Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwNone_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     __m128i          ewitab;
97     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     real             *ewtab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116
117     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
125     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
126     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }  
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160         
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164         fix1             = _mm_setzero_ps();
165         fiy1             = _mm_setzero_ps();
166         fiz1             = _mm_setzero_ps();
167         fix2             = _mm_setzero_ps();
168         fiy2             = _mm_setzero_ps();
169         fiz2             = _mm_setzero_ps();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197             dx10             = _mm_sub_ps(ix1,jx0);
198             dy10             = _mm_sub_ps(iy1,jy0);
199             dz10             = _mm_sub_ps(iz1,jz0);
200             dx20             = _mm_sub_ps(ix2,jx0);
201             dy20             = _mm_sub_ps(iy2,jy0);
202             dz20             = _mm_sub_ps(iz2,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
208
209             rinv00           = gmx_mm_invsqrt_ps(rsq00);
210             rinv10           = gmx_mm_invsqrt_ps(rsq10);
211             rinv20           = gmx_mm_invsqrt_ps(rsq20);
212
213             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
214             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
215             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                               charge+jnrC+0,charge+jnrD+0);
220
221             fjx0             = _mm_setzero_ps();
222             fjy0             = _mm_setzero_ps();
223             fjz0             = _mm_setzero_ps();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233
234             /* EWALD ELECTROSTATICS */
235
236             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
237             ewrt             = _mm_mul_ps(r00,ewtabscale);
238             ewitab           = _mm_cvttps_epi32(ewrt);
239             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
240             ewitab           = _mm_slli_epi32(ewitab,2);
241             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
242             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
243             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
244             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
245             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
246             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
247             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
248             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
249             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _mm_add_ps(velecsum,velec);
253
254             fscal            = felec;
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm_mul_ps(fscal,dx00);
258             ty               = _mm_mul_ps(fscal,dy00);
259             tz               = _mm_mul_ps(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm_add_ps(fix0,tx);
263             fiy0             = _mm_add_ps(fiy0,ty);
264             fiz0             = _mm_add_ps(fiz0,tz);
265
266             fjx0             = _mm_add_ps(fjx0,tx);
267             fjy0             = _mm_add_ps(fjy0,ty);
268             fjz0             = _mm_add_ps(fjz0,tz);
269             
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r10              = _mm_mul_ps(rsq10,rinv10);
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq10             = _mm_mul_ps(iq1,jq0);
278
279             /* EWALD ELECTROSTATICS */
280
281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282             ewrt             = _mm_mul_ps(r10,ewtabscale);
283             ewitab           = _mm_cvttps_epi32(ewrt);
284             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
285             ewitab           = _mm_slli_epi32(ewitab,2);
286             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
287             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
288             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
289             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
290             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
291             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
292             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
293             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
294             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velecsum         = _mm_add_ps(velecsum,velec);
298
299             fscal            = felec;
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_ps(fscal,dx10);
303             ty               = _mm_mul_ps(fscal,dy10);
304             tz               = _mm_mul_ps(fscal,dz10);
305
306             /* Update vectorial force */
307             fix1             = _mm_add_ps(fix1,tx);
308             fiy1             = _mm_add_ps(fiy1,ty);
309             fiz1             = _mm_add_ps(fiz1,tz);
310
311             fjx0             = _mm_add_ps(fjx0,tx);
312             fjy0             = _mm_add_ps(fjy0,ty);
313             fjz0             = _mm_add_ps(fjz0,tz);
314             
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r20              = _mm_mul_ps(rsq20,rinv20);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq20             = _mm_mul_ps(iq2,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_ps(r20,ewtabscale);
328             ewitab           = _mm_cvttps_epi32(ewrt);
329             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
334             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
335             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
336             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
337             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
338             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
339             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_ps(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_ps(fscal,dx20);
348             ty               = _mm_mul_ps(fscal,dy20);
349             tz               = _mm_mul_ps(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_ps(fix2,tx);
353             fiy2             = _mm_add_ps(fiy2,ty);
354             fiz2             = _mm_add_ps(fiz2,tz);
355
356             fjx0             = _mm_add_ps(fjx0,tx);
357             fjy0             = _mm_add_ps(fjy0,ty);
358             fjz0             = _mm_add_ps(fjz0,tz);
359             
360             fjptrA             = f+j_coord_offsetA;
361             fjptrB             = f+j_coord_offsetB;
362             fjptrC             = f+j_coord_offsetC;
363             fjptrD             = f+j_coord_offsetD;
364
365             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
366
367             /* Inner loop uses 123 flops */
368         }
369
370         if(jidx<j_index_end)
371         {
372
373             /* Get j neighbor index, and coordinate index */
374             jnrlistA         = jjnr[jidx];
375             jnrlistB         = jjnr[jidx+1];
376             jnrlistC         = jjnr[jidx+2];
377             jnrlistD         = jjnr[jidx+3];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
381              */
382             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
383             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
384             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
385             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
386             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
387             j_coord_offsetA  = DIM*jnrA;
388             j_coord_offsetB  = DIM*jnrB;
389             j_coord_offsetC  = DIM*jnrC;
390             j_coord_offsetD  = DIM*jnrD;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
394                                               x+j_coord_offsetC,x+j_coord_offsetD,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx00             = _mm_sub_ps(ix0,jx0);
399             dy00             = _mm_sub_ps(iy0,jy0);
400             dz00             = _mm_sub_ps(iz0,jz0);
401             dx10             = _mm_sub_ps(ix1,jx0);
402             dy10             = _mm_sub_ps(iy1,jy0);
403             dz10             = _mm_sub_ps(iz1,jz0);
404             dx20             = _mm_sub_ps(ix2,jx0);
405             dy20             = _mm_sub_ps(iy2,jy0);
406             dz20             = _mm_sub_ps(iz2,jz0);
407
408             /* Calculate squared distance and things based on it */
409             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
410             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
411             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
412
413             rinv00           = gmx_mm_invsqrt_ps(rsq00);
414             rinv10           = gmx_mm_invsqrt_ps(rsq10);
415             rinv20           = gmx_mm_invsqrt_ps(rsq20);
416
417             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
418             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
419             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
420
421             /* Load parameters for j particles */
422             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
423                                                               charge+jnrC+0,charge+jnrD+0);
424
425             fjx0             = _mm_setzero_ps();
426             fjy0             = _mm_setzero_ps();
427             fjz0             = _mm_setzero_ps();
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             r00              = _mm_mul_ps(rsq00,rinv00);
434             r00              = _mm_andnot_ps(dummy_mask,r00);
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq00             = _mm_mul_ps(iq0,jq0);
438
439             /* EWALD ELECTROSTATICS */
440
441             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
442             ewrt             = _mm_mul_ps(r00,ewtabscale);
443             ewitab           = _mm_cvttps_epi32(ewrt);
444             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
445             ewitab           = _mm_slli_epi32(ewitab,2);
446             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
447             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
448             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
449             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
450             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
451             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
452             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
453             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
454             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm_andnot_ps(dummy_mask,velec);
458             velecsum         = _mm_add_ps(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm_andnot_ps(dummy_mask,fscal);
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm_mul_ps(fscal,dx00);
466             ty               = _mm_mul_ps(fscal,dy00);
467             tz               = _mm_mul_ps(fscal,dz00);
468
469             /* Update vectorial force */
470             fix0             = _mm_add_ps(fix0,tx);
471             fiy0             = _mm_add_ps(fiy0,ty);
472             fiz0             = _mm_add_ps(fiz0,tz);
473
474             fjx0             = _mm_add_ps(fjx0,tx);
475             fjy0             = _mm_add_ps(fjy0,ty);
476             fjz0             = _mm_add_ps(fjz0,tz);
477             
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r10              = _mm_mul_ps(rsq10,rinv10);
483             r10              = _mm_andnot_ps(dummy_mask,r10);
484
485             /* Compute parameters for interactions between i and j atoms */
486             qq10             = _mm_mul_ps(iq1,jq0);
487
488             /* EWALD ELECTROSTATICS */
489
490             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
491             ewrt             = _mm_mul_ps(r10,ewtabscale);
492             ewitab           = _mm_cvttps_epi32(ewrt);
493             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
494             ewitab           = _mm_slli_epi32(ewitab,2);
495             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
496             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
497             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
498             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
499             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
500             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
501             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
502             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
503             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_andnot_ps(dummy_mask,velec);
507             velecsum         = _mm_add_ps(velecsum,velec);
508
509             fscal            = felec;
510
511             fscal            = _mm_andnot_ps(dummy_mask,fscal);
512
513             /* Calculate temporary vectorial force */
514             tx               = _mm_mul_ps(fscal,dx10);
515             ty               = _mm_mul_ps(fscal,dy10);
516             tz               = _mm_mul_ps(fscal,dz10);
517
518             /* Update vectorial force */
519             fix1             = _mm_add_ps(fix1,tx);
520             fiy1             = _mm_add_ps(fiy1,ty);
521             fiz1             = _mm_add_ps(fiz1,tz);
522
523             fjx0             = _mm_add_ps(fjx0,tx);
524             fjy0             = _mm_add_ps(fjy0,ty);
525             fjz0             = _mm_add_ps(fjz0,tz);
526             
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r20              = _mm_mul_ps(rsq20,rinv20);
532             r20              = _mm_andnot_ps(dummy_mask,r20);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq20             = _mm_mul_ps(iq2,jq0);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _mm_mul_ps(r20,ewtabscale);
541             ewitab           = _mm_cvttps_epi32(ewrt);
542             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
543             ewitab           = _mm_slli_epi32(ewitab,2);
544             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
545             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
546             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
547             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
548             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
549             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
550             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
551             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
552             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_andnot_ps(dummy_mask,velec);
556             velecsum         = _mm_add_ps(velecsum,velec);
557
558             fscal            = felec;
559
560             fscal            = _mm_andnot_ps(dummy_mask,fscal);
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_ps(fscal,dx20);
564             ty               = _mm_mul_ps(fscal,dy20);
565             tz               = _mm_mul_ps(fscal,dz20);
566
567             /* Update vectorial force */
568             fix2             = _mm_add_ps(fix2,tx);
569             fiy2             = _mm_add_ps(fiy2,ty);
570             fiz2             = _mm_add_ps(fiz2,tz);
571
572             fjx0             = _mm_add_ps(fjx0,tx);
573             fjy0             = _mm_add_ps(fjy0,ty);
574             fjz0             = _mm_add_ps(fjz0,tz);
575             
576             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
577             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
578             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
579             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
580
581             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
582
583             /* Inner loop uses 126 flops */
584         }
585
586         /* End of innermost loop */
587
588         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
589                                               f+i_coord_offset,fshift+i_shift_offset);
590
591         ggid                        = gid[iidx];
592         /* Update potential energies */
593         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
594
595         /* Increment number of inner iterations */
596         inneriter                  += j_index_end - j_index_start;
597
598         /* Outer loop uses 19 flops */
599     }
600
601     /* Increment number of outer iterations */
602     outeriter        += nri;
603
604     /* Update outer/inner flops */
605
606     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*126);
607 }
608 /*
609  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_sse2_single
610  * Electrostatics interaction: Ewald
611  * VdW interaction:            None
612  * Geometry:                   Water3-Particle
613  * Calculate force/pot:        Force
614  */
615 void
616 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_sse2_single
617                     (t_nblist                    * gmx_restrict       nlist,
618                      rvec                        * gmx_restrict          xx,
619                      rvec                        * gmx_restrict          ff,
620                      t_forcerec                  * gmx_restrict          fr,
621                      t_mdatoms                   * gmx_restrict     mdatoms,
622                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
623                      t_nrnb                      * gmx_restrict        nrnb)
624 {
625     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
626      * just 0 for non-waters.
627      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
628      * jnr indices corresponding to data put in the four positions in the SIMD register.
629      */
630     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
631     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
632     int              jnrA,jnrB,jnrC,jnrD;
633     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
634     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
635     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
636     real             rcutoff_scalar;
637     real             *shiftvec,*fshift,*x,*f;
638     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
639     real             scratch[4*DIM];
640     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
641     int              vdwioffset0;
642     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643     int              vdwioffset1;
644     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
648     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
650     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
651     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
652     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
653     real             *charge;
654     __m128i          ewitab;
655     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
656     real             *ewtab;
657     __m128           dummy_mask,cutoff_mask;
658     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
659     __m128           one     = _mm_set1_ps(1.0);
660     __m128           two     = _mm_set1_ps(2.0);
661     x                = xx[0];
662     f                = ff[0];
663
664     nri              = nlist->nri;
665     iinr             = nlist->iinr;
666     jindex           = nlist->jindex;
667     jjnr             = nlist->jjnr;
668     shiftidx         = nlist->shift;
669     gid              = nlist->gid;
670     shiftvec         = fr->shift_vec[0];
671     fshift           = fr->fshift[0];
672     facel            = _mm_set1_ps(fr->epsfac);
673     charge           = mdatoms->chargeA;
674
675     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
676     ewtab            = fr->ic->tabq_coul_F;
677     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
678     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
679
680     /* Setup water-specific parameters */
681     inr              = nlist->iinr[0];
682     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
683     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
684     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
685
686     /* Avoid stupid compiler warnings */
687     jnrA = jnrB = jnrC = jnrD = 0;
688     j_coord_offsetA = 0;
689     j_coord_offsetB = 0;
690     j_coord_offsetC = 0;
691     j_coord_offsetD = 0;
692
693     outeriter        = 0;
694     inneriter        = 0;
695
696     for(iidx=0;iidx<4*DIM;iidx++)
697     {
698         scratch[iidx] = 0.0;
699     }  
700
701     /* Start outer loop over neighborlists */
702     for(iidx=0; iidx<nri; iidx++)
703     {
704         /* Load shift vector for this list */
705         i_shift_offset   = DIM*shiftidx[iidx];
706
707         /* Load limits for loop over neighbors */
708         j_index_start    = jindex[iidx];
709         j_index_end      = jindex[iidx+1];
710
711         /* Get outer coordinate index */
712         inr              = iinr[iidx];
713         i_coord_offset   = DIM*inr;
714
715         /* Load i particle coords and add shift vector */
716         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
717                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
718         
719         fix0             = _mm_setzero_ps();
720         fiy0             = _mm_setzero_ps();
721         fiz0             = _mm_setzero_ps();
722         fix1             = _mm_setzero_ps();
723         fiy1             = _mm_setzero_ps();
724         fiz1             = _mm_setzero_ps();
725         fix2             = _mm_setzero_ps();
726         fiy2             = _mm_setzero_ps();
727         fiz2             = _mm_setzero_ps();
728
729         /* Start inner kernel loop */
730         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
731         {
732
733             /* Get j neighbor index, and coordinate index */
734             jnrA             = jjnr[jidx];
735             jnrB             = jjnr[jidx+1];
736             jnrC             = jjnr[jidx+2];
737             jnrD             = jjnr[jidx+3];
738             j_coord_offsetA  = DIM*jnrA;
739             j_coord_offsetB  = DIM*jnrB;
740             j_coord_offsetC  = DIM*jnrC;
741             j_coord_offsetD  = DIM*jnrD;
742
743             /* load j atom coordinates */
744             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
745                                               x+j_coord_offsetC,x+j_coord_offsetD,
746                                               &jx0,&jy0,&jz0);
747
748             /* Calculate displacement vector */
749             dx00             = _mm_sub_ps(ix0,jx0);
750             dy00             = _mm_sub_ps(iy0,jy0);
751             dz00             = _mm_sub_ps(iz0,jz0);
752             dx10             = _mm_sub_ps(ix1,jx0);
753             dy10             = _mm_sub_ps(iy1,jy0);
754             dz10             = _mm_sub_ps(iz1,jz0);
755             dx20             = _mm_sub_ps(ix2,jx0);
756             dy20             = _mm_sub_ps(iy2,jy0);
757             dz20             = _mm_sub_ps(iz2,jz0);
758
759             /* Calculate squared distance and things based on it */
760             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
761             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
762             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
763
764             rinv00           = gmx_mm_invsqrt_ps(rsq00);
765             rinv10           = gmx_mm_invsqrt_ps(rsq10);
766             rinv20           = gmx_mm_invsqrt_ps(rsq20);
767
768             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
769             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
770             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
771
772             /* Load parameters for j particles */
773             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
774                                                               charge+jnrC+0,charge+jnrD+0);
775
776             fjx0             = _mm_setzero_ps();
777             fjy0             = _mm_setzero_ps();
778             fjz0             = _mm_setzero_ps();
779
780             /**************************
781              * CALCULATE INTERACTIONS *
782              **************************/
783
784             r00              = _mm_mul_ps(rsq00,rinv00);
785
786             /* Compute parameters for interactions between i and j atoms */
787             qq00             = _mm_mul_ps(iq0,jq0);
788
789             /* EWALD ELECTROSTATICS */
790
791             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
792             ewrt             = _mm_mul_ps(r00,ewtabscale);
793             ewitab           = _mm_cvttps_epi32(ewrt);
794             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
795             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
796                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
797                                          &ewtabF,&ewtabFn);
798             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
799             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
800
801             fscal            = felec;
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_ps(fscal,dx00);
805             ty               = _mm_mul_ps(fscal,dy00);
806             tz               = _mm_mul_ps(fscal,dz00);
807
808             /* Update vectorial force */
809             fix0             = _mm_add_ps(fix0,tx);
810             fiy0             = _mm_add_ps(fiy0,ty);
811             fiz0             = _mm_add_ps(fiz0,tz);
812
813             fjx0             = _mm_add_ps(fjx0,tx);
814             fjy0             = _mm_add_ps(fjy0,ty);
815             fjz0             = _mm_add_ps(fjz0,tz);
816             
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             r10              = _mm_mul_ps(rsq10,rinv10);
822
823             /* Compute parameters for interactions between i and j atoms */
824             qq10             = _mm_mul_ps(iq1,jq0);
825
826             /* EWALD ELECTROSTATICS */
827
828             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
829             ewrt             = _mm_mul_ps(r10,ewtabscale);
830             ewitab           = _mm_cvttps_epi32(ewrt);
831             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
832             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
833                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
834                                          &ewtabF,&ewtabFn);
835             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
836             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
837
838             fscal            = felec;
839
840             /* Calculate temporary vectorial force */
841             tx               = _mm_mul_ps(fscal,dx10);
842             ty               = _mm_mul_ps(fscal,dy10);
843             tz               = _mm_mul_ps(fscal,dz10);
844
845             /* Update vectorial force */
846             fix1             = _mm_add_ps(fix1,tx);
847             fiy1             = _mm_add_ps(fiy1,ty);
848             fiz1             = _mm_add_ps(fiz1,tz);
849
850             fjx0             = _mm_add_ps(fjx0,tx);
851             fjy0             = _mm_add_ps(fjy0,ty);
852             fjz0             = _mm_add_ps(fjz0,tz);
853             
854             /**************************
855              * CALCULATE INTERACTIONS *
856              **************************/
857
858             r20              = _mm_mul_ps(rsq20,rinv20);
859
860             /* Compute parameters for interactions between i and j atoms */
861             qq20             = _mm_mul_ps(iq2,jq0);
862
863             /* EWALD ELECTROSTATICS */
864
865             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
866             ewrt             = _mm_mul_ps(r20,ewtabscale);
867             ewitab           = _mm_cvttps_epi32(ewrt);
868             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
869             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
870                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
871                                          &ewtabF,&ewtabFn);
872             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
873             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
874
875             fscal            = felec;
876
877             /* Calculate temporary vectorial force */
878             tx               = _mm_mul_ps(fscal,dx20);
879             ty               = _mm_mul_ps(fscal,dy20);
880             tz               = _mm_mul_ps(fscal,dz20);
881
882             /* Update vectorial force */
883             fix2             = _mm_add_ps(fix2,tx);
884             fiy2             = _mm_add_ps(fiy2,ty);
885             fiz2             = _mm_add_ps(fiz2,tz);
886
887             fjx0             = _mm_add_ps(fjx0,tx);
888             fjy0             = _mm_add_ps(fjy0,ty);
889             fjz0             = _mm_add_ps(fjz0,tz);
890             
891             fjptrA             = f+j_coord_offsetA;
892             fjptrB             = f+j_coord_offsetB;
893             fjptrC             = f+j_coord_offsetC;
894             fjptrD             = f+j_coord_offsetD;
895
896             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
897
898             /* Inner loop uses 108 flops */
899         }
900
901         if(jidx<j_index_end)
902         {
903
904             /* Get j neighbor index, and coordinate index */
905             jnrlistA         = jjnr[jidx];
906             jnrlistB         = jjnr[jidx+1];
907             jnrlistC         = jjnr[jidx+2];
908             jnrlistD         = jjnr[jidx+3];
909             /* Sign of each element will be negative for non-real atoms.
910              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
911              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
912              */
913             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
914             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
915             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
916             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
917             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
918             j_coord_offsetA  = DIM*jnrA;
919             j_coord_offsetB  = DIM*jnrB;
920             j_coord_offsetC  = DIM*jnrC;
921             j_coord_offsetD  = DIM*jnrD;
922
923             /* load j atom coordinates */
924             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
925                                               x+j_coord_offsetC,x+j_coord_offsetD,
926                                               &jx0,&jy0,&jz0);
927
928             /* Calculate displacement vector */
929             dx00             = _mm_sub_ps(ix0,jx0);
930             dy00             = _mm_sub_ps(iy0,jy0);
931             dz00             = _mm_sub_ps(iz0,jz0);
932             dx10             = _mm_sub_ps(ix1,jx0);
933             dy10             = _mm_sub_ps(iy1,jy0);
934             dz10             = _mm_sub_ps(iz1,jz0);
935             dx20             = _mm_sub_ps(ix2,jx0);
936             dy20             = _mm_sub_ps(iy2,jy0);
937             dz20             = _mm_sub_ps(iz2,jz0);
938
939             /* Calculate squared distance and things based on it */
940             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
941             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
942             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
943
944             rinv00           = gmx_mm_invsqrt_ps(rsq00);
945             rinv10           = gmx_mm_invsqrt_ps(rsq10);
946             rinv20           = gmx_mm_invsqrt_ps(rsq20);
947
948             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
949             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
950             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
951
952             /* Load parameters for j particles */
953             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
954                                                               charge+jnrC+0,charge+jnrD+0);
955
956             fjx0             = _mm_setzero_ps();
957             fjy0             = _mm_setzero_ps();
958             fjz0             = _mm_setzero_ps();
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r00              = _mm_mul_ps(rsq00,rinv00);
965             r00              = _mm_andnot_ps(dummy_mask,r00);
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq00             = _mm_mul_ps(iq0,jq0);
969
970             /* EWALD ELECTROSTATICS */
971
972             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
973             ewrt             = _mm_mul_ps(r00,ewtabscale);
974             ewitab           = _mm_cvttps_epi32(ewrt);
975             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
976             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
977                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
978                                          &ewtabF,&ewtabFn);
979             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
980             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
981
982             fscal            = felec;
983
984             fscal            = _mm_andnot_ps(dummy_mask,fscal);
985
986             /* Calculate temporary vectorial force */
987             tx               = _mm_mul_ps(fscal,dx00);
988             ty               = _mm_mul_ps(fscal,dy00);
989             tz               = _mm_mul_ps(fscal,dz00);
990
991             /* Update vectorial force */
992             fix0             = _mm_add_ps(fix0,tx);
993             fiy0             = _mm_add_ps(fiy0,ty);
994             fiz0             = _mm_add_ps(fiz0,tz);
995
996             fjx0             = _mm_add_ps(fjx0,tx);
997             fjy0             = _mm_add_ps(fjy0,ty);
998             fjz0             = _mm_add_ps(fjz0,tz);
999             
1000             /**************************
1001              * CALCULATE INTERACTIONS *
1002              **************************/
1003
1004             r10              = _mm_mul_ps(rsq10,rinv10);
1005             r10              = _mm_andnot_ps(dummy_mask,r10);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq10             = _mm_mul_ps(iq1,jq0);
1009
1010             /* EWALD ELECTROSTATICS */
1011
1012             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1013             ewrt             = _mm_mul_ps(r10,ewtabscale);
1014             ewitab           = _mm_cvttps_epi32(ewrt);
1015             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1016             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1017                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1018                                          &ewtabF,&ewtabFn);
1019             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1020             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1025
1026             /* Calculate temporary vectorial force */
1027             tx               = _mm_mul_ps(fscal,dx10);
1028             ty               = _mm_mul_ps(fscal,dy10);
1029             tz               = _mm_mul_ps(fscal,dz10);
1030
1031             /* Update vectorial force */
1032             fix1             = _mm_add_ps(fix1,tx);
1033             fiy1             = _mm_add_ps(fiy1,ty);
1034             fiz1             = _mm_add_ps(fiz1,tz);
1035
1036             fjx0             = _mm_add_ps(fjx0,tx);
1037             fjy0             = _mm_add_ps(fjy0,ty);
1038             fjz0             = _mm_add_ps(fjz0,tz);
1039             
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             r20              = _mm_mul_ps(rsq20,rinv20);
1045             r20              = _mm_andnot_ps(dummy_mask,r20);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq20             = _mm_mul_ps(iq2,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051
1052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1053             ewrt             = _mm_mul_ps(r20,ewtabscale);
1054             ewitab           = _mm_cvttps_epi32(ewrt);
1055             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1056             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1057                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1058                                          &ewtabF,&ewtabFn);
1059             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1060             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx20);
1068             ty               = _mm_mul_ps(fscal,dy20);
1069             tz               = _mm_mul_ps(fscal,dz20);
1070
1071             /* Update vectorial force */
1072             fix2             = _mm_add_ps(fix2,tx);
1073             fiy2             = _mm_add_ps(fiy2,ty);
1074             fiz2             = _mm_add_ps(fiz2,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079             
1080             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1081             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1082             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1083             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1084
1085             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1086
1087             /* Inner loop uses 111 flops */
1088         }
1089
1090         /* End of innermost loop */
1091
1092         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1093                                               f+i_coord_offset,fshift+i_shift_offset);
1094
1095         /* Increment number of inner iterations */
1096         inneriter                  += j_index_end - j_index_start;
1097
1098         /* Outer loop uses 18 flops */
1099     }
1100
1101     /* Increment number of outer iterations */
1102     outeriter        += nri;
1103
1104     /* Update outer/inner flops */
1105
1106     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*111);
1107 }