mul_ps(rsq11,rinv11);
290
291             /* EWALD ELECTROSTATICS */
292
293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
294             ewrt             = _mm_mul_ps(r11,ewtabscale);
295             ewitab           = _mm_cvttps_epi32(ewrt);
296             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
297             ewitab           = _mm_slli_epi32(ewitab,2);
298             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
299             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
300             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
301             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
302             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
303             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
304             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
305             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
306             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm_add_ps(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_ps(fscal,dx11);
315             ty               = _mm_mul_ps(fscal,dy11);
316             tz               = _mm_mul_ps(fscal,dz11);
317
318             /* Update vectorial force */
319             fix1             = _mm_add_ps(fix1,tx);
320             fiy1             = _mm_add_ps(fiy1,ty);
321             fiz1             = _mm_add_ps(fiz1,tz);
322
323             fjx1             = _mm_add_ps(fjx1,tx);
324             fjy1             = _mm_add_ps(fjy1,ty);
325             fjz1             = _mm_add_ps(fjz1,tz);
326             
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r12              = _mm_mul_ps(rsq12,rinv12);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_ps(r12,ewtabscale);
337             ewitab           = _mm_cvttps_epi32(ewrt);
338             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
339             ewitab           = _mm_slli_epi32(ewitab,2);
340             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
341             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
342             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
343             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
344             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
345             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
346             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
347             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
348             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm_add_ps(velecsum,velec);
352
353             fscal            = felec;
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm_mul_ps(fscal,dx12);
357             ty               = _mm_mul_ps(fscal,dy12);
358             tz               = _mm_mul_ps(fscal,dz12);
359
360             /* Update vectorial force */
361             fix1             = _mm_add_ps(fix1,tx);
362             fiy1             = _mm_add_ps(fiy1,ty);
363             fiz1             = _mm_add_ps(fiz1,tz);
364
365             fjx2             = _mm_add_ps(fjx2,tx);
366             fjy2             = _mm_add_ps(fjy2,ty);
367             fjz2             = _mm_add_ps(fjz2,tz);
368             
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             r13              = _mm_mul_ps(rsq13,rinv13);
374
375             /* EWALD ELECTROSTATICS */
376
377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
378             ewrt             = _mm_mul_ps(r13,ewtabscale);
379             ewitab           = _mm_cvttps_epi32(ewrt);
380             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
381             ewitab           = _mm_slli_epi32(ewitab,2);
382             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
383             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
384             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
385             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
386             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
387             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
388             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
389             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
390             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
391
392             /* Update potential sum for this i atom from the interaction with this j atom. */
393             velecsum         = _mm_add_ps(velecsum,velec);
394
395             fscal            = felec;
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_ps(fscal,dx13);
399             ty               = _mm_mul_ps(fscal,dy13);
400             tz               = _mm_mul_ps(fscal,dz13);
401
402             /* Update vectorial force */
403             fix1             = _mm_add_ps(fix1,tx);
404             fiy1             = _mm_add_ps(fiy1,ty);
405             fiz1             = _mm_add_ps(fiz1,tz);
406
407             fjx3             = _mm_add_ps(fjx3,tx);
408             fjy3             = _mm_add_ps(fjy3,ty);
409             fjz3             = _mm_add_ps(fjz3,tz);
410             
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             r21              = _mm_mul_ps(rsq21,rinv21);
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = _mm_mul_ps(r21,ewtabscale);
421             ewitab           = _mm_cvttps_epi32(ewrt);
422             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
423             ewitab           = _mm_slli_epi32(ewitab,2);
424             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
425             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
426             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
427             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
428             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
429             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
430             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
431             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
432             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velecsum         = _mm_add_ps(velecsum,velec);
436
437             fscal            = felec;
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm_mul_ps(fscal,dx21);
441             ty               = _mm_mul_ps(fscal,dy21);
442             tz               = _mm_mul_ps(fscal,dz21);
443
444             /* Update vectorial force */
445             fix2             = _mm_add_ps(fix2,tx);
446             fiy2             = _mm_add_ps(fiy2,ty);
447             fiz2             = _mm_add_ps(fiz2,tz);
448
449             fjx1             = _mm_add_ps(fjx1,tx);
450             fjy1             = _mm_add_ps(fjy1,ty);
451             fjz1             = _mm_add_ps(fjz1,tz);
452             
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             r22              = _mm_mul_ps(rsq22,rinv22);
458
459             /* EWALD ELECTROSTATICS */
460
461             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
462             ewrt             = _mm_mul_ps(r22,ewtabscale);
463             ewitab           = _mm_cvttps_epi32(ewrt);
464             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
465             ewitab           = _mm_slli_epi32(ewitab,2);
466             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
467             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
468             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
469             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
470             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
471             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
472             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
473             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
474             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velecsum         = _mm_add_ps(velecsum,velec);
478
479             fscal            = felec;
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm_mul_ps(fscal,dx22);
483             ty               = _mm_mul_ps(fscal,dy22);
484             tz               = _mm_mul_ps(fscal,dz22);
485
486             /* Update vectorial force */
487             fix2             = _mm_add_ps(fix2,tx);
488             fiy2             = _mm_add_ps(fiy2,ty);
489             fiz2             = _mm_add_ps(fiz2,tz);
490
491             fjx2             = _mm_add_ps(fjx2,tx);
492             fjy2             = _mm_add_ps(fjy2,ty);
493             fjz2             = _mm_add_ps(fjz2,tz);
494             
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r23              = _mm_mul_ps(rsq23,rinv23);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = _mm_mul_ps(r23,ewtabscale);
505             ewitab           = _mm_cvttps_epi32(ewrt);
506             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
507             ewitab           = _mm_slli_epi32(ewitab,2);
508             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
509             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
510             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
511             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
512             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
513             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
514             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
515             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
516             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velecsum         = _mm_add_ps(velecsum,velec);
520
521             fscal            = felec;
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_ps(fscal,dx23);
525             ty               = _mm_mul_ps(fscal,dy23);
526             tz               = _mm_mul_ps(fscal,dz23);
527
528             /* Update vectorial force */
529             fix2             = _mm_add_ps(fix2,tx);
530             fiy2             = _mm_add_ps(fiy2,ty);
531             fiz2             = _mm_add_ps(fiz2,tz);
532
533             fjx3             = _mm_add_ps(fjx3,tx);
534             fjy3             = _mm_add_ps(fjy3,ty);
535             fjz3             = _mm_add_ps(fjz3,tz);
536             
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r31              = _mm_mul_ps(rsq31,rinv31);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_ps(r31,ewtabscale);
547             ewitab           = _mm_cvttps_epi32(ewrt);
548             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
549             ewitab           = _mm_slli_epi32(ewitab,2);
550             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
551             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
552             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
553             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
554             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
555             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
556             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
557             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
558             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velecsum         = _mm_add_ps(velecsum,velec);
562
563             fscal            = felec;
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_ps(fscal,dx31);
567             ty               = _mm_mul_ps(fscal,dy31);
568             tz               = _mm_mul_ps(fscal,dz31);
569
570             /* Update vectorial force */
571             fix3             = _mm_add_ps(fix3,tx);
572             fiy3             = _mm_add_ps(fiy3,ty);
573             fiz3             = _mm_add_ps(fiz3,tz);
574
575             fjx1             = _mm_add_ps(fjx1,tx);
576             fjy1             = _mm_add_ps(fjy1,ty);
577             fjz1             = _mm_add_ps(fjz1,tz);
578             
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r32              = _mm_mul_ps(rsq32,rinv32);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm_mul_ps(r32,ewtabscale);
589             ewitab           = _mm_cvttps_epi32(ewrt);
590             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
591             ewitab           = _mm_slli_epi32(ewitab,2);
592             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
593             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
594             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
595             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
596             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
597             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
598             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
599             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
600             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velecsum         = _mm_add_ps(velecsum,velec);
604
605             fscal            = felec;
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_ps(fscal,dx32);
609             ty               = _mm_mul_ps(fscal,dy32);
610             tz               = _mm_mul_ps(fscal,dz32);
611
612             /* Update vectorial force */
613             fix3             = _mm_add_ps(fix3,tx);
614             fiy3             = _mm_add_ps(fiy3,ty);
615             fiz3             = _mm_add_ps(fiz3,tz);
616
617             fjx2             = _mm_add_ps(fjx2,tx);
618             fjy2             = _mm_add_ps(fjy2,ty);
619             fjz2             = _mm_add_ps(fjz2,tz);
620             
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r33              = _mm_mul_ps(rsq33,rinv33);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_ps(r33,ewtabscale);
631             ewitab           = _mm_cvttps_epi32(ewrt);
632             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
636             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
637             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
638             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
639             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
640             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
641             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
642             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
643
644             /* Update potential sum for this i atom from the interaction with this j atom. */
645             velecsum         = _mm_add_ps(velecsum,velec);
646
647             fscal            = felec;
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm_mul_ps(fscal,dx33);
651             ty               = _mm_mul_ps(fscal,dy33);
652             tz               = _mm_mul_ps(fscal,dz33);
653
654             /* Update vectorial force */
655             fix3             = _mm_add_ps(fix3,tx);
656             fiy3             = _mm_add_ps(fiy3,ty);
657             fiz3             = _mm_add_ps(fiz3,tz);
658
659             fjx3             = _mm_add_ps(fjx3,tx);
660             fjy3             = _mm_add_ps(fjy3,ty);
661             fjz3             = _mm_add_ps(fjz3,tz);
662             
663             fjptrA             = f+j_coord_offsetA;
664             fjptrB             = f+j_coord_offsetB;
665             fjptrC             = f+j_coord_offsetC;
666             fjptrD             = f+j_coord_offsetD;
667
668             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
669                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
670
671             /* Inner loop uses 369 flops */
672         }
673
674         if(jidx<j_index_end)
675         {
676
677             /* Get j neighbor index, and coordinate index */
678             jnrlistA         = jjnr[jidx];
679             jnrlistB         = jjnr[jidx+1];
680             jnrlistC         = jjnr[jidx+2];
681             jnrlistD         = jjnr[jidx+3];
682             /* Sign of each element will be negative for non-real atoms.
683              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
684              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
685              */
686             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
687             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
688             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
689             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
690             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
691             j_coord_offsetA  = DIM*jnrA;
692             j_coord_offsetB  = DIM*jnrB;
693             j_coord_offsetC  = DIM*jnrC;
694             j_coord_offsetD  = DIM*jnrD;
695
696             /* load j atom coordinates */
697             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
698                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
699                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
700
701             /* Calculate displacement vector */
702             dx11             = _mm_sub_ps(ix1,jx1);
703             dy11             = _mm_sub_ps(iy1,jy1);
704             dz11             = _mm_sub_ps(iz1,jz1);
705             dx12             = _mm_sub_ps(ix1,jx2);
706             dy12             = _mm_sub_ps(iy1,jy2);
707             dz12             = _mm_sub_ps(iz1,jz2);
708             dx13             = _mm_sub_ps(ix1,jx3);
709             dy13             = _mm_sub_ps(iy1,jy3);
710             dz13             = _mm_sub_ps(iz1,jz3);
711             dx21             = _mm_sub_ps(ix2,jx1);
712             dy21             = _mm_sub_ps(iy2,jy1);
713             dz21             = _mm_sub_ps(iz2,jz1);
714             dx22             = _mm_sub_ps(ix2,jx2);
715             dy22             = _mm_sub_ps(iy2,jy2);
716             dz22             = _mm_sub_ps(iz2,jz2);
717             dx23             = _mm_sub_ps(ix2,jx3);
718             dy23             = _mm_sub_ps(iy2,jy3);
719             dz23             = _mm_sub_ps(iz2,jz3);
720             dx31             = _mm_sub_ps(ix3,jx1);
721             dy31             = _mm_sub_ps(iy3,jy1);
722             dz31             = _mm_sub_ps(iz3,jz1);
723             dx32             = _mm_sub_ps(ix3,jx2);
724             dy32             = _mm_sub_ps(iy3,jy2);
725             dz32             = _mm_sub_ps(iz3,jz2);
726             dx33             = _mm_sub_ps(ix3,jx3);
727             dy33             = _mm_sub_ps(iy3,jy3);
728             dz33             = _mm_sub_ps(iz3,jz3);
729
730             /* Calculate squared distance and things based on it */
731             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
732             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
733             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
734             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
735             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
736             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
737             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
738             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
739             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
740
741             rinv11           = sse2_invsqrt_f(rsq11);
742             rinv12           = sse2_invsqrt_f(rsq12);
743             rinv13           = sse2_invsqrt_f(rsq13);
744             rinv21           = sse2_invsqrt_f(rsq21);
745             rinv22           = sse2_invsqrt_f(rsq22);
746             rinv23           = sse2_invsqrt_f(rsq23);
747             rinv31           = sse2_invsqrt_f(rsq31);
748             rinv32           = sse2_invsqrt_f(rsq32);
749             rinv33           = sse2_invsqrt_f(rsq33);
750
751             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
752             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
753             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
754             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
755             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
756             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
757             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
758             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
759             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
760
761             fjx1             = _mm_setzero_ps();
762             fjy1             = _mm_setzero_ps();
763             fjz1             = _mm_setzero_ps();
764             fjx2             = _mm_setzero_ps();
765             fjy2             = _mm_setzero_ps();
766             fjz2             = _mm_setzero_ps();
767             fjx3             = _mm_setzero_ps();
768             fjy3             = _mm_setzero_ps();
769             fjz3             = _mm_setzero_ps();
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             r11              = _mm_mul_ps(rsq11,rinv11);
776             r11              = _mm_andnot_ps(dummy_mask,r11);
777
778             /* EWALD ELECTROSTATICS */
779
780             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
781             ewrt             = _mm_mul_ps(r11,ewtabscale);
782             ewitab           = _mm_cvttps_epi32(ewrt);
783             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
784             ewitab           = _mm_slli_epi32(ewitab,2);
785             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
786             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
787             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
788             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
789             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
790             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
791             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
792             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
793             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
794
795             /* Update potential sum for this i atom from the interaction with this j atom. */
796             velec            = _mm_andnot_ps(dummy_mask,velec);
797             velecsum         = _mm_add_ps(velecsum,velec);
798
799             fscal            = felec;
800
801             fscal            = _mm_andnot_ps(dummy_mask,fscal);
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_ps(fscal,dx11);
805             ty               = _mm_mul_ps(fscal,dy11);
806             tz               = _mm_mul_ps(fscal,dz11);
807
808             /* Update vectorial force */
809             fix1             = _mm_add_ps(fix1,tx);
810             fiy1             = _mm_add_ps(fiy1,ty);
811             fiz1             = _mm_add_ps(fiz1,tz);
812
813             fjx1             = _mm_add_ps(fjx1,tx);
814             fjy1             = _mm_add_ps(fjy1,ty);
815             fjz1             = _mm_add_ps(fjz1,tz);
816             
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             r12              = _mm_mul_ps(rsq12,rinv12);
822             r12              = _mm_andnot_ps(dummy_mask,r12);
823
824             /* EWALD ELECTROSTATICS */
825
826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
827             ewrt             = _mm_mul_ps(r12,ewtabscale);
828             ewitab           = _mm_cvttps_epi32(ewrt);
829             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
830             ewitab           = _mm_slli_epi32(ewitab,2);
831             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
832             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
833             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
834             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
835             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
836             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
837             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
838             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
839             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
840
841             /* Update potential sum for this i atom from the interaction with this j atom. */
842             velec            = _mm_andnot_ps(dummy_mask,velec);
843             velecsum         = _mm_add_ps(velecsum,velec);
844
845             fscal            = felec;
846
847             fscal            = _mm_andnot_ps(dummy_mask,fscal);
848
849             /* Calculate temporary vectorial force */
850             tx               = _mm_mul_ps(fscal,dx12);
851             ty               = _mm_mul_ps(fscal,dy12);
852             tz               = _mm_mul_ps(fscal,dz12);
853
854             /* Update vectorial force */
855             fix1             = _mm_add_ps(fix1,tx);
856             fiy1             = _mm_add_ps(fiy1,ty);
857             fiz1             = _mm_add_ps(fiz1,tz);
858
859             fjx2             = _mm_add_ps(fjx2,tx);
860             fjy2             = _mm_add_ps(fjy2,ty);
861             fjz2             = _mm_add_ps(fjz2,tz);
862             
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r13              = _mm_mul_ps(rsq13,rinv13);
868             r13              = _mm_andnot_ps(dummy_mask,r13);
869
870             /* EWALD ELECTROSTATICS */
871
872             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
873             ewrt             = _mm_mul_ps(r13,ewtabscale);
874             ewitab           = _mm_cvttps_epi32(ewrt);
875             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
876             ewitab           = _mm_slli_epi32(ewitab,2);
877             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
878             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
879             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
880             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
881             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
882             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
883             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
884             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
885             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
886
887             /* Update potential sum for this i atom from the interaction with this j atom. */
888             velec            = _mm_andnot_ps(dummy_mask,velec);
889             velecsum         = _mm_add_ps(velecsum,velec);
890
891             fscal            = felec;
892
893             fscal            = _mm_andnot_ps(dummy_mask,fscal);
894
895             /* Calculate temporary vectorial force */
896             tx               = _mm_mul_ps(fscal,dx13);
897             ty               = _mm_mul_ps(fscal,dy13);
898             tz               = _mm_mul_ps(fscal,dz13);
899
900             /* Update vectorial force */
901             fix1             = _mm_add_ps(fix1,tx);
902             fiy1             = _mm_add_ps(fiy1,ty);
903             fiz1             = _mm_add_ps(fiz1,tz);
904
905             fjx3             = _mm_add_ps(fjx3,tx);
906             fjy3             = _mm_add_ps(fjy3,ty);
907             fjz3             = _mm_add_ps(fjz3,tz);
908             
909             /**************************
910              * CALCULATE INTERACTIONS *
911              **************************/
912
913             r21              = _mm_mul_ps(rsq21,rinv21);
914             r21              = _mm_andnot_ps(dummy_mask,r21);
915
916             /* EWALD ELECTROSTATICS */
917
918             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
919             ewrt             = _mm_mul_ps(r21,ewtabscale);
920             ewitab           = _mm_cvttps_epi32(ewrt);
921             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
922             ewitab           = _mm_slli_epi32(ewitab,2);
923             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
924             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
925             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
926             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
927             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
928             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
929             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
930             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
931             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
932
933             /* Update potential sum for this i atom from the interaction with this j atom. */
934             velec            = _mm_andnot_ps(dummy_mask,velec);
935             velecsum         = _mm_add_ps(velecsum,velec);
936
937             fscal            = felec;
938
939             fscal            = _mm_andnot_ps(dummy_mask,fscal);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_ps(fscal,dx21);
943             ty               = _mm_mul_ps(fscal,dy21);
944             tz               = _mm_mul_ps(fscal,dz21);
945
946             /* Update vectorial force */
947             fix2             = _mm_add_ps(fix2,tx);
948             fiy2             = _mm_add_ps(fiy2,ty);
949             fiz2             = _mm_add_ps(fiz2,tz);
950
951             fjx1             = _mm_add_ps(fjx1,tx);
952             fjy1             = _mm_add_ps(fjy1,ty);
953             fjz1             = _mm_add_ps(fjz1,tz);
954             
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             r22              = _mm_mul_ps(rsq22,rinv22);
960             r22              = _mm_andnot_ps(dummy_mask,r22);
961
962             /* EWALD ELECTROSTATICS */
963
964             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
965             ewrt             = _mm_mul_ps(r22,ewtabscale);
966             ewitab           = _mm_cvttps_epi32(ewrt);
967             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
968             ewitab           = _mm_slli_epi32(ewitab,2);
969             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
970             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
971             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
972             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
973             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
974             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
975             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
976             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
977             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
978
979             /* Update potential sum for this i atom from the interaction with this j atom. */
980             velec            = _mm_andnot_ps(dummy_mask,velec);
981             velecsum         = _mm_add_ps(velecsum,velec);
982
983             fscal            = felec;
984
985             fscal            = _mm_andnot_ps(dummy_mask,fscal);
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm_mul_ps(fscal,dx22);
989             ty               = _mm_mul_ps(fscal,dy22);
990             tz               = _mm_mul_ps(fscal,dz22);
991
992             /* Update vectorial force */
993             fix2             = _mm_add_ps(fix2,tx);
994             fiy2             = _mm_add_ps(fiy2,ty);
995             fiz2             = _mm_add_ps(fiz2,tz);
996
997             fjx2             = _mm_add_ps(fjx2,tx);
998             fjy2             = _mm_add_ps(fjy2,ty);
999             fjz2             = _mm_add_ps(fjz2,tz);
1000             
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r23              = _mm_mul_ps(rsq23,rinv23);
1006             r23              = _mm_andnot_ps(dummy_mask,r23);
1007
1008             /* EWALD ELECTROSTATICS */
1009
1010             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1011             ewrt             = _mm_mul_ps(r23,ewtabscale);
1012             ewitab           = _mm_cvttps_epi32(ewrt);
1013             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1014             ewitab           = _mm_slli_epi32(ewitab,2);
1015             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1016             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1017             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1018             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1019             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1020             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1021             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1022             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
1023             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1024
1025             /* Update potential sum for this i atom from the interaction with this j atom. */
1026             velec            = _mm_andnot_ps(dummy_mask,velec);
1027             velecsum         = _mm_add_ps(velecsum,velec);
1028
1029             fscal            = felec;
1030
1031             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1032
1033             /* Calculate temporary vectorial force */
1034             tx               = _mm_mul_ps(fscal,dx23);
1035             ty               = _mm_mul_ps(fscal,dy23);
1036             tz               = _mm_mul_ps(fscal,dz23);
1037
1038             /* Update vectorial force */
1039             fix2             = _mm_add_ps(fix2,tx);
1040             fiy2             = _mm_add_ps(fiy2,ty);
1041             fiz2             = _mm_add_ps(fiz2,tz);
1042
1043             fjx3             = _mm_add_ps(fjx3,tx);
1044             fjy3             = _mm_add_ps(fjy3,ty);
1045             fjz3             = _mm_add_ps(fjz3,tz);
1046             
1047             /**************************
1048              * CALCULATE INTERACTIONS *
1049              **************************/
1050
1051             r31              = _mm_mul_ps(rsq31,rinv31);
1052             r31              = _mm_andnot_ps(dummy_mask,r31);
1053
1054             /* EWALD ELECTROSTATICS */
1055
1056             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1057             ewrt             = _mm_mul_ps(r31,ewtabscale);
1058             ewitab           = _mm_cvttps_epi32(ewrt);
1059             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1060             ewitab           = _mm_slli_epi32(ewitab,2);
1061             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1062             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1063             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1064             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1065             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1066             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1067             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1068             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
1069             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1070
1071             /* Update potential sum for this i atom from the interaction with this j atom. */
1072             velec            = _mm_andnot_ps(dummy_mask,velec);
1073             velecsum         = _mm_add_ps(velecsum,velec);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1078
1079             /* Calculate temporary vectorial force */
1080             tx               = _mm_mul_ps(fscal,dx31);
1081             ty               = _mm_mul_ps(fscal,dy31);
1082             tz               = _mm_mul_ps(fscal,dz31);
1083
1084             /* Update vectorial force */
1085             fix3             = _mm_add_ps(fix3,tx);
1086             fiy3             = _mm_add_ps(fiy3,ty);
1087             fiz3             = _mm_add_ps(fiz3,tz);
1088
1089             fjx1             = _mm_add_ps(fjx1,tx);
1090             fjy1             = _mm_add_ps(fjy1,ty);
1091             fjz1             = _mm_add_ps(fjz1,tz);
1092             
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             r32              = _mm_mul_ps(rsq32,rinv32);
1098             r32              = _mm_andnot_ps(dummy_mask,r32);
1099
1100             /* EWALD ELECTROSTATICS */
1101
1102             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1103             ewrt             = _mm_mul_ps(r32,ewtabscale);
1104             ewitab           = _mm_cvttps_epi32(ewrt);
1105             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1106             ewitab           = _mm_slli_epi32(ewitab,2);
1107             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1108             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1109             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1110             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1111             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1112             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1113             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1114             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
1115             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1116
1117             /* Update potential sum for this i atom from the interaction with this j atom. */
1118             velec            = _mm_andnot_ps(dummy_mask,velec);
1119             velecsum         = _mm_add_ps(velecsum,velec);
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm_mul_ps(fscal,dx32);
1127             ty               = _mm_mul_ps(fscal,dy32);
1128             tz               = _mm_mul_ps(fscal,dz32);
1129
1130             /* Update vectorial force */
1131             fix3             = _mm_add_ps(fix3,tx);
1132             fiy3             = _mm_add_ps(fiy3,ty);
1133             fiz3             = _mm_add_ps(fiz3,tz);
1134
1135             fjx2             = _mm_add_ps(fjx2,tx);
1136             fjy2             = _mm_add_ps(fjy2,ty);
1137             fjz2             = _mm_add_ps(fjz2,tz);
1138             
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             r33              = _mm_mul_ps(rsq33,rinv33);
1144             r33              = _mm_andnot_ps(dummy_mask,r33);
1145
1146             /* EWALD ELECTROSTATICS */
1147
1148             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1149             ewrt             = _mm_mul_ps(r33,ewtabscale);
1150             ewitab           = _mm_cvttps_epi32(ewrt);
1151             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1152             ewitab           = _mm_slli_epi32(ewitab,2);
1153             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1154             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1155             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1156             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1157             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1158             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1159             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1160             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
1161             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1162
1163             /* Update potential sum for this i atom from the interaction with this j atom. */
1164             velec            = _mm_andnot_ps(dummy_mask,velec);
1165             velecsum         = _mm_add_ps(velecsum,velec);
1166
1167             fscal            = felec;
1168
1169             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1170
1171             /* Calculate temporary vectorial force */
1172             tx               = _mm_mul_ps(fscal,dx33);
1173             ty               = _mm_mul_ps(fscal,dy33);
1174             tz               = _mm_mul_ps(fscal,dz33);
1175
1176             /* Update vectorial force */
1177             fix3             = _mm_add_ps(fix3,tx);
1178             fiy3             = _mm_add_ps(fiy3,ty);
1179             fiz3             = _mm_add_ps(fiz3,tz);
1180
1181             fjx3             = _mm_add_ps(fjx3,tx);
1182             fjy3             = _mm_add_ps(fjy3,ty);
1183             fjz3             = _mm_add_ps(fjz3,tz);
1184             
1185             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1186             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1187             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1188             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1189
1190             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1191                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1192
1193             /* Inner loop uses 378 flops */
1194         }
1195
1196         /* End of innermost loop */
1197
1198         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1199                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1200
1201         ggid                        = gid[iidx];
1202         /* Update potential energies */
1203         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1204
1205         /* Increment number of inner iterations */
1206         inneriter                  += j_index_end - j_index_start;
1207
1208         /* Outer loop uses 19 flops */
1209     }
1210
1211     /* Increment number of outer iterations */
1212     outeriter        += nri;
1213
1214     /* Update outer/inner flops */
1215
1216     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*378);
1217 }
1218 /*
1219  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_sse2_single
1220  * Electrostatics interaction: Ewald
1221  * VdW interaction:            None
1222  * Geometry:                   Water4-Water4
1223  * Calculate force/pot:        Force
1224  */
1225 void
1226 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_sse2_single
1227                     (t_nblist                    * gmx_restrict       nlist,
1228                      rvec                        * gmx_restrict          xx,
1229                      rvec                        * gmx_restrict          ff,
1230                      struct t_forcerec           * gmx_restrict          fr,
1231                      t_mdatoms                   * gmx_restrict     mdatoms,
1232                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1233                      t_nrnb                      * gmx_restrict        nrnb)
1234 {
1235     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1236      * just 0 for non-waters.
1237      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1238      * jnr indices corresponding to data put in the four positions in the SIMD register.
1239      */
1240     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1241     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1242     int              jnrA,jnrB,jnrC,jnrD;
1243     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1244     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1245     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1246     real             rcutoff_scalar;
1247     real             *shiftvec,*fshift,*x,*f;
1248     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1249     real             scratch[4*DIM];
1250     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1251     int              vdwioffset1;
1252     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1253     int              vdwioffset2;
1254     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1255     int              vdwioffset3;
1256     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1257     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1258     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1259     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1260     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1261     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1262     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1263     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1264     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1265     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1266     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1267     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1268     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1269     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1270     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1271     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1272     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1273     real             *charge;
1274     __m128i          ewitab;
1275     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1276     real             *ewtab;
1277     __m128           dummy_mask,cutoff_mask;
1278     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1279     __m128           one     = _mm_set1_ps(1.0);
1280     __m128           two     = _mm_set1_ps(2.0);
1281     x                = xx[0];
1282     f                = ff[0];
1283
1284     nri              = nlist->nri;
1285     iinr             = nlist->iinr;
1286     jindex           = nlist->jindex;
1287     jjnr             = nlist->jjnr;
1288     shiftidx         = nlist->shift;
1289     gid              = nlist->gid;
1290     shiftvec         = fr->shift_vec[0];
1291     fshift           = fr->fshift[0];
1292     facel            = _mm_set1_ps(fr->ic->epsfac);
1293     charge           = mdatoms->chargeA;
1294
1295     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1296     ewtab            = fr->ic->tabq_coul_F;
1297     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1298     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1299
1300     /* Setup water-specific parameters */
1301     inr              = nlist->iinr[0];
1302     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1303     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1304     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1305
1306     jq1              = _mm_set1_ps(charge[inr+1]);
1307     jq2              = _mm_set1_ps(charge[inr+2]);
1308     jq3              = _mm_set1_ps(charge[inr+3]);
1309     qq11             = _mm_mul_ps(iq1,jq1);
1310     qq12             = _mm_mul_ps(iq1,jq2);
1311     qq13             = _mm_mul_ps(iq1,jq3);
1312     qq21             = _mm_mul_ps(iq2,jq1);
1313     qq22             = _mm_mul_ps(iq2,jq2);
1314     qq23             = _mm_mul_ps(iq2,jq3);
1315     qq31             = _mm_mul_ps(iq3,jq1);
1316     qq32             = _mm_mul_ps(iq3,jq2);
1317     qq33             = _mm_mul_ps(iq3,jq3);
1318
1319     /* Avoid stupid compiler warnings */
1320     jnrA = jnrB = jnrC = jnrD = 0;
1321     j_coord_offsetA = 0;
1322     j_coord_offsetB = 0;
1323     j_coord_offsetC = 0;
1324     j_coord_offsetD = 0;
1325
1326     outeriter        = 0;
1327     inneriter        = 0;
1328
1329     for(iidx=0;iidx<4*DIM;iidx++)
1330     {
1331         scratch[iidx] = 0.0;
1332     }  
1333
1334     /* Start outer loop over neighborlists */
1335     for(iidx=0; iidx<nri; iidx++)
1336     {
1337         /* Load shift vector for this list */
1338         i_shift_offset   = DIM*shiftidx[iidx];
1339
1340         /* Load limits for loop over neighbors */
1341         j_index_start    = jindex[iidx];
1342         j_index_end      = jindex[iidx+1];
1343
1344         /* Get outer coordinate index */
1345         inr              = iinr[iidx];
1346         i_coord_offset   = DIM*inr;
1347
1348         /* Load i particle coords and add shift vector */
1349         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1350                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1351         
1352         fix1             = _mm_setzero_ps();
1353         fiy1             = _mm_setzero_ps();
1354         fiz1             = _mm_setzero_ps();
1355         fix2             = _mm_setzero_ps();
1356         fiy2             = _mm_setzero_ps();
1357         fiz2             = _mm_setzero_ps();
1358         fix3             = _mm_setzero_ps();
1359         fiy3             = _mm_setzero_ps();
1360         fiz3             = _mm_setzero_ps();
1361
1362         /* Start inner kernel loop */
1363         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1364         {
1365
1366             /* Get j neighbor index, and coordinate index */
1367             jnrA             = jjnr[jidx];
1368             jnrB             = jjnr[jidx+1];
1369             jnrC             = jjnr[jidx+2];
1370             jnrD             = jjnr[jidx+3];
1371             j_coord_offsetA  = DIM*jnrA;
1372             j_coord_offsetB  = DIM*jnrB;
1373             j_coord_offsetC  = DIM*jnrC;
1374             j_coord_offsetD  = DIM*jnrD;
1375
1376             /* load j atom coordinates */
1377             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1378                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1379                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1380
1381             /* Calculate displacement vector */
1382             dx11             = _mm_sub_ps(ix1,jx1);
1383             dy11             = _mm_sub_ps(iy1,jy1);
1384             dz11             = _mm_sub_ps(iz1,jz1);
1385             dx12             = _mm_sub_ps(ix1,jx2);
1386             dy12             = _mm_sub_ps(iy1,jy2);
1387             dz12             = _mm_sub_ps(iz1,jz2);
1388             dx13             = _mm_sub_ps(ix1,jx3);
1389             dy13             = _mm_sub_ps(iy1,jy3);
1390             dz13             = _mm_sub_ps(iz1,jz3);
1391             dx21             = _mm_sub_ps(ix2,jx1);
1392             dy21             = _mm_sub_ps(iy2,jy1);
1393             dz21             = _mm_sub_ps(iz2,jz1);
1394             dx22             = _mm_sub_ps(ix2,jx2);
1395             dy22             = _mm_sub_ps(iy2,jy2);
1396             dz22             = _mm_sub_ps(iz2,jz2);
1397             dx23             = _mm_sub_ps(ix2,jx3);
1398             dy23             = _mm_sub_ps(iy2,jy3);
1399             dz23             = _mm_sub_ps(iz2,jz3);
1400             dx31             = _mm_sub_ps(ix3,jx1);
1401             dy31             = _mm_sub_ps(iy3,jy1);
1402             dz31             = _mm_sub_ps(iz3,jz1);
1403             dx32             = _mm_sub_ps(ix3,jx2);
1404             dy32             = _mm_sub_ps(iy3,jy2);
1405             dz32             = _mm_sub_ps(iz3,jz2);
1406             dx33             = _mm_sub_ps(ix3,jx3);
1407             dy33             = _mm_sub_ps(iy3,jy3);
1408             dz33             = _mm_sub_ps(iz3,jz3);
1409
1410             /* Calculate squared distance and things based on it */
1411             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1412             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1413             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1414             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1415             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1416             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1417             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1418             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1419             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1420
1421             rinv11           = sse2_invsqrt_f(rsq11);
1422             rinv12           = sse2_invsqrt_f(rsq12);
1423             rinv13           = sse2_invsqrt_f(rsq13);
1424             rinv21           = sse2_invsqrt_f(rsq21);
1425             rinv22           = sse2_invsqrt_f(rsq22);
1426             rinv23           = sse2_invsqrt_f(rsq23);
1427             rinv31           = sse2_invsqrt_f(rsq31);
1428             rinv32           = sse2_invsqrt_f(rsq32);
1429             rinv33           = sse2_invsqrt_f(rsq33);
1430
1431             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1432             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1433             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
1434             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1435             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1436             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
1437             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
1438             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
1439             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
1440
1441             fjx1             = _mm_setzero_ps();
1442             fjy1             = _mm_setzero_ps();
1443             fjz1             = _mm_setzero_ps();
1444             fjx2             = _mm_setzero_ps();
1445             fjy2             = _mm_setzero_ps();
1446             fjz2             = _mm_setzero_ps();
1447             fjx3             = _mm_setzero_ps();
1448             fjy3             = _mm_setzero_ps();
1449             fjz3             = _mm_setzero_ps();
1450
1451             /**************************
1452              * CALCULATE INTERACTIONS *
1453              **************************/
1454
1455             r11              = _mm_mul_ps(rsq11,rinv11);
1456
1457             /* EWALD ELECTROSTATICS */
1458
1459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1460             ewrt             = _mm_mul_ps(r11,ewtabscale);
1461             ewitab           = _mm_cvttps_epi32(ewrt);
1462             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1463             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1464                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1465                                          &ewtabF,&ewtabFn);
1466             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1467             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1468
1469             fscal            = felec;
1470
1471             /* Calculate temporary vectorial force */
1472             tx               = _mm_mul_ps(fscal,dx11);
1473             ty               = _mm_mul_ps(fscal,dy11);
1474             tz               = _mm_mul_ps(fscal,dz11);
1475
1476             /* Update vectorial force */
1477             fix1             = _mm_add_ps(fix1,tx);
1478             fiy1             = _mm_add_ps(fiy1,ty);
1479             fiz1             = _mm_add_ps(fiz1,tz);
1480
1481             fjx1             = _mm_add_ps(fjx1,tx);
1482             fjy1             = _mm_add_ps(fjy1,ty);
1483             fjz1             = _mm_add_ps(fjz1,tz);
1484             
1485             /**************************
1486              * CALCULATE INTERACTIONS *
1487              **************************/
1488
1489             r12              = _mm_mul_ps(rsq12,rinv12);
1490
1491             /* EWALD ELECTROSTATICS */
1492
1493             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1494             ewrt             = _mm_mul_ps(r12,ewtabscale);
1495             ewitab           = _mm_cvttps_epi32(ewrt);
1496             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1497             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1498                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1499                                          &ewtabF,&ewtabFn);
1500             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1501             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1502
1503             fscal            = felec;
1504
1505             /* Calculate temporary vectorial force */
1506             tx               = _mm_mul_ps(fscal,dx12);
1507             ty               = _mm_mul_ps(fscal,dy12);
1508             tz               = _mm_mul_ps(fscal,dz12);
1509
1510             /* Update vectorial force */
1511             fix1             = _mm_add_ps(fix1,tx);
1512             fiy1             = _mm_add_ps(fiy1,ty);
1513             fiz1             = _mm_add_ps(fiz1,tz);
1514
1515             fjx2             = _mm_add_ps(fjx2,tx);
1516             fjy2             = _mm_add_ps(fjy2,ty);
1517             fjz2             = _mm_add_ps(fjz2,tz);
1518             
1519             /**************************
1520              * CALCULATE INTERACTIONS *
1521              **************************/
1522
1523             r13              = _mm_mul_ps(rsq13,rinv13);
1524
1525             /* EWALD ELECTROSTATICS */
1526
1527             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1528             ewrt             = _mm_mul_ps(r13,ewtabscale);
1529             ewitab           = _mm_cvttps_epi32(ewrt);
1530             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1531             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1532                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1533                                          &ewtabF,&ewtabFn);
1534             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1535             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1536
1537             fscal            = felec;
1538
1539             /* Calculate temporary vectorial force */
1540             tx               = _mm_mul_ps(fscal,dx13);
1541             ty               = _mm_mul_ps(fscal,dy13);
1542             tz               = _mm_mul_ps(fscal,dz13);
1543
1544             /* Update vectorial force */
1545             fix1             = _mm_add_ps(fix1,tx);
1546             fiy1             = _mm_add_ps(fiy1,ty);
1547             fiz1             = _mm_add_ps(fiz1,tz);
1548
1549             fjx3             = _mm_add_ps(fjx3,tx);
1550             fjy3             = _mm_add_ps(fjy3,ty);
1551             fjz3             = _mm_add_ps(fjz3,tz);
1552             
1553             /**************************
1554              * CALCULATE INTERACTIONS *
1555              **************************/
1556
1557             r21              = _mm_mul_ps(rsq21,rinv21);
1558
1559             /* EWALD ELECTROSTATICS */
1560
1561             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1562             ewrt             = _mm_mul_ps(r21,ewtabscale);
1563             ewitab           = _mm_cvttps_epi32(ewrt);
1564             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1565             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1566                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1567                                          &ewtabF,&ewtabFn);
1568             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1569             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1570
1571             fscal            = felec;
1572
1573             /* Calculate temporary vectorial force */
1574             tx               = _mm_mul_ps(fscal,dx21);
1575             ty               = _mm_mul_ps(fscal,dy21);
1576             tz               = _mm_mul_ps(fscal,dz21);
1577
1578             /* Update vectorial force */
1579             fix2             = _mm_add_ps(fix2,tx);
1580             fiy2             = _mm_add_ps(fiy2,ty);
1581             fiz2             = _mm_add_ps(fiz2,tz);
1582
1583             fjx1             = _mm_add_ps(fjx1,tx);
1584             fjy1             = _mm_add_ps(fjy1,ty);
1585             fjz1             = _mm_add_ps(fjz1,tz);
1586             
1587             /**************************
1588              * CALCULATE INTERACTIONS *
1589              **************************/
1590
1591             r22              = _mm_mul_ps(rsq22,rinv22);
1592
1593             /* EWALD ELECTROSTATICS */
1594
1595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1596             ewrt             = _mm_mul_ps(r22,ewtabscale);
1597             ewitab           = _mm_cvttps_epi32(ewrt);
1598             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1599             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1600                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1601                                          &ewtabF,&ewtabFn);
1602             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1603             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1604
1605             fscal            = felec;
1606
1607             /* Calculate temporary vectorial force */
1608             tx               = _mm_mul_ps(fscal,dx22);
1609             ty               = _mm_mul_ps(fscal,dy22);
1610             tz               = _mm_mul_ps(fscal,dz22);
1611
1612             /* Update vectorial force */
1613             fix2             = _mm_add_ps(fix2,tx);
1614             fiy2             = _mm_add_ps(fiy2,ty);
1615             fiz2             = _mm_add_ps(fiz2,tz);
1616
1617             fjx2             = _mm_add_ps(fjx2,tx);
1618             fjy2             = _mm_add_ps(fjy2,ty);
1619             fjz2             = _mm_add_ps(fjz2,tz);
1620             
1621             /**************************
1622              * CALCULATE INTERACTIONS *
1623              **************************/
1624
1625             r23              = _mm_mul_ps(rsq23,rinv23);
1626
1627             /* EWALD ELECTROSTATICS */
1628
1629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1630             ewrt             = _mm_mul_ps(r23,ewtabscale);
1631             ewitab           = _mm_cvttps_epi32(ewrt);
1632             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1633             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1634                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1635                                          &ewtabF,&ewtabFn);
1636             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1637             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1638
1639             fscal            = felec;
1640
1641             /* Calculate temporary vectorial force */
1642             tx               = _mm_mul_ps(fscal,dx23);
1643             ty               = _mm_mul_ps(fscal,dy23);
1644             tz               = _mm_mul_ps(fscal,dz23);
1645
1646             /* Update vectorial force */
1647             fix2             = _mm_add_ps(fix2,tx);
1648             fiy2             = _mm_add_ps(fiy2,ty);
1649             fiz2             = _mm_add_ps(fiz2,tz);
1650
1651             fjx3             = _mm_add_ps(fjx3,tx);
1652             fjy3             = _mm_add_ps(fjy3,ty);
1653             fjz3             = _mm_add_ps(fjz3,tz);
1654             
1655             /**************************
1656              * CALCULATE INTERACTIONS *
1657              **************************/
1658
1659             r31              = _mm_mul_ps(rsq31,rinv31);
1660
1661             /* EWALD ELECTROSTATICS */
1662
1663             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1664             ewrt             = _mm_mul_ps(r31,ewtabscale);
1665             ewitab           = _mm_cvttps_epi32(ewrt);
1666             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1667             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1668                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1669                                          &ewtabF,&ewtabFn);
1670             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1671             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1672
1673             fscal            = felec;
1674
1675             /* Calculate temporary vectorial force */
1676             tx               = _mm_mul_ps(fscal,dx31);
1677             ty               = _mm_mul_ps(fscal,dy31);
1678             tz               = _mm_mul_ps(fscal,dz31);
1679
1680             /* Update vectorial force */
1681             fix3             = _mm_add_ps(fix3,tx);
1682             fiy3             = _mm_add_ps(fiy3,ty);
1683             fiz3             = _mm_add_ps(fiz3,tz);
1684
1685             fjx1             = _mm_add_ps(fjx1,tx);
1686             fjy1             = _mm_add_ps(fjy1,ty);
1687             fjz1             = _mm_add_ps(fjz1,tz);
1688             
1689             /**************************
1690              * CALCULATE INTERACTIONS *
1691              **************************/
1692
1693             r32              = _mm_mul_ps(rsq32,rinv32);
1694
1695             /* EWALD ELECTROSTATICS */
1696
1697             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1698             ewrt             = _mm_mul_ps(r32,ewtabscale);
1699             ewitab           = _mm_cvttps_epi32(ewrt);
1700             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1701             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1702                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1703                                          &ewtabF,&ewtabFn);
1704             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1705             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1706
1707             fscal            = felec;
1708
1709             /* Calculate temporary vectorial force */
1710             tx               = _mm_mul_ps(fscal,dx32);
1711             ty               = _mm_mul_ps(fscal,dy32);
1712             tz               = _mm_mul_ps(fscal,dz32);
1713
1714             /* Update vectorial force */
1715             fix3             = _mm_add_ps(fix3,tx);
1716             fiy3             = _mm_add_ps(fiy3,ty);
1717             fiz3             = _mm_add_ps(fiz3,tz);
1718
1719             fjx2             = _mm_add_ps(fjx2,tx);
1720             fjy2             = _mm_add_ps(fjy2,ty);
1721             fjz2             = _mm_add_ps(fjz2,tz);
1722             
1723             /**************************
1724              * CALCULATE INTERACTIONS *
1725              **************************/
1726
1727             r33              = _mm_mul_ps(rsq33,rinv33);
1728
1729             /* EWALD ELECTROSTATICS */
1730
1731             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1732             ewrt             = _mm_mul_ps(r33,ewtabscale);
1733             ewitab           = _mm_cvttps_epi32(ewrt);
1734             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1735             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1736                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1737                                          &ewtabF,&ewtabFn);
1738             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1739             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1740
1741             fscal            = felec;
1742
1743             /* Calculate temporary vectorial force */
1744             tx               = _mm_mul_ps(fscal,dx33);
1745             ty               = _mm_mul_ps(fscal,dy33);
1746             tz               = _mm_mul_ps(fscal,dz33);
1747
1748             /* Update vectorial force */
1749             fix3             = _mm_add_ps(fix3,tx);
1750             fiy3             = _mm_add_ps(fiy3,ty);
1751             fiz3             = _mm_add_ps(fiz3,tz);
1752
1753             fjx3             = _mm_add_ps(fjx3,tx);
1754             fjy3             = _mm_add_ps(fjy3,ty);
1755             fjz3             = _mm_add_ps(fjz3,tz);
1756             
1757             fjptrA             = f+j_coord_offsetA;
1758             fjptrB             = f+j_coord_offsetB;
1759             fjptrC             = f+j_coord_offsetC;
1760             fjptrD             = f+j_coord_offsetD;
1761
1762             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1763                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1764
1765             /* Inner loop uses 324 flops */
1766         }
1767
1768         if(jidx<j_index_end)
1769         {
1770
1771             /* Get j neighbor index, and coordinate index */
1772             jnrlistA         = jjnr[jidx];
1773             jnrlistB         = jjnr[jidx+1];
1774             jnrlistC         = jjnr[jidx+2];
1775             jnrlistD         = jjnr[jidx+3];
1776             /* Sign of each element will be negative for non-real atoms.
1777              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1778              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1779              */
1780             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1781             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1782             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1783             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1784             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1785             j_coord_offsetA  = DIM*jnrA;
1786             j_coord_offsetB  = DIM*jnrB;
1787             j_coord_offsetC  = DIM*jnrC;
1788             j_coord_offsetD  = DIM*jnrD;
1789
1790             /* load j atom coordinates */
1791             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1792                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
1793                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1794
1795             /* Calculate displacement vector */
1796             dx11             = _mm_sub_ps(ix1,jx1);
1797             dy11             = _mm_sub_ps(iy1,jy1);
1798             dz11             = _mm_sub_ps(iz1,jz1);
1799             dx12             = _mm_sub_ps(ix1,jx2);
1800             dy12             = _mm_sub_ps(iy1,jy2);
1801             dz12             = _mm_sub_ps(iz1,jz2);
1802             dx13             = _mm_sub_ps(ix1,jx3);
1803             dy13             = _mm_sub_ps(iy1,jy3);
1804             dz13             = _mm_sub_ps(iz1,jz3);
1805             dx21             = _mm_sub_ps(ix2,jx1);
1806             dy21             = _mm_sub_ps(iy2,jy1);
1807             dz21             = _mm_sub_ps(iz2,jz1);
1808             dx22             = _mm_sub_ps(ix2,jx2);
1809             dy22             = _mm_sub_ps(iy2,jy2);
1810             dz22             = _mm_sub_ps(iz2,jz2);
1811             dx23             = _mm_sub_ps(ix2,jx3);
1812             dy23             = _mm_sub_ps(iy2,jy3);
1813             dz23             = _mm_sub_ps(iz2,jz3);
1814             dx31             = _mm_sub_ps(ix3,jx1);
1815             dy31             = _mm_sub_ps(iy3,jy1);
1816             dz31             = _mm_sub_ps(iz3,jz1);
1817             dx32             = _mm_sub_ps(ix3,jx2);
1818             dy32             = _mm_sub_ps(iy3,jy2);
1819             dz32             = _mm_sub_ps(iz3,jz2);
1820             dx33             = _mm_sub_ps(ix3,jx3);
1821             dy33             = _mm_sub_ps(iy3,jy3);
1822             dz33             = _mm_sub_ps(iz3,jz3);
1823
1824             /* Calculate squared distance and things based on it */
1825             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1826             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1827             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1828             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1829             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1830             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1831             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1832             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1833             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1834
1835             rinv11           = sse2_invsqrt_f(rsq11);
1836             rinv12           = sse2_invsqrt_f(rsq12);
1837             rinv13           = sse2_invsqrt_f(rsq13);
1838             rinv21           = sse2_invsqrt_f(rsq21);
1839             rinv22           = sse2_invsqrt_f(rsq22);
1840             rinv23           = sse2_invsqrt_f(rsq23);
1841             rinv31           = sse2_invsqrt_f(rsq31);
1842             rinv32           = sse2_invsqrt_f(rsq32);
1843             rinv33           = sse2_invsqrt_f(rsq33);
1844
1845             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1846             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1847             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
1848             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1849             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1850             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
1851             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
1852             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
1853             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
1854
1855             fjx1             = _mm_setzero_ps();
1856             fjy1             = _mm_setzero_ps();
1857             fjz1             = _mm_setzero_ps();
1858             fjx2             = _mm_setzero_ps();
1859             fjy2             = _mm_setzero_ps();
1860             fjz2             = _mm_setzero_ps();
1861             fjx3             = _mm_setzero_ps();
1862             fjy3             = _mm_setzero_ps();
1863             fjz3             = _mm_setzero_ps();
1864
1865             /**************************
1866              * CALCULATE INTERACTIONS *
1867              **************************/
1868
1869             r11              = _mm_mul_ps(rsq11,rinv11);
1870             r11              = _mm_andnot_ps(dummy_mask,r11);
1871
1872             /* EWALD ELECTROSTATICS */
1873
1874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1875             ewrt             = _mm_mul_ps(r11,ewtabscale);
1876             ewitab           = _mm_cvttps_epi32(ewrt);
1877             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1878             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1879                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1880                                          &ewtabF,&ewtabFn);
1881             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1882             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1883
1884             fscal            = felec;
1885
1886             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1887
1888             /* Calculate temporary vectorial force */
1889             tx               = _mm_mul_ps(fscal,dx11);
1890             ty               = _mm_mul_ps(fscal,dy11);
1891             tz               = _mm_mul_ps(fscal,dz11);
1892
1893             /* Update vectorial force */
1894             fix1             = _mm_add_ps(fix1,tx);
1895             fiy1             = _mm_add_ps(fiy1,ty);
1896             fiz1             = _mm_add_ps(fiz1,tz);
1897
1898             fjx1             = _mm_add_ps(fjx1,tx);
1899             fjy1             = _mm_add_ps(fjy1,ty);
1900             fjz1             = _mm_add_ps(fjz1,tz);
1901             
1902             /**************************
1903              * CALCULATE INTERACTIONS *
1904              **************************/
1905
1906             r12              = _mm_mul_ps(rsq12,rinv12);
1907             r12              = _mm_andnot_ps(dummy_mask,r12);
1908
1909             /* EWALD ELECTROSTATICS */
1910
1911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1912             ewrt             = _mm_mul_ps(r12,ewtabscale);
1913             ewitab           = _mm_cvttps_epi32(ewrt);
1914             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1915             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1916                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1917                                          &ewtabF,&ewtabFn);
1918             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1919             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1920
1921             fscal            = felec;
1922
1923             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1924
1925             /* Calculate temporary vectorial force */
1926             tx               = _mm_mul_ps(fscal,dx12);
1927             ty               = _mm_mul_ps(fscal,dy12);
1928             tz               = _mm_mul_ps(fscal,dz12);
1929
1930             /* Update vectorial force */
1931             fix1             = _mm_add_ps(fix1,tx);
1932             fiy1             = _mm_add_ps(fiy1,ty);
1933             fiz1             = _mm_add_ps(fiz1,tz);
1934
1935             fjx2             = _mm_add_ps(fjx2,tx);
1936             fjy2             = _mm_add_ps(fjy2,ty);
1937             fjz2             = _mm_add_ps(fjz2,tz);
1938             
1939             /**************************
1940              * CALCULATE INTERACTIONS *
1941              **************************/
1942
1943             r13              = _mm_mul_ps(rsq13,rinv13);
1944             r13              = _mm_andnot_ps(dummy_mask,r13);
1945
1946             /* EWALD ELECTROSTATICS */
1947
1948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1949             ewrt             = _mm_mul_ps(r13,ewtabscale);
1950             ewitab           = _mm_cvttps_epi32(ewrt);
1951             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1952             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1953                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1954                                          &ewtabF,&ewtabFn);
1955             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1956             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1957
1958             fscal            = felec;
1959
1960             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1961
1962             /* Calculate temporary vectorial force */
1963             tx               = _mm_mul_ps(fscal,dx13);
1964             ty               = _mm_mul_ps(fscal,dy13);
1965             tz               = _mm_mul_ps(fscal,dz13);
1966
1967             /* Update vectorial force */
1968             fix1             = _mm_add_ps(fix1,tx);
1969             fiy1             = _mm_add_ps(fiy1,ty);
1970             fiz1             = _mm_add_ps(fiz1,tz);
1971
1972             fjx3             = _mm_add_ps(fjx3,tx);
1973             fjy3             = _mm_add_ps(fjy3,ty);
1974             fjz3             = _mm_add_ps(fjz3,tz);
1975             
1976             /**************************
1977              * CALCULATE INTERACTIONS *
1978              **************************/
1979
1980             r21              = _mm_mul_ps(rsq21,rinv21);
1981             r21              = _mm_andnot_ps(dummy_mask,r21);
1982
1983             /* EWALD ELECTROSTATICS */
1984
1985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1986             ewrt             = _mm_mul_ps(r21,ewtabscale);
1987             ewitab           = _mm_cvttps_epi32(ewrt);
1988             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1989             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1990                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1991                                          &ewtabF,&ewtabFn);
1992             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1993             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1994
1995             fscal            = felec;
1996
1997             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1998
1999             /* Calculate temporary vectorial force */
2000             tx               = _mm_mul_ps(fscal,dx21);
2001             ty               = _mm_mul_ps(fscal,dy21);
2002             tz               = _mm_mul_ps(fscal,dz21);
2003
2004             /* Update vectorial force */
2005             fix2             = _mm_add_ps(fix2,tx);
2006             fiy2             = _mm_add_ps(fiy2,ty);
2007             fiz2             = _mm_add_ps(fiz2,tz);
2008
2009             fjx1             = _mm_add_ps(fjx1,tx);
2010             fjy1             = _mm_add_ps(fjy1,ty);
2011             fjz1             = _mm_add_ps(fjz1,tz);
2012             
2013             /**************************
2014              * CALCULATE INTERACTIONS *
2015              **************************/
2016
2017             r22              = _mm_mul_ps(rsq22,rinv22);
2018             r22              = _mm_andnot_ps(dummy_mask,r22);
2019
2020             /* EWALD ELECTROSTATICS */
2021
2022             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2023             ewrt             = _mm_mul_ps(r22,ewtabscale);
2024             ewitab           = _mm_cvttps_epi32(ewrt);
2025             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2026             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2027                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2028                                          &ewtabF,&ewtabFn);
2029             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2030             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2031
2032             fscal            = felec;
2033
2034             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2035
2036             /* Calculate temporary vectorial force */
2037             tx               = _mm_mul_ps(fscal,dx22);
2038             ty               = _mm_mul_ps(fscal,dy22);
2039             tz               = _mm_mul_ps(fscal,dz22);
2040
2041             /* Update vectorial force */
2042             fix2             = _mm_add_ps(fix2,tx);
2043             fiy2             = _mm_add_ps(fiy2,ty);
2044             fiz2             = _mm_add_ps(fiz2,tz);
2045
2046             fjx2             = _mm_add_ps(fjx2,tx);
2047             fjy2             = _mm_add_ps(fjy2,ty);
2048             fjz2             = _mm_add_ps(fjz2,tz);
2049             
2050             /**************************
2051              * CALCULATE INTERACTIONS *
2052              **************************/
2053
2054             r23              = _mm_mul_ps(rsq23,rinv23);
2055             r23              = _mm_andnot_ps(dummy_mask,r23);
2056
2057             /* EWALD ELECTROSTATICS */
2058
2059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2060             ewrt             = _mm_mul_ps(r23,ewtabscale);
2061             ewitab           = _mm_cvttps_epi32(ewrt);
2062             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2063             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2064                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2065                                          &ewtabF,&ewtabFn);
2066             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2067             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2068
2069             fscal            = felec;
2070
2071             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2072
2073             /* Calculate temporary vectorial force */
2074             tx               = _mm_mul_ps(fscal,dx23);
2075             ty               = _mm_mul_ps(fscal,dy23);
2076             tz               = _mm_mul_ps(fscal,dz23);
2077
2078             /* Update vectorial force */
2079             fix2             = _mm_add_ps(fix2,tx);
2080             fiy2             = _mm_add_ps(fiy2,ty);
2081             fiz2             = _mm_add_ps(fiz2,tz);
2082
2083             fjx3             = _mm_add_ps(fjx3,tx);
2084             fjy3             = _mm_add_ps(fjy3,ty);
2085             fjz3             = _mm_add_ps(fjz3,tz);
2086             
2087             /**************************
2088              * CALCULATE INTERACTIONS *
2089              **************************/
2090
2091             r31              = _mm_mul_ps(rsq31,rinv31);
2092             r31              = _mm_andnot_ps(dummy_mask,r31);
2093
2094             /* EWALD ELECTROSTATICS */
2095
2096             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2097             ewrt             = _mm_mul_ps(r31,ewtabscale);
2098             ewitab           = _mm_cvttps_epi32(ewrt);
2099             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2100             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2101                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2102                                          &ewtabF,&ewtabFn);
2103             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2104             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2105
2106             fscal            = felec;
2107
2108             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2109
2110             /* Calculate temporary vectorial force */
2111             tx               = _mm_mul_ps(fscal,dx31);
2112             ty               = _mm_mul_ps(fscal,dy31);
2113             tz               = _mm_mul_ps(fscal,dz31);
2114
2115             /* Update vectorial force */
2116             fix3             = _mm_add_ps(fix3,tx);
2117             fiy3             = _mm_add_ps(fiy3,ty);
2118             fiz3             = _mm_add_ps(fiz3,tz);
2119
2120             fjx1             = _mm_add_ps(fjx1,tx);
2121             fjy1             = _mm_add_ps(fjy1,ty);
2122             fjz1             = _mm_add_ps(fjz1,tz);
2123             
2124             /**************************
2125              * CALCULATE INTERACTIONS *
2126              **************************/
2127
2128             r32              = _mm_mul_ps(rsq32,rinv32);
2129             r32              = _mm_andnot_ps(dummy_mask,r32);
2130
2131             /* EWALD ELECTROSTATICS */
2132
2133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2134             ewrt             = _mm_mul_ps(r32,ewtabscale);
2135             ewitab           = _mm_cvttps_epi32(ewrt);
2136             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2137             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2138                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2139                                          &ewtabF,&ewtabFn);
2140             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2141             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2142
2143             fscal            = felec;
2144
2145             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2146
2147             /* Calculate temporary vectorial force */
2148             tx               = _mm_mul_ps(fscal,dx32);
2149             ty               = _mm_mul_ps(fscal,dy32);
2150             tz               = _mm_mul_ps(fscal,dz32);
2151
2152             /* Update vectorial force */
2153             fix3             = _mm_add_ps(fix3,tx);
2154             fiy3             = _mm_add_ps(fiy3,ty);
2155             fiz3             = _mm_add_ps(fiz3,tz);
2156
2157             fjx2             = _mm_add_ps(fjx2,tx);
2158             fjy2             = _mm_add_ps(fjy2,ty);
2159             fjz2             = _mm_add_ps(fjz2,tz);
2160             
2161             /**************************
2162              * CALCULATE INTERACTIONS *
2163              **************************/
2164
2165             r33              = _mm_mul_ps(rsq33,rinv33);
2166             r33              = _mm_andnot_ps(dummy_mask,r33);
2167
2168             /* EWALD ELECTROSTATICS */
2169
2170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2171             ewrt             = _mm_mul_ps(r33,ewtabscale);
2172             ewitab           = _mm_cvttps_epi32(ewrt);
2173             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2174             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2175                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2176                                          &ewtabF,&ewtabFn);
2177             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2178             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2179
2180             fscal            = felec;
2181
2182             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2183
2184             /* Calculate temporary vectorial force */
2185             tx               = _mm_mul_ps(fscal,dx33);
2186             ty               = _mm_mul_ps(fscal,dy33);
2187             tz               = _mm_mul_ps(fscal,dz33);
2188
2189             /* Update vectorial force */
2190             fix3             = _mm_add_ps(fix3,tx);
2191             fiy3             = _mm_add_ps(fiy3,ty);
2192             fiz3             = _mm_add_ps(fiz3,tz);
2193
2194             fjx3             = _mm_add_ps(fjx3,tx);
2195             fjy3             = _mm_add_ps(fjy3,ty);
2196             fjz3             = _mm_add_ps(fjz3,tz);
2197             
2198             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2199             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2200             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2201             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2202
2203             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
2204                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2205
2206             /* Inner loop uses 333 flops */
2207         }
2208
2209         /* End of innermost loop */
2210
2211         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2212                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
2213
2214         /* Increment number of inner iterations */
2215         inneriter                  += j_index_end - j_index_start;
2216
2217         /* Outer loop uses 18 flops */
2218     }
2219
2220     /* Increment number of outer iterations */
2221     outeriter        += nri;
2222
2223     /* Update outer/inner flops */
2224
2225     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*333);
2226 }