Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
108     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
109     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126         shX              = shiftvec[i_shift_offset+XX];
127         shY              = shiftvec[i_shift_offset+YY];
128         shZ              = shiftvec[i_shift_offset+ZZ];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
140         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
141         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
142         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
143         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
144         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
145         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
146         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
147         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
148
149         fix1             = _mm_setzero_ps();
150         fiy1             = _mm_setzero_ps();
151         fiz1             = _mm_setzero_ps();
152         fix2             = _mm_setzero_ps();
153         fiy2             = _mm_setzero_ps();
154         fiz2             = _mm_setzero_ps();
155         fix3             = _mm_setzero_ps();
156         fiy3             = _mm_setzero_ps();
157         fiz3             = _mm_setzero_ps();
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx10             = _mm_sub_ps(ix1,jx0);
184             dy10             = _mm_sub_ps(iy1,jy0);
185             dz10             = _mm_sub_ps(iz1,jz0);
186             dx20             = _mm_sub_ps(ix2,jx0);
187             dy20             = _mm_sub_ps(iy2,jy0);
188             dz20             = _mm_sub_ps(iz2,jz0);
189             dx30             = _mm_sub_ps(ix3,jx0);
190             dy30             = _mm_sub_ps(iy3,jy0);
191             dz30             = _mm_sub_ps(iz3,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
195             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
196             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
197
198             rinv10           = gmx_mm_invsqrt_ps(rsq10);
199             rinv20           = gmx_mm_invsqrt_ps(rsq20);
200             rinv30           = gmx_mm_invsqrt_ps(rsq30);
201
202             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
203             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
204             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             r10              = _mm_mul_ps(rsq10,rinv10);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq10             = _mm_mul_ps(iq1,jq0);
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = _mm_mul_ps(r10,ewtabscale);
223             ewitab           = _mm_cvttps_epi32(ewrt);
224             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
228             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
229             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
230             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
231             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
232             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
233             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
234             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm_add_ps(velecsum,velec);
238
239             fscal            = felec;
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm_mul_ps(fscal,dx10);
243             ty               = _mm_mul_ps(fscal,dy10);
244             tz               = _mm_mul_ps(fscal,dz10);
245
246             /* Update vectorial force */
247             fix1             = _mm_add_ps(fix1,tx);
248             fiy1             = _mm_add_ps(fiy1,ty);
249             fiz1             = _mm_add_ps(fiz1,tz);
250
251             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
252                                                    f+j_coord_offsetC,f+j_coord_offsetD,
253                                                    tx,ty,tz);
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r20              = _mm_mul_ps(rsq20,rinv20);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq20             = _mm_mul_ps(iq2,jq0);
263
264             /* EWALD ELECTROSTATICS */
265
266             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
267             ewrt             = _mm_mul_ps(r20,ewtabscale);
268             ewitab           = _mm_cvttps_epi32(ewrt);
269             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
270             ewitab           = _mm_slli_epi32(ewitab,2);
271             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
272             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
273             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
274             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
275             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
276             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
277             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
278             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
279             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_ps(velecsum,velec);
283
284             fscal            = felec;
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_ps(fscal,dx20);
288             ty               = _mm_mul_ps(fscal,dy20);
289             tz               = _mm_mul_ps(fscal,dz20);
290
291             /* Update vectorial force */
292             fix2             = _mm_add_ps(fix2,tx);
293             fiy2             = _mm_add_ps(fiy2,ty);
294             fiz2             = _mm_add_ps(fiz2,tz);
295
296             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
297                                                    f+j_coord_offsetC,f+j_coord_offsetD,
298                                                    tx,ty,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r30              = _mm_mul_ps(rsq30,rinv30);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq30             = _mm_mul_ps(iq3,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_ps(r30,ewtabscale);
313             ewitab           = _mm_cvttps_epi32(ewrt);
314             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
319             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
320             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
321             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
322             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
323             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
324             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_ps(fscal,dx30);
333             ty               = _mm_mul_ps(fscal,dy30);
334             tz               = _mm_mul_ps(fscal,dz30);
335
336             /* Update vectorial force */
337             fix3             = _mm_add_ps(fix3,tx);
338             fiy3             = _mm_add_ps(fiy3,ty);
339             fiz3             = _mm_add_ps(fiz3,tz);
340
341             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
342                                                    f+j_coord_offsetC,f+j_coord_offsetD,
343                                                    tx,ty,tz);
344
345             /* Inner loop uses 123 flops */
346         }
347
348         if(jidx<j_index_end)
349         {
350
351             /* Get j neighbor index, and coordinate index */
352             jnrA             = jjnr[jidx];
353             jnrB             = jjnr[jidx+1];
354             jnrC             = jjnr[jidx+2];
355             jnrD             = jjnr[jidx+3];
356
357             /* Sign of each element will be negative for non-real atoms.
358              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
359              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
360              */
361             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
362             jnrA       = (jnrA>=0) ? jnrA : 0;
363             jnrB       = (jnrB>=0) ? jnrB : 0;
364             jnrC       = (jnrC>=0) ? jnrC : 0;
365             jnrD       = (jnrD>=0) ? jnrD : 0;
366
367             j_coord_offsetA  = DIM*jnrA;
368             j_coord_offsetB  = DIM*jnrB;
369             j_coord_offsetC  = DIM*jnrC;
370             j_coord_offsetD  = DIM*jnrD;
371
372             /* load j atom coordinates */
373             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
374                                               x+j_coord_offsetC,x+j_coord_offsetD,
375                                               &jx0,&jy0,&jz0);
376
377             /* Calculate displacement vector */
378             dx10             = _mm_sub_ps(ix1,jx0);
379             dy10             = _mm_sub_ps(iy1,jy0);
380             dz10             = _mm_sub_ps(iz1,jz0);
381             dx20             = _mm_sub_ps(ix2,jx0);
382             dy20             = _mm_sub_ps(iy2,jy0);
383             dz20             = _mm_sub_ps(iz2,jz0);
384             dx30             = _mm_sub_ps(ix3,jx0);
385             dy30             = _mm_sub_ps(iy3,jy0);
386             dz30             = _mm_sub_ps(iz3,jz0);
387
388             /* Calculate squared distance and things based on it */
389             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
390             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
391             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
392
393             rinv10           = gmx_mm_invsqrt_ps(rsq10);
394             rinv20           = gmx_mm_invsqrt_ps(rsq20);
395             rinv30           = gmx_mm_invsqrt_ps(rsq30);
396
397             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
398             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
399             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
400
401             /* Load parameters for j particles */
402             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
403                                                               charge+jnrC+0,charge+jnrD+0);
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             r10              = _mm_mul_ps(rsq10,rinv10);
410             r10              = _mm_andnot_ps(dummy_mask,r10);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq10             = _mm_mul_ps(iq1,jq0);
414
415             /* EWALD ELECTROSTATICS */
416
417             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
418             ewrt             = _mm_mul_ps(r10,ewtabscale);
419             ewitab           = _mm_cvttps_epi32(ewrt);
420             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
421             ewitab           = _mm_slli_epi32(ewitab,2);
422             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
423             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
424             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
425             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
426             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
427             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
428             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
429             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
430             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velec            = _mm_andnot_ps(dummy_mask,velec);
434             velecsum         = _mm_add_ps(velecsum,velec);
435
436             fscal            = felec;
437
438             fscal            = _mm_andnot_ps(dummy_mask,fscal);
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm_mul_ps(fscal,dx10);
442             ty               = _mm_mul_ps(fscal,dy10);
443             tz               = _mm_mul_ps(fscal,dz10);
444
445             /* Update vectorial force */
446             fix1             = _mm_add_ps(fix1,tx);
447             fiy1             = _mm_add_ps(fiy1,ty);
448             fiz1             = _mm_add_ps(fiz1,tz);
449
450             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
451                                                    f+j_coord_offsetC,f+j_coord_offsetD,
452                                                    tx,ty,tz);
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             r20              = _mm_mul_ps(rsq20,rinv20);
459             r20              = _mm_andnot_ps(dummy_mask,r20);
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq20             = _mm_mul_ps(iq2,jq0);
463
464             /* EWALD ELECTROSTATICS */
465
466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
467             ewrt             = _mm_mul_ps(r20,ewtabscale);
468             ewitab           = _mm_cvttps_epi32(ewrt);
469             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
470             ewitab           = _mm_slli_epi32(ewitab,2);
471             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
472             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
473             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
474             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
475             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
476             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
477             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
478             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
479             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_andnot_ps(dummy_mask,velec);
483             velecsum         = _mm_add_ps(velecsum,velec);
484
485             fscal            = felec;
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489             /* Calculate temporary vectorial force */
490             tx               = _mm_mul_ps(fscal,dx20);
491             ty               = _mm_mul_ps(fscal,dy20);
492             tz               = _mm_mul_ps(fscal,dz20);
493
494             /* Update vectorial force */
495             fix2             = _mm_add_ps(fix2,tx);
496             fiy2             = _mm_add_ps(fiy2,ty);
497             fiz2             = _mm_add_ps(fiz2,tz);
498
499             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
500                                                    f+j_coord_offsetC,f+j_coord_offsetD,
501                                                    tx,ty,tz);
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             r30              = _mm_mul_ps(rsq30,rinv30);
508             r30              = _mm_andnot_ps(dummy_mask,r30);
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq30             = _mm_mul_ps(iq3,jq0);
512
513             /* EWALD ELECTROSTATICS */
514
515             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
516             ewrt             = _mm_mul_ps(r30,ewtabscale);
517             ewitab           = _mm_cvttps_epi32(ewrt);
518             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
519             ewitab           = _mm_slli_epi32(ewitab,2);
520             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
521             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
522             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
523             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
524             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
525             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
526             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
527             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
528             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_andnot_ps(dummy_mask,velec);
532             velecsum         = _mm_add_ps(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm_andnot_ps(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_ps(fscal,dx30);
540             ty               = _mm_mul_ps(fscal,dy30);
541             tz               = _mm_mul_ps(fscal,dz30);
542
543             /* Update vectorial force */
544             fix3             = _mm_add_ps(fix3,tx);
545             fiy3             = _mm_add_ps(fiy3,ty);
546             fiz3             = _mm_add_ps(fiz3,tz);
547
548             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
549                                                    f+j_coord_offsetC,f+j_coord_offsetD,
550                                                    tx,ty,tz);
551
552             /* Inner loop uses 126 flops */
553         }
554
555         /* End of innermost loop */
556
557         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
558                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
559
560         ggid                        = gid[iidx];
561         /* Update potential energies */
562         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
563
564         /* Increment number of inner iterations */
565         inneriter                  += j_index_end - j_index_start;
566
567         /* Outer loop uses 28 flops */
568     }
569
570     /* Increment number of outer iterations */
571     outeriter        += nri;
572
573     /* Update outer/inner flops */
574
575     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*28 + inneriter*126);
576 }
577 /*
578  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_single
579  * Electrostatics interaction: Ewald
580  * VdW interaction:            None
581  * Geometry:                   Water4-Particle
582  * Calculate force/pot:        Force
583  */
584 void
585 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse2_single
586                     (t_nblist * gmx_restrict                nlist,
587                      rvec * gmx_restrict                    xx,
588                      rvec * gmx_restrict                    ff,
589                      t_forcerec * gmx_restrict              fr,
590                      t_mdatoms * gmx_restrict               mdatoms,
591                      nb_kernel_data_t * gmx_restrict        kernel_data,
592                      t_nrnb * gmx_restrict                  nrnb)
593 {
594     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
595      * just 0 for non-waters.
596      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
597      * jnr indices corresponding to data put in the four positions in the SIMD register.
598      */
599     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
600     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
601     int              jnrA,jnrB,jnrC,jnrD;
602     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
603     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
604     real             shX,shY,shZ,rcutoff_scalar;
605     real             *shiftvec,*fshift,*x,*f;
606     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
607     int              vdwioffset1;
608     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
609     int              vdwioffset2;
610     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
611     int              vdwioffset3;
612     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
613     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
614     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
615     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
616     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
617     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
618     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
619     real             *charge;
620     __m128i          ewitab;
621     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
622     real             *ewtab;
623     __m128           dummy_mask,cutoff_mask;
624     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
625     __m128           one     = _mm_set1_ps(1.0);
626     __m128           two     = _mm_set1_ps(2.0);
627     x                = xx[0];
628     f                = ff[0];
629
630     nri              = nlist->nri;
631     iinr             = nlist->iinr;
632     jindex           = nlist->jindex;
633     jjnr             = nlist->jjnr;
634     shiftidx         = nlist->shift;
635     gid              = nlist->gid;
636     shiftvec         = fr->shift_vec[0];
637     fshift           = fr->fshift[0];
638     facel            = _mm_set1_ps(fr->epsfac);
639     charge           = mdatoms->chargeA;
640
641     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
642     ewtab            = fr->ic->tabq_coul_F;
643     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
644     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
645
646     /* Setup water-specific parameters */
647     inr              = nlist->iinr[0];
648     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
649     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
650     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
651
652     /* Avoid stupid compiler warnings */
653     jnrA = jnrB = jnrC = jnrD = 0;
654     j_coord_offsetA = 0;
655     j_coord_offsetB = 0;
656     j_coord_offsetC = 0;
657     j_coord_offsetD = 0;
658
659     outeriter        = 0;
660     inneriter        = 0;
661
662     /* Start outer loop over neighborlists */
663     for(iidx=0; iidx<nri; iidx++)
664     {
665         /* Load shift vector for this list */
666         i_shift_offset   = DIM*shiftidx[iidx];
667         shX              = shiftvec[i_shift_offset+XX];
668         shY              = shiftvec[i_shift_offset+YY];
669         shZ              = shiftvec[i_shift_offset+ZZ];
670
671         /* Load limits for loop over neighbors */
672         j_index_start    = jindex[iidx];
673         j_index_end      = jindex[iidx+1];
674
675         /* Get outer coordinate index */
676         inr              = iinr[iidx];
677         i_coord_offset   = DIM*inr;
678
679         /* Load i particle coords and add shift vector */
680         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
681         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
682         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
683         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
684         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
685         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
686         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
687         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
688         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
689
690         fix1             = _mm_setzero_ps();
691         fiy1             = _mm_setzero_ps();
692         fiz1             = _mm_setzero_ps();
693         fix2             = _mm_setzero_ps();
694         fiy2             = _mm_setzero_ps();
695         fiz2             = _mm_setzero_ps();
696         fix3             = _mm_setzero_ps();
697         fiy3             = _mm_setzero_ps();
698         fiz3             = _mm_setzero_ps();
699
700         /* Start inner kernel loop */
701         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
702         {
703
704             /* Get j neighbor index, and coordinate index */
705             jnrA             = jjnr[jidx];
706             jnrB             = jjnr[jidx+1];
707             jnrC             = jjnr[jidx+2];
708             jnrD             = jjnr[jidx+3];
709
710             j_coord_offsetA  = DIM*jnrA;
711             j_coord_offsetB  = DIM*jnrB;
712             j_coord_offsetC  = DIM*jnrC;
713             j_coord_offsetD  = DIM*jnrD;
714
715             /* load j atom coordinates */
716             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
717                                               x+j_coord_offsetC,x+j_coord_offsetD,
718                                               &jx0,&jy0,&jz0);
719
720             /* Calculate displacement vector */
721             dx10             = _mm_sub_ps(ix1,jx0);
722             dy10             = _mm_sub_ps(iy1,jy0);
723             dz10             = _mm_sub_ps(iz1,jz0);
724             dx20             = _mm_sub_ps(ix2,jx0);
725             dy20             = _mm_sub_ps(iy2,jy0);
726             dz20             = _mm_sub_ps(iz2,jz0);
727             dx30             = _mm_sub_ps(ix3,jx0);
728             dy30             = _mm_sub_ps(iy3,jy0);
729             dz30             = _mm_sub_ps(iz3,jz0);
730
731             /* Calculate squared distance and things based on it */
732             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
733             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
734             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
735
736             rinv10           = gmx_mm_invsqrt_ps(rsq10);
737             rinv20           = gmx_mm_invsqrt_ps(rsq20);
738             rinv30           = gmx_mm_invsqrt_ps(rsq30);
739
740             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
741             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
742             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
743
744             /* Load parameters for j particles */
745             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
746                                                               charge+jnrC+0,charge+jnrD+0);
747
748             /**************************
749              * CALCULATE INTERACTIONS *
750              **************************/
751
752             r10              = _mm_mul_ps(rsq10,rinv10);
753
754             /* Compute parameters for interactions between i and j atoms */
755             qq10             = _mm_mul_ps(iq1,jq0);
756
757             /* EWALD ELECTROSTATICS */
758
759             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
760             ewrt             = _mm_mul_ps(r10,ewtabscale);
761             ewitab           = _mm_cvttps_epi32(ewrt);
762             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
763             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
764                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
765                                          &ewtabF,&ewtabFn);
766             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
767             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
768
769             fscal            = felec;
770
771             /* Calculate temporary vectorial force */
772             tx               = _mm_mul_ps(fscal,dx10);
773             ty               = _mm_mul_ps(fscal,dy10);
774             tz               = _mm_mul_ps(fscal,dz10);
775
776             /* Update vectorial force */
777             fix1             = _mm_add_ps(fix1,tx);
778             fiy1             = _mm_add_ps(fiy1,ty);
779             fiz1             = _mm_add_ps(fiz1,tz);
780
781             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
782                                                    f+j_coord_offsetC,f+j_coord_offsetD,
783                                                    tx,ty,tz);
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             r20              = _mm_mul_ps(rsq20,rinv20);
790
791             /* Compute parameters for interactions between i and j atoms */
792             qq20             = _mm_mul_ps(iq2,jq0);
793
794             /* EWALD ELECTROSTATICS */
795
796             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
797             ewrt             = _mm_mul_ps(r20,ewtabscale);
798             ewitab           = _mm_cvttps_epi32(ewrt);
799             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
800             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
801                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
802                                          &ewtabF,&ewtabFn);
803             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
804             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
805
806             fscal            = felec;
807
808             /* Calculate temporary vectorial force */
809             tx               = _mm_mul_ps(fscal,dx20);
810             ty               = _mm_mul_ps(fscal,dy20);
811             tz               = _mm_mul_ps(fscal,dz20);
812
813             /* Update vectorial force */
814             fix2             = _mm_add_ps(fix2,tx);
815             fiy2             = _mm_add_ps(fiy2,ty);
816             fiz2             = _mm_add_ps(fiz2,tz);
817
818             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
819                                                    f+j_coord_offsetC,f+j_coord_offsetD,
820                                                    tx,ty,tz);
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             r30              = _mm_mul_ps(rsq30,rinv30);
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq30             = _mm_mul_ps(iq3,jq0);
830
831             /* EWALD ELECTROSTATICS */
832
833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834             ewrt             = _mm_mul_ps(r30,ewtabscale);
835             ewitab           = _mm_cvttps_epi32(ewrt);
836             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
837             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
838                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
839                                          &ewtabF,&ewtabFn);
840             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
841             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
842
843             fscal            = felec;
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm_mul_ps(fscal,dx30);
847             ty               = _mm_mul_ps(fscal,dy30);
848             tz               = _mm_mul_ps(fscal,dz30);
849
850             /* Update vectorial force */
851             fix3             = _mm_add_ps(fix3,tx);
852             fiy3             = _mm_add_ps(fiy3,ty);
853             fiz3             = _mm_add_ps(fiz3,tz);
854
855             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
856                                                    f+j_coord_offsetC,f+j_coord_offsetD,
857                                                    tx,ty,tz);
858
859             /* Inner loop uses 108 flops */
860         }
861
862         if(jidx<j_index_end)
863         {
864
865             /* Get j neighbor index, and coordinate index */
866             jnrA             = jjnr[jidx];
867             jnrB             = jjnr[jidx+1];
868             jnrC             = jjnr[jidx+2];
869             jnrD             = jjnr[jidx+3];
870
871             /* Sign of each element will be negative for non-real atoms.
872              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
873              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
874              */
875             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
876             jnrA       = (jnrA>=0) ? jnrA : 0;
877             jnrB       = (jnrB>=0) ? jnrB : 0;
878             jnrC       = (jnrC>=0) ? jnrC : 0;
879             jnrD       = (jnrD>=0) ? jnrD : 0;
880
881             j_coord_offsetA  = DIM*jnrA;
882             j_coord_offsetB  = DIM*jnrB;
883             j_coord_offsetC  = DIM*jnrC;
884             j_coord_offsetD  = DIM*jnrD;
885
886             /* load j atom coordinates */
887             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
888                                               x+j_coord_offsetC,x+j_coord_offsetD,
889                                               &jx0,&jy0,&jz0);
890
891             /* Calculate displacement vector */
892             dx10             = _mm_sub_ps(ix1,jx0);
893             dy10             = _mm_sub_ps(iy1,jy0);
894             dz10             = _mm_sub_ps(iz1,jz0);
895             dx20             = _mm_sub_ps(ix2,jx0);
896             dy20             = _mm_sub_ps(iy2,jy0);
897             dz20             = _mm_sub_ps(iz2,jz0);
898             dx30             = _mm_sub_ps(ix3,jx0);
899             dy30             = _mm_sub_ps(iy3,jy0);
900             dz30             = _mm_sub_ps(iz3,jz0);
901
902             /* Calculate squared distance and things based on it */
903             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
904             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
905             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
906
907             rinv10           = gmx_mm_invsqrt_ps(rsq10);
908             rinv20           = gmx_mm_invsqrt_ps(rsq20);
909             rinv30           = gmx_mm_invsqrt_ps(rsq30);
910
911             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
912             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
913             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
914
915             /* Load parameters for j particles */
916             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
917                                                               charge+jnrC+0,charge+jnrD+0);
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             r10              = _mm_mul_ps(rsq10,rinv10);
924             r10              = _mm_andnot_ps(dummy_mask,r10);
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq10             = _mm_mul_ps(iq1,jq0);
928
929             /* EWALD ELECTROSTATICS */
930
931             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
932             ewrt             = _mm_mul_ps(r10,ewtabscale);
933             ewitab           = _mm_cvttps_epi32(ewrt);
934             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
935             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
936                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
937                                          &ewtabF,&ewtabFn);
938             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
939             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
940
941             fscal            = felec;
942
943             fscal            = _mm_andnot_ps(dummy_mask,fscal);
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm_mul_ps(fscal,dx10);
947             ty               = _mm_mul_ps(fscal,dy10);
948             tz               = _mm_mul_ps(fscal,dz10);
949
950             /* Update vectorial force */
951             fix1             = _mm_add_ps(fix1,tx);
952             fiy1             = _mm_add_ps(fiy1,ty);
953             fiz1             = _mm_add_ps(fiz1,tz);
954
955             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
956                                                    f+j_coord_offsetC,f+j_coord_offsetD,
957                                                    tx,ty,tz);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r20              = _mm_mul_ps(rsq20,rinv20);
964             r20              = _mm_andnot_ps(dummy_mask,r20);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq20             = _mm_mul_ps(iq2,jq0);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _mm_mul_ps(r20,ewtabscale);
973             ewitab           = _mm_cvttps_epi32(ewrt);
974             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
975             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
976                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
977                                          &ewtabF,&ewtabFn);
978             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
979             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
980
981             fscal            = felec;
982
983             fscal            = _mm_andnot_ps(dummy_mask,fscal);
984
985             /* Calculate temporary vectorial force */
986             tx               = _mm_mul_ps(fscal,dx20);
987             ty               = _mm_mul_ps(fscal,dy20);
988             tz               = _mm_mul_ps(fscal,dz20);
989
990             /* Update vectorial force */
991             fix2             = _mm_add_ps(fix2,tx);
992             fiy2             = _mm_add_ps(fiy2,ty);
993             fiz2             = _mm_add_ps(fiz2,tz);
994
995             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
996                                                    f+j_coord_offsetC,f+j_coord_offsetD,
997                                                    tx,ty,tz);
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             r30              = _mm_mul_ps(rsq30,rinv30);
1004             r30              = _mm_andnot_ps(dummy_mask,r30);
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq30             = _mm_mul_ps(iq3,jq0);
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = _mm_mul_ps(r30,ewtabscale);
1013             ewitab           = _mm_cvttps_epi32(ewrt);
1014             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1015             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1016                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1017                                          &ewtabF,&ewtabFn);
1018             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1019             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1020
1021             fscal            = felec;
1022
1023             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_ps(fscal,dx30);
1027             ty               = _mm_mul_ps(fscal,dy30);
1028             tz               = _mm_mul_ps(fscal,dz30);
1029
1030             /* Update vectorial force */
1031             fix3             = _mm_add_ps(fix3,tx);
1032             fiy3             = _mm_add_ps(fiy3,ty);
1033             fiz3             = _mm_add_ps(fiz3,tz);
1034
1035             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1036                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1037                                                    tx,ty,tz);
1038
1039             /* Inner loop uses 111 flops */
1040         }
1041
1042         /* End of innermost loop */
1043
1044         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1045                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1046
1047         /* Increment number of inner iterations */
1048         inneriter                  += j_index_end - j_index_start;
1049
1050         /* Outer loop uses 27 flops */
1051     }
1052
1053     /* Increment number of outer iterations */
1054     outeriter        += nri;
1055
1056     /* Update outer/inner flops */
1057
1058     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*27 + inneriter*111);
1059 }