Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW4W4_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Water4
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
96     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
97     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
98     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
99     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
100     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
101     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
102     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
103     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
104     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
105     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
106     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
107     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
108     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
109     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
110     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
111     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
112     real             *charge;
113     int              nvdwtype;
114     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
115     int              *vdwtype;
116     real             *vdwparam;
117     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
118     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
119     __m128i          ewitab;
120     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
121     real             *ewtab;
122     __m128           dummy_mask,cutoff_mask;
123     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
124     __m128           one     = _mm_set1_ps(1.0);
125     __m128           two     = _mm_set1_ps(2.0);
126     x                = xx[0];
127     f                = ff[0];
128
129     nri              = nlist->nri;
130     iinr             = nlist->iinr;
131     jindex           = nlist->jindex;
132     jjnr             = nlist->jjnr;
133     shiftidx         = nlist->shift;
134     gid              = nlist->gid;
135     shiftvec         = fr->shift_vec[0];
136     fshift           = fr->fshift[0];
137     facel            = _mm_set1_ps(fr->epsfac);
138     charge           = mdatoms->chargeA;
139     nvdwtype         = fr->ntype;
140     vdwparam         = fr->nbfp;
141     vdwtype          = mdatoms->typeA;
142
143     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     jq1              = _mm_set1_ps(charge[inr+1]);
156     jq2              = _mm_set1_ps(charge[inr+2]);
157     jq3              = _mm_set1_ps(charge[inr+3]);
158     vdwjidx0A        = 2*vdwtype[inr+0];
159     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
160     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
161     qq11             = _mm_mul_ps(iq1,jq1);
162     qq12             = _mm_mul_ps(iq1,jq2);
163     qq13             = _mm_mul_ps(iq1,jq3);
164     qq21             = _mm_mul_ps(iq2,jq1);
165     qq22             = _mm_mul_ps(iq2,jq2);
166     qq23             = _mm_mul_ps(iq2,jq3);
167     qq31             = _mm_mul_ps(iq3,jq1);
168     qq32             = _mm_mul_ps(iq3,jq2);
169     qq33             = _mm_mul_ps(iq3,jq3);
170
171     /* Avoid stupid compiler warnings */
172     jnrA = jnrB = jnrC = jnrD = 0;
173     j_coord_offsetA = 0;
174     j_coord_offsetB = 0;
175     j_coord_offsetC = 0;
176     j_coord_offsetD = 0;
177
178     outeriter        = 0;
179     inneriter        = 0;
180
181     for(iidx=0;iidx<4*DIM;iidx++)
182     {
183         scratch[iidx] = 0.0;
184     }  
185
186     /* Start outer loop over neighborlists */
187     for(iidx=0; iidx<nri; iidx++)
188     {
189         /* Load shift vector for this list */
190         i_shift_offset   = DIM*shiftidx[iidx];
191
192         /* Load limits for loop over neighbors */
193         j_index_start    = jindex[iidx];
194         j_index_end      = jindex[iidx+1];
195
196         /* Get outer coordinate index */
197         inr              = iinr[iidx];
198         i_coord_offset   = DIM*inr;
199
200         /* Load i particle coords and add shift vector */
201         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
202                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
203         
204         fix0             = _mm_setzero_ps();
205         fiy0             = _mm_setzero_ps();
206         fiz0             = _mm_setzero_ps();
207         fix1             = _mm_setzero_ps();
208         fiy1             = _mm_setzero_ps();
209         fiz1             = _mm_setzero_ps();
210         fix2             = _mm_setzero_ps();
211         fiy2             = _mm_setzero_ps();
212         fiz2             = _mm_setzero_ps();
213         fix3             = _mm_setzero_ps();
214         fiy3             = _mm_setzero_ps();
215         fiz3             = _mm_setzero_ps();
216
217         /* Reset potential sums */
218         velecsum         = _mm_setzero_ps();
219         vvdwsum          = _mm_setzero_ps();
220
221         /* Start inner kernel loop */
222         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrA             = jjnr[jidx];
227             jnrB             = jjnr[jidx+1];
228             jnrC             = jjnr[jidx+2];
229             jnrD             = jjnr[jidx+3];
230             j_coord_offsetA  = DIM*jnrA;
231             j_coord_offsetB  = DIM*jnrB;
232             j_coord_offsetC  = DIM*jnrC;
233             j_coord_offsetD  = DIM*jnrD;
234
235             /* load j atom coordinates */
236             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
237                                               x+j_coord_offsetC,x+j_coord_offsetD,
238                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
239                                               &jy2,&jz2,&jx3,&jy3,&jz3);
240
241             /* Calculate displacement vector */
242             dx00             = _mm_sub_ps(ix0,jx0);
243             dy00             = _mm_sub_ps(iy0,jy0);
244             dz00             = _mm_sub_ps(iz0,jz0);
245             dx11             = _mm_sub_ps(ix1,jx1);
246             dy11             = _mm_sub_ps(iy1,jy1);
247             dz11             = _mm_sub_ps(iz1,jz1);
248             dx12             = _mm_sub_ps(ix1,jx2);
249             dy12             = _mm_sub_ps(iy1,jy2);
250             dz12             = _mm_sub_ps(iz1,jz2);
251             dx13             = _mm_sub_ps(ix1,jx3);
252             dy13             = _mm_sub_ps(iy1,jy3);
253             dz13             = _mm_sub_ps(iz1,jz3);
254             dx21             = _mm_sub_ps(ix2,jx1);
255             dy21             = _mm_sub_ps(iy2,jy1);
256             dz21             = _mm_sub_ps(iz2,jz1);
257             dx22             = _mm_sub_ps(ix2,jx2);
258             dy22             = _mm_sub_ps(iy2,jy2);
259             dz22             = _mm_sub_ps(iz2,jz2);
260             dx23             = _mm_sub_ps(ix2,jx3);
261             dy23             = _mm_sub_ps(iy2,jy3);
262             dz23             = _mm_sub_ps(iz2,jz3);
263             dx31             = _mm_sub_ps(ix3,jx1);
264             dy31             = _mm_sub_ps(iy3,jy1);
265             dz31             = _mm_sub_ps(iz3,jz1);
266             dx32             = _mm_sub_ps(ix3,jx2);
267             dy32             = _mm_sub_ps(iy3,jy2);
268             dz32             = _mm_sub_ps(iz3,jz2);
269             dx33             = _mm_sub_ps(ix3,jx3);
270             dy33             = _mm_sub_ps(iy3,jy3);
271             dz33             = _mm_sub_ps(iz3,jz3);
272
273             /* Calculate squared distance and things based on it */
274             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
275             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
276             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
277             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
278             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
279             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
280             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
281             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
282             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
283             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
284
285             rinv11           = gmx_mm_invsqrt_ps(rsq11);
286             rinv12           = gmx_mm_invsqrt_ps(rsq12);
287             rinv13           = gmx_mm_invsqrt_ps(rsq13);
288             rinv21           = gmx_mm_invsqrt_ps(rsq21);
289             rinv22           = gmx_mm_invsqrt_ps(rsq22);
290             rinv23           = gmx_mm_invsqrt_ps(rsq23);
291             rinv31           = gmx_mm_invsqrt_ps(rsq31);
292             rinv32           = gmx_mm_invsqrt_ps(rsq32);
293             rinv33           = gmx_mm_invsqrt_ps(rsq33);
294
295             rinvsq00         = gmx_mm_inv_ps(rsq00);
296             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
297             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
298             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
299             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
300             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
301             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
302             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
303             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
304             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
305
306             fjx0             = _mm_setzero_ps();
307             fjy0             = _mm_setzero_ps();
308             fjz0             = _mm_setzero_ps();
309             fjx1             = _mm_setzero_ps();
310             fjy1             = _mm_setzero_ps();
311             fjz1             = _mm_setzero_ps();
312             fjx2             = _mm_setzero_ps();
313             fjy2             = _mm_setzero_ps();
314             fjz2             = _mm_setzero_ps();
315             fjx3             = _mm_setzero_ps();
316             fjy3             = _mm_setzero_ps();
317             fjz3             = _mm_setzero_ps();
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             /* LENNARD-JONES DISPERSION/REPULSION */
324
325             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
326             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
327             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
328             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
329             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
333
334             fscal            = fvdw;
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm_mul_ps(fscal,dx00);
338             ty               = _mm_mul_ps(fscal,dy00);
339             tz               = _mm_mul_ps(fscal,dz00);
340
341             /* Update vectorial force */
342             fix0             = _mm_add_ps(fix0,tx);
343             fiy0             = _mm_add_ps(fiy0,ty);
344             fiz0             = _mm_add_ps(fiz0,tz);
345
346             fjx0             = _mm_add_ps(fjx0,tx);
347             fjy0             = _mm_add_ps(fjy0,ty);
348             fjz0             = _mm_add_ps(fjz0,tz);
349             
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r11              = _mm_mul_ps(rsq11,rinv11);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359             ewrt             = _mm_mul_ps(r11,ewtabscale);
360             ewitab           = _mm_cvttps_epi32(ewrt);
361             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
362             ewitab           = _mm_slli_epi32(ewitab,2);
363             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
364             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
365             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
366             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
367             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
368             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
369             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
370             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
371             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm_mul_ps(fscal,dx11);
380             ty               = _mm_mul_ps(fscal,dy11);
381             tz               = _mm_mul_ps(fscal,dz11);
382
383             /* Update vectorial force */
384             fix1             = _mm_add_ps(fix1,tx);
385             fiy1             = _mm_add_ps(fiy1,ty);
386             fiz1             = _mm_add_ps(fiz1,tz);
387
388             fjx1             = _mm_add_ps(fjx1,tx);
389             fjy1             = _mm_add_ps(fjy1,ty);
390             fjz1             = _mm_add_ps(fjz1,tz);
391             
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             r12              = _mm_mul_ps(rsq12,rinv12);
397
398             /* EWALD ELECTROSTATICS */
399
400             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
401             ewrt             = _mm_mul_ps(r12,ewtabscale);
402             ewitab           = _mm_cvttps_epi32(ewrt);
403             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
404             ewitab           = _mm_slli_epi32(ewitab,2);
405             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
406             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
407             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
408             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
409             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
410             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
411             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
412             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
413             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
414
415             /* Update potential sum for this i atom from the interaction with this j atom. */
416             velecsum         = _mm_add_ps(velecsum,velec);
417
418             fscal            = felec;
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm_mul_ps(fscal,dx12);
422             ty               = _mm_mul_ps(fscal,dy12);
423             tz               = _mm_mul_ps(fscal,dz12);
424
425             /* Update vectorial force */
426             fix1             = _mm_add_ps(fix1,tx);
427             fiy1             = _mm_add_ps(fiy1,ty);
428             fiz1             = _mm_add_ps(fiz1,tz);
429
430             fjx2             = _mm_add_ps(fjx2,tx);
431             fjy2             = _mm_add_ps(fjy2,ty);
432             fjz2             = _mm_add_ps(fjz2,tz);
433             
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             r13              = _mm_mul_ps(rsq13,rinv13);
439
440             /* EWALD ELECTROSTATICS */
441
442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443             ewrt             = _mm_mul_ps(r13,ewtabscale);
444             ewitab           = _mm_cvttps_epi32(ewrt);
445             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
446             ewitab           = _mm_slli_epi32(ewitab,2);
447             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
448             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
449             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
450             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
451             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
452             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
453             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
454             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
455             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velecsum         = _mm_add_ps(velecsum,velec);
459
460             fscal            = felec;
461
462             /* Calculate temporary vectorial force */
463             tx               = _mm_mul_ps(fscal,dx13);
464             ty               = _mm_mul_ps(fscal,dy13);
465             tz               = _mm_mul_ps(fscal,dz13);
466
467             /* Update vectorial force */
468             fix1             = _mm_add_ps(fix1,tx);
469             fiy1             = _mm_add_ps(fiy1,ty);
470             fiz1             = _mm_add_ps(fiz1,tz);
471
472             fjx3             = _mm_add_ps(fjx3,tx);
473             fjy3             = _mm_add_ps(fjy3,ty);
474             fjz3             = _mm_add_ps(fjz3,tz);
475             
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r21              = _mm_mul_ps(rsq21,rinv21);
481
482             /* EWALD ELECTROSTATICS */
483
484             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
485             ewrt             = _mm_mul_ps(r21,ewtabscale);
486             ewitab           = _mm_cvttps_epi32(ewrt);
487             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
488             ewitab           = _mm_slli_epi32(ewitab,2);
489             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
490             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
491             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
492             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
493             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
494             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
495             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
496             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
497             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velecsum         = _mm_add_ps(velecsum,velec);
501
502             fscal            = felec;
503
504             /* Calculate temporary vectorial force */
505             tx               = _mm_mul_ps(fscal,dx21);
506             ty               = _mm_mul_ps(fscal,dy21);
507             tz               = _mm_mul_ps(fscal,dz21);
508
509             /* Update vectorial force */
510             fix2             = _mm_add_ps(fix2,tx);
511             fiy2             = _mm_add_ps(fiy2,ty);
512             fiz2             = _mm_add_ps(fiz2,tz);
513
514             fjx1             = _mm_add_ps(fjx1,tx);
515             fjy1             = _mm_add_ps(fjy1,ty);
516             fjz1             = _mm_add_ps(fjz1,tz);
517             
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             r22              = _mm_mul_ps(rsq22,rinv22);
523
524             /* EWALD ELECTROSTATICS */
525
526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
527             ewrt             = _mm_mul_ps(r22,ewtabscale);
528             ewitab           = _mm_cvttps_epi32(ewrt);
529             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
530             ewitab           = _mm_slli_epi32(ewitab,2);
531             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
532             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
533             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
534             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
535             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
536             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
537             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
538             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
539             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velecsum         = _mm_add_ps(velecsum,velec);
543
544             fscal            = felec;
545
546             /* Calculate temporary vectorial force */
547             tx               = _mm_mul_ps(fscal,dx22);
548             ty               = _mm_mul_ps(fscal,dy22);
549             tz               = _mm_mul_ps(fscal,dz22);
550
551             /* Update vectorial force */
552             fix2             = _mm_add_ps(fix2,tx);
553             fiy2             = _mm_add_ps(fiy2,ty);
554             fiz2             = _mm_add_ps(fiz2,tz);
555
556             fjx2             = _mm_add_ps(fjx2,tx);
557             fjy2             = _mm_add_ps(fjy2,ty);
558             fjz2             = _mm_add_ps(fjz2,tz);
559             
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             r23              = _mm_mul_ps(rsq23,rinv23);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _mm_mul_ps(r23,ewtabscale);
570             ewitab           = _mm_cvttps_epi32(ewrt);
571             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
572             ewitab           = _mm_slli_epi32(ewitab,2);
573             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
574             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
575             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
576             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
577             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
578             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
579             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
580             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
581             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velecsum         = _mm_add_ps(velecsum,velec);
585
586             fscal            = felec;
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm_mul_ps(fscal,dx23);
590             ty               = _mm_mul_ps(fscal,dy23);
591             tz               = _mm_mul_ps(fscal,dz23);
592
593             /* Update vectorial force */
594             fix2             = _mm_add_ps(fix2,tx);
595             fiy2             = _mm_add_ps(fiy2,ty);
596             fiz2             = _mm_add_ps(fiz2,tz);
597
598             fjx3             = _mm_add_ps(fjx3,tx);
599             fjy3             = _mm_add_ps(fjy3,ty);
600             fjz3             = _mm_add_ps(fjz3,tz);
601             
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r31              = _mm_mul_ps(rsq31,rinv31);
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = _mm_mul_ps(r31,ewtabscale);
612             ewitab           = _mm_cvttps_epi32(ewrt);
613             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
614             ewitab           = _mm_slli_epi32(ewitab,2);
615             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
616             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
617             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
618             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
619             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
620             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
621             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
622             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
623             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velecsum         = _mm_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             /* Calculate temporary vectorial force */
631             tx               = _mm_mul_ps(fscal,dx31);
632             ty               = _mm_mul_ps(fscal,dy31);
633             tz               = _mm_mul_ps(fscal,dz31);
634
635             /* Update vectorial force */
636             fix3             = _mm_add_ps(fix3,tx);
637             fiy3             = _mm_add_ps(fiy3,ty);
638             fiz3             = _mm_add_ps(fiz3,tz);
639
640             fjx1             = _mm_add_ps(fjx1,tx);
641             fjy1             = _mm_add_ps(fjy1,ty);
642             fjz1             = _mm_add_ps(fjz1,tz);
643             
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r32              = _mm_mul_ps(rsq32,rinv32);
649
650             /* EWALD ELECTROSTATICS */
651
652             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
653             ewrt             = _mm_mul_ps(r32,ewtabscale);
654             ewitab           = _mm_cvttps_epi32(ewrt);
655             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
656             ewitab           = _mm_slli_epi32(ewitab,2);
657             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
658             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
659             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
660             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
661             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
662             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
663             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
664             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
665             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             velecsum         = _mm_add_ps(velecsum,velec);
669
670             fscal            = felec;
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm_mul_ps(fscal,dx32);
674             ty               = _mm_mul_ps(fscal,dy32);
675             tz               = _mm_mul_ps(fscal,dz32);
676
677             /* Update vectorial force */
678             fix3             = _mm_add_ps(fix3,tx);
679             fiy3             = _mm_add_ps(fiy3,ty);
680             fiz3             = _mm_add_ps(fiz3,tz);
681
682             fjx2             = _mm_add_ps(fjx2,tx);
683             fjy2             = _mm_add_ps(fjy2,ty);
684             fjz2             = _mm_add_ps(fjz2,tz);
685             
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             r33              = _mm_mul_ps(rsq33,rinv33);
691
692             /* EWALD ELECTROSTATICS */
693
694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
695             ewrt             = _mm_mul_ps(r33,ewtabscale);
696             ewitab           = _mm_cvttps_epi32(ewrt);
697             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
698             ewitab           = _mm_slli_epi32(ewitab,2);
699             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
700             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
701             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
702             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
703             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
704             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
705             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
706             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
707             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
708
709             /* Update potential sum for this i atom from the interaction with this j atom. */
710             velecsum         = _mm_add_ps(velecsum,velec);
711
712             fscal            = felec;
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm_mul_ps(fscal,dx33);
716             ty               = _mm_mul_ps(fscal,dy33);
717             tz               = _mm_mul_ps(fscal,dz33);
718
719             /* Update vectorial force */
720             fix3             = _mm_add_ps(fix3,tx);
721             fiy3             = _mm_add_ps(fiy3,ty);
722             fiz3             = _mm_add_ps(fiz3,tz);
723
724             fjx3             = _mm_add_ps(fjx3,tx);
725             fjy3             = _mm_add_ps(fjy3,ty);
726             fjz3             = _mm_add_ps(fjz3,tz);
727             
728             fjptrA             = f+j_coord_offsetA;
729             fjptrB             = f+j_coord_offsetB;
730             fjptrC             = f+j_coord_offsetC;
731             fjptrD             = f+j_coord_offsetD;
732
733             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
734                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
735                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
736
737             /* Inner loop uses 404 flops */
738         }
739
740         if(jidx<j_index_end)
741         {
742
743             /* Get j neighbor index, and coordinate index */
744             jnrlistA         = jjnr[jidx];
745             jnrlistB         = jjnr[jidx+1];
746             jnrlistC         = jjnr[jidx+2];
747             jnrlistD         = jjnr[jidx+3];
748             /* Sign of each element will be negative for non-real atoms.
749              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
750              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
751              */
752             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
753             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
754             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
755             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
756             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
757             j_coord_offsetA  = DIM*jnrA;
758             j_coord_offsetB  = DIM*jnrB;
759             j_coord_offsetC  = DIM*jnrC;
760             j_coord_offsetD  = DIM*jnrD;
761
762             /* load j atom coordinates */
763             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
764                                               x+j_coord_offsetC,x+j_coord_offsetD,
765                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
766                                               &jy2,&jz2,&jx3,&jy3,&jz3);
767
768             /* Calculate displacement vector */
769             dx00             = _mm_sub_ps(ix0,jx0);
770             dy00             = _mm_sub_ps(iy0,jy0);
771             dz00             = _mm_sub_ps(iz0,jz0);
772             dx11             = _mm_sub_ps(ix1,jx1);
773             dy11             = _mm_sub_ps(iy1,jy1);
774             dz11             = _mm_sub_ps(iz1,jz1);
775             dx12             = _mm_sub_ps(ix1,jx2);
776             dy12             = _mm_sub_ps(iy1,jy2);
777             dz12             = _mm_sub_ps(iz1,jz2);
778             dx13             = _mm_sub_ps(ix1,jx3);
779             dy13             = _mm_sub_ps(iy1,jy3);
780             dz13             = _mm_sub_ps(iz1,jz3);
781             dx21             = _mm_sub_ps(ix2,jx1);
782             dy21             = _mm_sub_ps(iy2,jy1);
783             dz21             = _mm_sub_ps(iz2,jz1);
784             dx22             = _mm_sub_ps(ix2,jx2);
785             dy22             = _mm_sub_ps(iy2,jy2);
786             dz22             = _mm_sub_ps(iz2,jz2);
787             dx23             = _mm_sub_ps(ix2,jx3);
788             dy23             = _mm_sub_ps(iy2,jy3);
789             dz23             = _mm_sub_ps(iz2,jz3);
790             dx31             = _mm_sub_ps(ix3,jx1);
791             dy31             = _mm_sub_ps(iy3,jy1);
792             dz31             = _mm_sub_ps(iz3,jz1);
793             dx32             = _mm_sub_ps(ix3,jx2);
794             dy32             = _mm_sub_ps(iy3,jy2);
795             dz32             = _mm_sub_ps(iz3,jz2);
796             dx33             = _mm_sub_ps(ix3,jx3);
797             dy33             = _mm_sub_ps(iy3,jy3);
798             dz33             = _mm_sub_ps(iz3,jz3);
799
800             /* Calculate squared distance and things based on it */
801             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
802             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
803             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
804             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
805             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
806             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
807             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
808             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
809             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
810             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
811
812             rinv11           = gmx_mm_invsqrt_ps(rsq11);
813             rinv12           = gmx_mm_invsqrt_ps(rsq12);
814             rinv13           = gmx_mm_invsqrt_ps(rsq13);
815             rinv21           = gmx_mm_invsqrt_ps(rsq21);
816             rinv22           = gmx_mm_invsqrt_ps(rsq22);
817             rinv23           = gmx_mm_invsqrt_ps(rsq23);
818             rinv31           = gmx_mm_invsqrt_ps(rsq31);
819             rinv32           = gmx_mm_invsqrt_ps(rsq32);
820             rinv33           = gmx_mm_invsqrt_ps(rsq33);
821
822             rinvsq00         = gmx_mm_inv_ps(rsq00);
823             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
824             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
825             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
826             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
827             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
828             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
829             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
830             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
831             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
832
833             fjx0             = _mm_setzero_ps();
834             fjy0             = _mm_setzero_ps();
835             fjz0             = _mm_setzero_ps();
836             fjx1             = _mm_setzero_ps();
837             fjy1             = _mm_setzero_ps();
838             fjz1             = _mm_setzero_ps();
839             fjx2             = _mm_setzero_ps();
840             fjy2             = _mm_setzero_ps();
841             fjz2             = _mm_setzero_ps();
842             fjx3             = _mm_setzero_ps();
843             fjy3             = _mm_setzero_ps();
844             fjz3             = _mm_setzero_ps();
845
846             /**************************
847              * CALCULATE INTERACTIONS *
848              **************************/
849
850             /* LENNARD-JONES DISPERSION/REPULSION */
851
852             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
853             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
854             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
855             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
856             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
857
858             /* Update potential sum for this i atom from the interaction with this j atom. */
859             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
860             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
861
862             fscal            = fvdw;
863
864             fscal            = _mm_andnot_ps(dummy_mask,fscal);
865
866             /* Calculate temporary vectorial force */
867             tx               = _mm_mul_ps(fscal,dx00);
868             ty               = _mm_mul_ps(fscal,dy00);
869             tz               = _mm_mul_ps(fscal,dz00);
870
871             /* Update vectorial force */
872             fix0             = _mm_add_ps(fix0,tx);
873             fiy0             = _mm_add_ps(fiy0,ty);
874             fiz0             = _mm_add_ps(fiz0,tz);
875
876             fjx0             = _mm_add_ps(fjx0,tx);
877             fjy0             = _mm_add_ps(fjy0,ty);
878             fjz0             = _mm_add_ps(fjz0,tz);
879             
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             r11              = _mm_mul_ps(rsq11,rinv11);
885             r11              = _mm_andnot_ps(dummy_mask,r11);
886
887             /* EWALD ELECTROSTATICS */
888
889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
890             ewrt             = _mm_mul_ps(r11,ewtabscale);
891             ewitab           = _mm_cvttps_epi32(ewrt);
892             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
893             ewitab           = _mm_slli_epi32(ewitab,2);
894             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
895             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
896             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
897             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
898             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
899             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
900             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
901             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
902             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
903
904             /* Update potential sum for this i atom from the interaction with this j atom. */
905             velec            = _mm_andnot_ps(dummy_mask,velec);
906             velecsum         = _mm_add_ps(velecsum,velec);
907
908             fscal            = felec;
909
910             fscal            = _mm_andnot_ps(dummy_mask,fscal);
911
912             /* Calculate temporary vectorial force */
913             tx               = _mm_mul_ps(fscal,dx11);
914             ty               = _mm_mul_ps(fscal,dy11);
915             tz               = _mm_mul_ps(fscal,dz11);
916
917             /* Update vectorial force */
918             fix1             = _mm_add_ps(fix1,tx);
919             fiy1             = _mm_add_ps(fiy1,ty);
920             fiz1             = _mm_add_ps(fiz1,tz);
921
922             fjx1             = _mm_add_ps(fjx1,tx);
923             fjy1             = _mm_add_ps(fjy1,ty);
924             fjz1             = _mm_add_ps(fjz1,tz);
925             
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             r12              = _mm_mul_ps(rsq12,rinv12);
931             r12              = _mm_andnot_ps(dummy_mask,r12);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _mm_mul_ps(r12,ewtabscale);
937             ewitab           = _mm_cvttps_epi32(ewrt);
938             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
939             ewitab           = _mm_slli_epi32(ewitab,2);
940             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
941             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
942             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
943             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
944             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
945             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
946             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
947             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
948             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
949
950             /* Update potential sum for this i atom from the interaction with this j atom. */
951             velec            = _mm_andnot_ps(dummy_mask,velec);
952             velecsum         = _mm_add_ps(velecsum,velec);
953
954             fscal            = felec;
955
956             fscal            = _mm_andnot_ps(dummy_mask,fscal);
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm_mul_ps(fscal,dx12);
960             ty               = _mm_mul_ps(fscal,dy12);
961             tz               = _mm_mul_ps(fscal,dz12);
962
963             /* Update vectorial force */
964             fix1             = _mm_add_ps(fix1,tx);
965             fiy1             = _mm_add_ps(fiy1,ty);
966             fiz1             = _mm_add_ps(fiz1,tz);
967
968             fjx2             = _mm_add_ps(fjx2,tx);
969             fjy2             = _mm_add_ps(fjy2,ty);
970             fjz2             = _mm_add_ps(fjz2,tz);
971             
972             /**************************
973              * CALCULATE INTERACTIONS *
974              **************************/
975
976             r13              = _mm_mul_ps(rsq13,rinv13);
977             r13              = _mm_andnot_ps(dummy_mask,r13);
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = _mm_mul_ps(r13,ewtabscale);
983             ewitab           = _mm_cvttps_epi32(ewrt);
984             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
985             ewitab           = _mm_slli_epi32(ewitab,2);
986             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
987             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
988             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
989             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
990             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
991             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
992             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
993             velec            = _mm_mul_ps(qq13,_mm_sub_ps(rinv13,velec));
994             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
995
996             /* Update potential sum for this i atom from the interaction with this j atom. */
997             velec            = _mm_andnot_ps(dummy_mask,velec);
998             velecsum         = _mm_add_ps(velecsum,velec);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_ps(fscal,dx13);
1006             ty               = _mm_mul_ps(fscal,dy13);
1007             tz               = _mm_mul_ps(fscal,dz13);
1008
1009             /* Update vectorial force */
1010             fix1             = _mm_add_ps(fix1,tx);
1011             fiy1             = _mm_add_ps(fiy1,ty);
1012             fiz1             = _mm_add_ps(fiz1,tz);
1013
1014             fjx3             = _mm_add_ps(fjx3,tx);
1015             fjy3             = _mm_add_ps(fjy3,ty);
1016             fjz3             = _mm_add_ps(fjz3,tz);
1017             
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             r21              = _mm_mul_ps(rsq21,rinv21);
1023             r21              = _mm_andnot_ps(dummy_mask,r21);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _mm_mul_ps(r21,ewtabscale);
1029             ewitab           = _mm_cvttps_epi32(ewrt);
1030             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1031             ewitab           = _mm_slli_epi32(ewitab,2);
1032             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1033             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1034             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1035             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1036             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1037             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1038             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1039             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1040             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1041
1042             /* Update potential sum for this i atom from the interaction with this j atom. */
1043             velec            = _mm_andnot_ps(dummy_mask,velec);
1044             velecsum         = _mm_add_ps(velecsum,velec);
1045
1046             fscal            = felec;
1047
1048             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = _mm_mul_ps(fscal,dx21);
1052             ty               = _mm_mul_ps(fscal,dy21);
1053             tz               = _mm_mul_ps(fscal,dz21);
1054
1055             /* Update vectorial force */
1056             fix2             = _mm_add_ps(fix2,tx);
1057             fiy2             = _mm_add_ps(fiy2,ty);
1058             fiz2             = _mm_add_ps(fiz2,tz);
1059
1060             fjx1             = _mm_add_ps(fjx1,tx);
1061             fjy1             = _mm_add_ps(fjy1,ty);
1062             fjz1             = _mm_add_ps(fjz1,tz);
1063             
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             r22              = _mm_mul_ps(rsq22,rinv22);
1069             r22              = _mm_andnot_ps(dummy_mask,r22);
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = _mm_mul_ps(r22,ewtabscale);
1075             ewitab           = _mm_cvttps_epi32(ewrt);
1076             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1077             ewitab           = _mm_slli_epi32(ewitab,2);
1078             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1079             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1080             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1081             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1082             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1083             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1084             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1085             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1086             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1087
1088             /* Update potential sum for this i atom from the interaction with this j atom. */
1089             velec            = _mm_andnot_ps(dummy_mask,velec);
1090             velecsum         = _mm_add_ps(velecsum,velec);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1095
1096             /* Calculate temporary vectorial force */
1097             tx               = _mm_mul_ps(fscal,dx22);
1098             ty               = _mm_mul_ps(fscal,dy22);
1099             tz               = _mm_mul_ps(fscal,dz22);
1100
1101             /* Update vectorial force */
1102             fix2             = _mm_add_ps(fix2,tx);
1103             fiy2             = _mm_add_ps(fiy2,ty);
1104             fiz2             = _mm_add_ps(fiz2,tz);
1105
1106             fjx2             = _mm_add_ps(fjx2,tx);
1107             fjy2             = _mm_add_ps(fjy2,ty);
1108             fjz2             = _mm_add_ps(fjz2,tz);
1109             
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             r23              = _mm_mul_ps(rsq23,rinv23);
1115             r23              = _mm_andnot_ps(dummy_mask,r23);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm_mul_ps(r23,ewtabscale);
1121             ewitab           = _mm_cvttps_epi32(ewrt);
1122             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1123             ewitab           = _mm_slli_epi32(ewitab,2);
1124             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1125             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1126             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1127             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1128             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1129             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1130             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1131             velec            = _mm_mul_ps(qq23,_mm_sub_ps(rinv23,velec));
1132             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1133
1134             /* Update potential sum for this i atom from the interaction with this j atom. */
1135             velec            = _mm_andnot_ps(dummy_mask,velec);
1136             velecsum         = _mm_add_ps(velecsum,velec);
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm_mul_ps(fscal,dx23);
1144             ty               = _mm_mul_ps(fscal,dy23);
1145             tz               = _mm_mul_ps(fscal,dz23);
1146
1147             /* Update vectorial force */
1148             fix2             = _mm_add_ps(fix2,tx);
1149             fiy2             = _mm_add_ps(fiy2,ty);
1150             fiz2             = _mm_add_ps(fiz2,tz);
1151
1152             fjx3             = _mm_add_ps(fjx3,tx);
1153             fjy3             = _mm_add_ps(fjy3,ty);
1154             fjz3             = _mm_add_ps(fjz3,tz);
1155             
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             r31              = _mm_mul_ps(rsq31,rinv31);
1161             r31              = _mm_andnot_ps(dummy_mask,r31);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _mm_mul_ps(r31,ewtabscale);
1167             ewitab           = _mm_cvttps_epi32(ewrt);
1168             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1169             ewitab           = _mm_slli_epi32(ewitab,2);
1170             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1171             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1172             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1173             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1174             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1175             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1176             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1177             velec            = _mm_mul_ps(qq31,_mm_sub_ps(rinv31,velec));
1178             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1179
1180             /* Update potential sum for this i atom from the interaction with this j atom. */
1181             velec            = _mm_andnot_ps(dummy_mask,velec);
1182             velecsum         = _mm_add_ps(velecsum,velec);
1183
1184             fscal            = felec;
1185
1186             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1187
1188             /* Calculate temporary vectorial force */
1189             tx               = _mm_mul_ps(fscal,dx31);
1190             ty               = _mm_mul_ps(fscal,dy31);
1191             tz               = _mm_mul_ps(fscal,dz31);
1192
1193             /* Update vectorial force */
1194             fix3             = _mm_add_ps(fix3,tx);
1195             fiy3             = _mm_add_ps(fiy3,ty);
1196             fiz3             = _mm_add_ps(fiz3,tz);
1197
1198             fjx1             = _mm_add_ps(fjx1,tx);
1199             fjy1             = _mm_add_ps(fjy1,ty);
1200             fjz1             = _mm_add_ps(fjz1,tz);
1201             
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             r32              = _mm_mul_ps(rsq32,rinv32);
1207             r32              = _mm_andnot_ps(dummy_mask,r32);
1208
1209             /* EWALD ELECTROSTATICS */
1210
1211             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1212             ewrt             = _mm_mul_ps(r32,ewtabscale);
1213             ewitab           = _mm_cvttps_epi32(ewrt);
1214             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1215             ewitab           = _mm_slli_epi32(ewitab,2);
1216             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1217             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1218             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1219             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1220             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1221             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1222             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1223             velec            = _mm_mul_ps(qq32,_mm_sub_ps(rinv32,velec));
1224             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1225
1226             /* Update potential sum for this i atom from the interaction with this j atom. */
1227             velec            = _mm_andnot_ps(dummy_mask,velec);
1228             velecsum         = _mm_add_ps(velecsum,velec);
1229
1230             fscal            = felec;
1231
1232             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1233
1234             /* Calculate temporary vectorial force */
1235             tx               = _mm_mul_ps(fscal,dx32);
1236             ty               = _mm_mul_ps(fscal,dy32);
1237             tz               = _mm_mul_ps(fscal,dz32);
1238
1239             /* Update vectorial force */
1240             fix3             = _mm_add_ps(fix3,tx);
1241             fiy3             = _mm_add_ps(fiy3,ty);
1242             fiz3             = _mm_add_ps(fiz3,tz);
1243
1244             fjx2             = _mm_add_ps(fjx2,tx);
1245             fjy2             = _mm_add_ps(fjy2,ty);
1246             fjz2             = _mm_add_ps(fjz2,tz);
1247             
1248             /**************************
1249              * CALCULATE INTERACTIONS *
1250              **************************/
1251
1252             r33              = _mm_mul_ps(rsq33,rinv33);
1253             r33              = _mm_andnot_ps(dummy_mask,r33);
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = _mm_mul_ps(r33,ewtabscale);
1259             ewitab           = _mm_cvttps_epi32(ewrt);
1260             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1261             ewitab           = _mm_slli_epi32(ewitab,2);
1262             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1263             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1264             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1265             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1266             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1267             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1268             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1269             velec            = _mm_mul_ps(qq33,_mm_sub_ps(rinv33,velec));
1270             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1271
1272             /* Update potential sum for this i atom from the interaction with this j atom. */
1273             velec            = _mm_andnot_ps(dummy_mask,velec);
1274             velecsum         = _mm_add_ps(velecsum,velec);
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm_mul_ps(fscal,dx33);
1282             ty               = _mm_mul_ps(fscal,dy33);
1283             tz               = _mm_mul_ps(fscal,dz33);
1284
1285             /* Update vectorial force */
1286             fix3             = _mm_add_ps(fix3,tx);
1287             fiy3             = _mm_add_ps(fiy3,ty);
1288             fiz3             = _mm_add_ps(fiz3,tz);
1289
1290             fjx3             = _mm_add_ps(fjx3,tx);
1291             fjy3             = _mm_add_ps(fjy3,ty);
1292             fjz3             = _mm_add_ps(fjz3,tz);
1293             
1294             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1295             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1296             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1297             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1298
1299             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1300                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1301                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1302
1303             /* Inner loop uses 413 flops */
1304         }
1305
1306         /* End of innermost loop */
1307
1308         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1309                                               f+i_coord_offset,fshift+i_shift_offset);
1310
1311         ggid                        = gid[iidx];
1312         /* Update potential energies */
1313         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1314         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1315
1316         /* Increment number of inner iterations */
1317         inneriter                  += j_index_end - j_index_start;
1318
1319         /* Outer loop uses 26 flops */
1320     }
1321
1322     /* Increment number of outer iterations */
1323     outeriter        += nri;
1324
1325     /* Update outer/inner flops */
1326
1327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*413);
1328 }
1329 /*
1330  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_sse2_single
1331  * Electrostatics interaction: Ewald
1332  * VdW interaction:            LennardJones
1333  * Geometry:                   Water4-Water4
1334  * Calculate force/pot:        Force
1335  */
1336 void
1337 nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_sse2_single
1338                     (t_nblist                    * gmx_restrict       nlist,
1339                      rvec                        * gmx_restrict          xx,
1340                      rvec                        * gmx_restrict          ff,
1341                      t_forcerec                  * gmx_restrict          fr,
1342                      t_mdatoms                   * gmx_restrict     mdatoms,
1343                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1344                      t_nrnb                      * gmx_restrict        nrnb)
1345 {
1346     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1347      * just 0 for non-waters.
1348      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1349      * jnr indices corresponding to data put in the four positions in the SIMD register.
1350      */
1351     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1352     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1353     int              jnrA,jnrB,jnrC,jnrD;
1354     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1355     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1356     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1357     real             rcutoff_scalar;
1358     real             *shiftvec,*fshift,*x,*f;
1359     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1360     real             scratch[4*DIM];
1361     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1362     int              vdwioffset0;
1363     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1364     int              vdwioffset1;
1365     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1366     int              vdwioffset2;
1367     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1368     int              vdwioffset3;
1369     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1370     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1371     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1372     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1373     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1374     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1375     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1376     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1377     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1378     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1379     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1380     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1381     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1382     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1383     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1384     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1385     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1386     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1387     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1388     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1389     real             *charge;
1390     int              nvdwtype;
1391     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1392     int              *vdwtype;
1393     real             *vdwparam;
1394     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1395     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1396     __m128i          ewitab;
1397     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1398     real             *ewtab;
1399     __m128           dummy_mask,cutoff_mask;
1400     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1401     __m128           one     = _mm_set1_ps(1.0);
1402     __m128           two     = _mm_set1_ps(2.0);
1403     x                = xx[0];
1404     f                = ff[0];
1405
1406     nri              = nlist->nri;
1407     iinr             = nlist->iinr;
1408     jindex           = nlist->jindex;
1409     jjnr             = nlist->jjnr;
1410     shiftidx         = nlist->shift;
1411     gid              = nlist->gid;
1412     shiftvec         = fr->shift_vec[0];
1413     fshift           = fr->fshift[0];
1414     facel            = _mm_set1_ps(fr->epsfac);
1415     charge           = mdatoms->chargeA;
1416     nvdwtype         = fr->ntype;
1417     vdwparam         = fr->nbfp;
1418     vdwtype          = mdatoms->typeA;
1419
1420     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1421     ewtab            = fr->ic->tabq_coul_F;
1422     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1423     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1424
1425     /* Setup water-specific parameters */
1426     inr              = nlist->iinr[0];
1427     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1428     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1429     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1430     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1431
1432     jq1              = _mm_set1_ps(charge[inr+1]);
1433     jq2              = _mm_set1_ps(charge[inr+2]);
1434     jq3              = _mm_set1_ps(charge[inr+3]);
1435     vdwjidx0A        = 2*vdwtype[inr+0];
1436     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1437     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1438     qq11             = _mm_mul_ps(iq1,jq1);
1439     qq12             = _mm_mul_ps(iq1,jq2);
1440     qq13             = _mm_mul_ps(iq1,jq3);
1441     qq21             = _mm_mul_ps(iq2,jq1);
1442     qq22             = _mm_mul_ps(iq2,jq2);
1443     qq23             = _mm_mul_ps(iq2,jq3);
1444     qq31             = _mm_mul_ps(iq3,jq1);
1445     qq32             = _mm_mul_ps(iq3,jq2);
1446     qq33             = _mm_mul_ps(iq3,jq3);
1447
1448     /* Avoid stupid compiler warnings */
1449     jnrA = jnrB = jnrC = jnrD = 0;
1450     j_coord_offsetA = 0;
1451     j_coord_offsetB = 0;
1452     j_coord_offsetC = 0;
1453     j_coord_offsetD = 0;
1454
1455     outeriter        = 0;
1456     inneriter        = 0;
1457
1458     for(iidx=0;iidx<4*DIM;iidx++)
1459     {
1460         scratch[iidx] = 0.0;
1461     }  
1462
1463     /* Start outer loop over neighborlists */
1464     for(iidx=0; iidx<nri; iidx++)
1465     {
1466         /* Load shift vector for this list */
1467         i_shift_offset   = DIM*shiftidx[iidx];
1468
1469         /* Load limits for loop over neighbors */
1470         j_index_start    = jindex[iidx];
1471         j_index_end      = jindex[iidx+1];
1472
1473         /* Get outer coordinate index */
1474         inr              = iinr[iidx];
1475         i_coord_offset   = DIM*inr;
1476
1477         /* Load i particle coords and add shift vector */
1478         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1479                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1480         
1481         fix0             = _mm_setzero_ps();
1482         fiy0             = _mm_setzero_ps();
1483         fiz0             = _mm_setzero_ps();
1484         fix1             = _mm_setzero_ps();
1485         fiy1             = _mm_setzero_ps();
1486         fiz1             = _mm_setzero_ps();
1487         fix2             = _mm_setzero_ps();
1488         fiy2             = _mm_setzero_ps();
1489         fiz2             = _mm_setzero_ps();
1490         fix3             = _mm_setzero_ps();
1491         fiy3             = _mm_setzero_ps();
1492         fiz3             = _mm_setzero_ps();
1493
1494         /* Start inner kernel loop */
1495         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1496         {
1497
1498             /* Get j neighbor index, and coordinate index */
1499             jnrA             = jjnr[jidx];
1500             jnrB             = jjnr[jidx+1];
1501             jnrC             = jjnr[jidx+2];
1502             jnrD             = jjnr[jidx+3];
1503             j_coord_offsetA  = DIM*jnrA;
1504             j_coord_offsetB  = DIM*jnrB;
1505             j_coord_offsetC  = DIM*jnrC;
1506             j_coord_offsetD  = DIM*jnrD;
1507
1508             /* load j atom coordinates */
1509             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1510                                               x+j_coord_offsetC,x+j_coord_offsetD,
1511                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1512                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1513
1514             /* Calculate displacement vector */
1515             dx00             = _mm_sub_ps(ix0,jx0);
1516             dy00             = _mm_sub_ps(iy0,jy0);
1517             dz00             = _mm_sub_ps(iz0,jz0);
1518             dx11             = _mm_sub_ps(ix1,jx1);
1519             dy11             = _mm_sub_ps(iy1,jy1);
1520             dz11             = _mm_sub_ps(iz1,jz1);
1521             dx12             = _mm_sub_ps(ix1,jx2);
1522             dy12             = _mm_sub_ps(iy1,jy2);
1523             dz12             = _mm_sub_ps(iz1,jz2);
1524             dx13             = _mm_sub_ps(ix1,jx3);
1525             dy13             = _mm_sub_ps(iy1,jy3);
1526             dz13             = _mm_sub_ps(iz1,jz3);
1527             dx21             = _mm_sub_ps(ix2,jx1);
1528             dy21             = _mm_sub_ps(iy2,jy1);
1529             dz21             = _mm_sub_ps(iz2,jz1);
1530             dx22             = _mm_sub_ps(ix2,jx2);
1531             dy22             = _mm_sub_ps(iy2,jy2);
1532             dz22             = _mm_sub_ps(iz2,jz2);
1533             dx23             = _mm_sub_ps(ix2,jx3);
1534             dy23             = _mm_sub_ps(iy2,jy3);
1535             dz23             = _mm_sub_ps(iz2,jz3);
1536             dx31             = _mm_sub_ps(ix3,jx1);
1537             dy31             = _mm_sub_ps(iy3,jy1);
1538             dz31             = _mm_sub_ps(iz3,jz1);
1539             dx32             = _mm_sub_ps(ix3,jx2);
1540             dy32             = _mm_sub_ps(iy3,jy2);
1541             dz32             = _mm_sub_ps(iz3,jz2);
1542             dx33             = _mm_sub_ps(ix3,jx3);
1543             dy33             = _mm_sub_ps(iy3,jy3);
1544             dz33             = _mm_sub_ps(iz3,jz3);
1545
1546             /* Calculate squared distance and things based on it */
1547             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1548             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1549             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1550             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1551             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1552             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1553             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1554             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1555             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1556             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1557
1558             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1559             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1560             rinv13           = gmx_mm_invsqrt_ps(rsq13);
1561             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1562             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1563             rinv23           = gmx_mm_invsqrt_ps(rsq23);
1564             rinv31           = gmx_mm_invsqrt_ps(rsq31);
1565             rinv32           = gmx_mm_invsqrt_ps(rsq32);
1566             rinv33           = gmx_mm_invsqrt_ps(rsq33);
1567
1568             rinvsq00         = gmx_mm_inv_ps(rsq00);
1569             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1570             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1571             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
1572             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1573             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1574             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
1575             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
1576             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
1577             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
1578
1579             fjx0             = _mm_setzero_ps();
1580             fjy0             = _mm_setzero_ps();
1581             fjz0             = _mm_setzero_ps();
1582             fjx1             = _mm_setzero_ps();
1583             fjy1             = _mm_setzero_ps();
1584             fjz1             = _mm_setzero_ps();
1585             fjx2             = _mm_setzero_ps();
1586             fjy2             = _mm_setzero_ps();
1587             fjz2             = _mm_setzero_ps();
1588             fjx3             = _mm_setzero_ps();
1589             fjy3             = _mm_setzero_ps();
1590             fjz3             = _mm_setzero_ps();
1591
1592             /**************************
1593              * CALCULATE INTERACTIONS *
1594              **************************/
1595
1596             /* LENNARD-JONES DISPERSION/REPULSION */
1597
1598             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1599             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1600
1601             fscal            = fvdw;
1602
1603             /* Calculate temporary vectorial force */
1604             tx               = _mm_mul_ps(fscal,dx00);
1605             ty               = _mm_mul_ps(fscal,dy00);
1606             tz               = _mm_mul_ps(fscal,dz00);
1607
1608             /* Update vectorial force */
1609             fix0             = _mm_add_ps(fix0,tx);
1610             fiy0             = _mm_add_ps(fiy0,ty);
1611             fiz0             = _mm_add_ps(fiz0,tz);
1612
1613             fjx0             = _mm_add_ps(fjx0,tx);
1614             fjy0             = _mm_add_ps(fjy0,ty);
1615             fjz0             = _mm_add_ps(fjz0,tz);
1616             
1617             /**************************
1618              * CALCULATE INTERACTIONS *
1619              **************************/
1620
1621             r11              = _mm_mul_ps(rsq11,rinv11);
1622
1623             /* EWALD ELECTROSTATICS */
1624
1625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1626             ewrt             = _mm_mul_ps(r11,ewtabscale);
1627             ewitab           = _mm_cvttps_epi32(ewrt);
1628             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1629             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1630                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1631                                          &ewtabF,&ewtabFn);
1632             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1633             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1634
1635             fscal            = felec;
1636
1637             /* Calculate temporary vectorial force */
1638             tx               = _mm_mul_ps(fscal,dx11);
1639             ty               = _mm_mul_ps(fscal,dy11);
1640             tz               = _mm_mul_ps(fscal,dz11);
1641
1642             /* Update vectorial force */
1643             fix1             = _mm_add_ps(fix1,tx);
1644             fiy1             = _mm_add_ps(fiy1,ty);
1645             fiz1             = _mm_add_ps(fiz1,tz);
1646
1647             fjx1             = _mm_add_ps(fjx1,tx);
1648             fjy1             = _mm_add_ps(fjy1,ty);
1649             fjz1             = _mm_add_ps(fjz1,tz);
1650             
1651             /**************************
1652              * CALCULATE INTERACTIONS *
1653              **************************/
1654
1655             r12              = _mm_mul_ps(rsq12,rinv12);
1656
1657             /* EWALD ELECTROSTATICS */
1658
1659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1660             ewrt             = _mm_mul_ps(r12,ewtabscale);
1661             ewitab           = _mm_cvttps_epi32(ewrt);
1662             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1663             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1664                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1665                                          &ewtabF,&ewtabFn);
1666             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1667             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1668
1669             fscal            = felec;
1670
1671             /* Calculate temporary vectorial force */
1672             tx               = _mm_mul_ps(fscal,dx12);
1673             ty               = _mm_mul_ps(fscal,dy12);
1674             tz               = _mm_mul_ps(fscal,dz12);
1675
1676             /* Update vectorial force */
1677             fix1             = _mm_add_ps(fix1,tx);
1678             fiy1             = _mm_add_ps(fiy1,ty);
1679             fiz1             = _mm_add_ps(fiz1,tz);
1680
1681             fjx2             = _mm_add_ps(fjx2,tx);
1682             fjy2             = _mm_add_ps(fjy2,ty);
1683             fjz2             = _mm_add_ps(fjz2,tz);
1684             
1685             /**************************
1686              * CALCULATE INTERACTIONS *
1687              **************************/
1688
1689             r13              = _mm_mul_ps(rsq13,rinv13);
1690
1691             /* EWALD ELECTROSTATICS */
1692
1693             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1694             ewrt             = _mm_mul_ps(r13,ewtabscale);
1695             ewitab           = _mm_cvttps_epi32(ewrt);
1696             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1697             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1698                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1699                                          &ewtabF,&ewtabFn);
1700             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1701             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1702
1703             fscal            = felec;
1704
1705             /* Calculate temporary vectorial force */
1706             tx               = _mm_mul_ps(fscal,dx13);
1707             ty               = _mm_mul_ps(fscal,dy13);
1708             tz               = _mm_mul_ps(fscal,dz13);
1709
1710             /* Update vectorial force */
1711             fix1             = _mm_add_ps(fix1,tx);
1712             fiy1             = _mm_add_ps(fiy1,ty);
1713             fiz1             = _mm_add_ps(fiz1,tz);
1714
1715             fjx3             = _mm_add_ps(fjx3,tx);
1716             fjy3             = _mm_add_ps(fjy3,ty);
1717             fjz3             = _mm_add_ps(fjz3,tz);
1718             
1719             /**************************
1720              * CALCULATE INTERACTIONS *
1721              **************************/
1722
1723             r21              = _mm_mul_ps(rsq21,rinv21);
1724
1725             /* EWALD ELECTROSTATICS */
1726
1727             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1728             ewrt             = _mm_mul_ps(r21,ewtabscale);
1729             ewitab           = _mm_cvttps_epi32(ewrt);
1730             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1731             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1732                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1733                                          &ewtabF,&ewtabFn);
1734             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1735             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1736
1737             fscal            = felec;
1738
1739             /* Calculate temporary vectorial force */
1740             tx               = _mm_mul_ps(fscal,dx21);
1741             ty               = _mm_mul_ps(fscal,dy21);
1742             tz               = _mm_mul_ps(fscal,dz21);
1743
1744             /* Update vectorial force */
1745             fix2             = _mm_add_ps(fix2,tx);
1746             fiy2             = _mm_add_ps(fiy2,ty);
1747             fiz2             = _mm_add_ps(fiz2,tz);
1748
1749             fjx1             = _mm_add_ps(fjx1,tx);
1750             fjy1             = _mm_add_ps(fjy1,ty);
1751             fjz1             = _mm_add_ps(fjz1,tz);
1752             
1753             /**************************
1754              * CALCULATE INTERACTIONS *
1755              **************************/
1756
1757             r22              = _mm_mul_ps(rsq22,rinv22);
1758
1759             /* EWALD ELECTROSTATICS */
1760
1761             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1762             ewrt             = _mm_mul_ps(r22,ewtabscale);
1763             ewitab           = _mm_cvttps_epi32(ewrt);
1764             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1765             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1766                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1767                                          &ewtabF,&ewtabFn);
1768             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1769             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1770
1771             fscal            = felec;
1772
1773             /* Calculate temporary vectorial force */
1774             tx               = _mm_mul_ps(fscal,dx22);
1775             ty               = _mm_mul_ps(fscal,dy22);
1776             tz               = _mm_mul_ps(fscal,dz22);
1777
1778             /* Update vectorial force */
1779             fix2             = _mm_add_ps(fix2,tx);
1780             fiy2             = _mm_add_ps(fiy2,ty);
1781             fiz2             = _mm_add_ps(fiz2,tz);
1782
1783             fjx2             = _mm_add_ps(fjx2,tx);
1784             fjy2             = _mm_add_ps(fjy2,ty);
1785             fjz2             = _mm_add_ps(fjz2,tz);
1786             
1787             /**************************
1788              * CALCULATE INTERACTIONS *
1789              **************************/
1790
1791             r23              = _mm_mul_ps(rsq23,rinv23);
1792
1793             /* EWALD ELECTROSTATICS */
1794
1795             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1796             ewrt             = _mm_mul_ps(r23,ewtabscale);
1797             ewitab           = _mm_cvttps_epi32(ewrt);
1798             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1799             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1800                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1801                                          &ewtabF,&ewtabFn);
1802             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1803             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1804
1805             fscal            = felec;
1806
1807             /* Calculate temporary vectorial force */
1808             tx               = _mm_mul_ps(fscal,dx23);
1809             ty               = _mm_mul_ps(fscal,dy23);
1810             tz               = _mm_mul_ps(fscal,dz23);
1811
1812             /* Update vectorial force */
1813             fix2             = _mm_add_ps(fix2,tx);
1814             fiy2             = _mm_add_ps(fiy2,ty);
1815             fiz2             = _mm_add_ps(fiz2,tz);
1816
1817             fjx3             = _mm_add_ps(fjx3,tx);
1818             fjy3             = _mm_add_ps(fjy3,ty);
1819             fjz3             = _mm_add_ps(fjz3,tz);
1820             
1821             /**************************
1822              * CALCULATE INTERACTIONS *
1823              **************************/
1824
1825             r31              = _mm_mul_ps(rsq31,rinv31);
1826
1827             /* EWALD ELECTROSTATICS */
1828
1829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1830             ewrt             = _mm_mul_ps(r31,ewtabscale);
1831             ewitab           = _mm_cvttps_epi32(ewrt);
1832             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1833             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1834                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1835                                          &ewtabF,&ewtabFn);
1836             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1837             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1838
1839             fscal            = felec;
1840
1841             /* Calculate temporary vectorial force */
1842             tx               = _mm_mul_ps(fscal,dx31);
1843             ty               = _mm_mul_ps(fscal,dy31);
1844             tz               = _mm_mul_ps(fscal,dz31);
1845
1846             /* Update vectorial force */
1847             fix3             = _mm_add_ps(fix3,tx);
1848             fiy3             = _mm_add_ps(fiy3,ty);
1849             fiz3             = _mm_add_ps(fiz3,tz);
1850
1851             fjx1             = _mm_add_ps(fjx1,tx);
1852             fjy1             = _mm_add_ps(fjy1,ty);
1853             fjz1             = _mm_add_ps(fjz1,tz);
1854             
1855             /**************************
1856              * CALCULATE INTERACTIONS *
1857              **************************/
1858
1859             r32              = _mm_mul_ps(rsq32,rinv32);
1860
1861             /* EWALD ELECTROSTATICS */
1862
1863             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1864             ewrt             = _mm_mul_ps(r32,ewtabscale);
1865             ewitab           = _mm_cvttps_epi32(ewrt);
1866             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1867             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1868                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1869                                          &ewtabF,&ewtabFn);
1870             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1871             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1872
1873             fscal            = felec;
1874
1875             /* Calculate temporary vectorial force */
1876             tx               = _mm_mul_ps(fscal,dx32);
1877             ty               = _mm_mul_ps(fscal,dy32);
1878             tz               = _mm_mul_ps(fscal,dz32);
1879
1880             /* Update vectorial force */
1881             fix3             = _mm_add_ps(fix3,tx);
1882             fiy3             = _mm_add_ps(fiy3,ty);
1883             fiz3             = _mm_add_ps(fiz3,tz);
1884
1885             fjx2             = _mm_add_ps(fjx2,tx);
1886             fjy2             = _mm_add_ps(fjy2,ty);
1887             fjz2             = _mm_add_ps(fjz2,tz);
1888             
1889             /**************************
1890              * CALCULATE INTERACTIONS *
1891              **************************/
1892
1893             r33              = _mm_mul_ps(rsq33,rinv33);
1894
1895             /* EWALD ELECTROSTATICS */
1896
1897             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1898             ewrt             = _mm_mul_ps(r33,ewtabscale);
1899             ewitab           = _mm_cvttps_epi32(ewrt);
1900             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1901             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1902                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1903                                          &ewtabF,&ewtabFn);
1904             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1905             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1906
1907             fscal            = felec;
1908
1909             /* Calculate temporary vectorial force */
1910             tx               = _mm_mul_ps(fscal,dx33);
1911             ty               = _mm_mul_ps(fscal,dy33);
1912             tz               = _mm_mul_ps(fscal,dz33);
1913
1914             /* Update vectorial force */
1915             fix3             = _mm_add_ps(fix3,tx);
1916             fiy3             = _mm_add_ps(fiy3,ty);
1917             fiz3             = _mm_add_ps(fiz3,tz);
1918
1919             fjx3             = _mm_add_ps(fjx3,tx);
1920             fjy3             = _mm_add_ps(fjy3,ty);
1921             fjz3             = _mm_add_ps(fjz3,tz);
1922             
1923             fjptrA             = f+j_coord_offsetA;
1924             fjptrB             = f+j_coord_offsetB;
1925             fjptrC             = f+j_coord_offsetC;
1926             fjptrD             = f+j_coord_offsetD;
1927
1928             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1929                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1930                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1931
1932             /* Inner loop uses 354 flops */
1933         }
1934
1935         if(jidx<j_index_end)
1936         {
1937
1938             /* Get j neighbor index, and coordinate index */
1939             jnrlistA         = jjnr[jidx];
1940             jnrlistB         = jjnr[jidx+1];
1941             jnrlistC         = jjnr[jidx+2];
1942             jnrlistD         = jjnr[jidx+3];
1943             /* Sign of each element will be negative for non-real atoms.
1944              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1945              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1946              */
1947             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1948             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1949             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1950             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1951             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1952             j_coord_offsetA  = DIM*jnrA;
1953             j_coord_offsetB  = DIM*jnrB;
1954             j_coord_offsetC  = DIM*jnrC;
1955             j_coord_offsetD  = DIM*jnrD;
1956
1957             /* load j atom coordinates */
1958             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1959                                               x+j_coord_offsetC,x+j_coord_offsetD,
1960                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1961                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1962
1963             /* Calculate displacement vector */
1964             dx00             = _mm_sub_ps(ix0,jx0);
1965             dy00             = _mm_sub_ps(iy0,jy0);
1966             dz00             = _mm_sub_ps(iz0,jz0);
1967             dx11             = _mm_sub_ps(ix1,jx1);
1968             dy11             = _mm_sub_ps(iy1,jy1);
1969             dz11             = _mm_sub_ps(iz1,jz1);
1970             dx12             = _mm_sub_ps(ix1,jx2);
1971             dy12             = _mm_sub_ps(iy1,jy2);
1972             dz12             = _mm_sub_ps(iz1,jz2);
1973             dx13             = _mm_sub_ps(ix1,jx3);
1974             dy13             = _mm_sub_ps(iy1,jy3);
1975             dz13             = _mm_sub_ps(iz1,jz3);
1976             dx21             = _mm_sub_ps(ix2,jx1);
1977             dy21             = _mm_sub_ps(iy2,jy1);
1978             dz21             = _mm_sub_ps(iz2,jz1);
1979             dx22             = _mm_sub_ps(ix2,jx2);
1980             dy22             = _mm_sub_ps(iy2,jy2);
1981             dz22             = _mm_sub_ps(iz2,jz2);
1982             dx23             = _mm_sub_ps(ix2,jx3);
1983             dy23             = _mm_sub_ps(iy2,jy3);
1984             dz23             = _mm_sub_ps(iz2,jz3);
1985             dx31             = _mm_sub_ps(ix3,jx1);
1986             dy31             = _mm_sub_ps(iy3,jy1);
1987             dz31             = _mm_sub_ps(iz3,jz1);
1988             dx32             = _mm_sub_ps(ix3,jx2);
1989             dy32             = _mm_sub_ps(iy3,jy2);
1990             dz32             = _mm_sub_ps(iz3,jz2);
1991             dx33             = _mm_sub_ps(ix3,jx3);
1992             dy33             = _mm_sub_ps(iy3,jy3);
1993             dz33             = _mm_sub_ps(iz3,jz3);
1994
1995             /* Calculate squared distance and things based on it */
1996             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1997             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1998             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1999             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
2000             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
2001             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
2002             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
2003             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
2004             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
2005             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
2006
2007             rinv11           = gmx_mm_invsqrt_ps(rsq11);
2008             rinv12           = gmx_mm_invsqrt_ps(rsq12);
2009             rinv13           = gmx_mm_invsqrt_ps(rsq13);
2010             rinv21           = gmx_mm_invsqrt_ps(rsq21);
2011             rinv22           = gmx_mm_invsqrt_ps(rsq22);
2012             rinv23           = gmx_mm_invsqrt_ps(rsq23);
2013             rinv31           = gmx_mm_invsqrt_ps(rsq31);
2014             rinv32           = gmx_mm_invsqrt_ps(rsq32);
2015             rinv33           = gmx_mm_invsqrt_ps(rsq33);
2016
2017             rinvsq00         = gmx_mm_inv_ps(rsq00);
2018             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
2019             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
2020             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
2021             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
2022             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
2023             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
2024             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
2025             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
2026             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
2027
2028             fjx0             = _mm_setzero_ps();
2029             fjy0             = _mm_setzero_ps();
2030             fjz0             = _mm_setzero_ps();
2031             fjx1             = _mm_setzero_ps();
2032             fjy1             = _mm_setzero_ps();
2033             fjz1             = _mm_setzero_ps();
2034             fjx2             = _mm_setzero_ps();
2035             fjy2             = _mm_setzero_ps();
2036             fjz2             = _mm_setzero_ps();
2037             fjx3             = _mm_setzero_ps();
2038             fjy3             = _mm_setzero_ps();
2039             fjz3             = _mm_setzero_ps();
2040
2041             /**************************
2042              * CALCULATE INTERACTIONS *
2043              **************************/
2044
2045             /* LENNARD-JONES DISPERSION/REPULSION */
2046
2047             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
2048             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
2049
2050             fscal            = fvdw;
2051
2052             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2053
2054             /* Calculate temporary vectorial force */
2055             tx               = _mm_mul_ps(fscal,dx00);
2056             ty               = _mm_mul_ps(fscal,dy00);
2057             tz               = _mm_mul_ps(fscal,dz00);
2058
2059             /* Update vectorial force */
2060             fix0             = _mm_add_ps(fix0,tx);
2061             fiy0             = _mm_add_ps(fiy0,ty);
2062             fiz0             = _mm_add_ps(fiz0,tz);
2063
2064             fjx0             = _mm_add_ps(fjx0,tx);
2065             fjy0             = _mm_add_ps(fjy0,ty);
2066             fjz0             = _mm_add_ps(fjz0,tz);
2067             
2068             /**************************
2069              * CALCULATE INTERACTIONS *
2070              **************************/
2071
2072             r11              = _mm_mul_ps(rsq11,rinv11);
2073             r11              = _mm_andnot_ps(dummy_mask,r11);
2074
2075             /* EWALD ELECTROSTATICS */
2076
2077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2078             ewrt             = _mm_mul_ps(r11,ewtabscale);
2079             ewitab           = _mm_cvttps_epi32(ewrt);
2080             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2081             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2082                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2083                                          &ewtabF,&ewtabFn);
2084             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2085             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2086
2087             fscal            = felec;
2088
2089             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2090
2091             /* Calculate temporary vectorial force */
2092             tx               = _mm_mul_ps(fscal,dx11);
2093             ty               = _mm_mul_ps(fscal,dy11);
2094             tz               = _mm_mul_ps(fscal,dz11);
2095
2096             /* Update vectorial force */
2097             fix1             = _mm_add_ps(fix1,tx);
2098             fiy1             = _mm_add_ps(fiy1,ty);
2099             fiz1             = _mm_add_ps(fiz1,tz);
2100
2101             fjx1             = _mm_add_ps(fjx1,tx);
2102             fjy1             = _mm_add_ps(fjy1,ty);
2103             fjz1             = _mm_add_ps(fjz1,tz);
2104             
2105             /**************************
2106              * CALCULATE INTERACTIONS *
2107              **************************/
2108
2109             r12              = _mm_mul_ps(rsq12,rinv12);
2110             r12              = _mm_andnot_ps(dummy_mask,r12);
2111
2112             /* EWALD ELECTROSTATICS */
2113
2114             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2115             ewrt             = _mm_mul_ps(r12,ewtabscale);
2116             ewitab           = _mm_cvttps_epi32(ewrt);
2117             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2118             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2119                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2120                                          &ewtabF,&ewtabFn);
2121             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2122             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2123
2124             fscal            = felec;
2125
2126             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2127
2128             /* Calculate temporary vectorial force */
2129             tx               = _mm_mul_ps(fscal,dx12);
2130             ty               = _mm_mul_ps(fscal,dy12);
2131             tz               = _mm_mul_ps(fscal,dz12);
2132
2133             /* Update vectorial force */
2134             fix1             = _mm_add_ps(fix1,tx);
2135             fiy1             = _mm_add_ps(fiy1,ty);
2136             fiz1             = _mm_add_ps(fiz1,tz);
2137
2138             fjx2             = _mm_add_ps(fjx2,tx);
2139             fjy2             = _mm_add_ps(fjy2,ty);
2140             fjz2             = _mm_add_ps(fjz2,tz);
2141             
2142             /**************************
2143              * CALCULATE INTERACTIONS *
2144              **************************/
2145
2146             r13              = _mm_mul_ps(rsq13,rinv13);
2147             r13              = _mm_andnot_ps(dummy_mask,r13);
2148
2149             /* EWALD ELECTROSTATICS */
2150
2151             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2152             ewrt             = _mm_mul_ps(r13,ewtabscale);
2153             ewitab           = _mm_cvttps_epi32(ewrt);
2154             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2155             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2156                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2157                                          &ewtabF,&ewtabFn);
2158             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2159             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
2160
2161             fscal            = felec;
2162
2163             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2164
2165             /* Calculate temporary vectorial force */
2166             tx               = _mm_mul_ps(fscal,dx13);
2167             ty               = _mm_mul_ps(fscal,dy13);
2168             tz               = _mm_mul_ps(fscal,dz13);
2169
2170             /* Update vectorial force */
2171             fix1             = _mm_add_ps(fix1,tx);
2172             fiy1             = _mm_add_ps(fiy1,ty);
2173             fiz1             = _mm_add_ps(fiz1,tz);
2174
2175             fjx3             = _mm_add_ps(fjx3,tx);
2176             fjy3             = _mm_add_ps(fjy3,ty);
2177             fjz3             = _mm_add_ps(fjz3,tz);
2178             
2179             /**************************
2180              * CALCULATE INTERACTIONS *
2181              **************************/
2182
2183             r21              = _mm_mul_ps(rsq21,rinv21);
2184             r21              = _mm_andnot_ps(dummy_mask,r21);
2185
2186             /* EWALD ELECTROSTATICS */
2187
2188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2189             ewrt             = _mm_mul_ps(r21,ewtabscale);
2190             ewitab           = _mm_cvttps_epi32(ewrt);
2191             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2192             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2193                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2194                                          &ewtabF,&ewtabFn);
2195             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2196             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2197
2198             fscal            = felec;
2199
2200             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2201
2202             /* Calculate temporary vectorial force */
2203             tx               = _mm_mul_ps(fscal,dx21);
2204             ty               = _mm_mul_ps(fscal,dy21);
2205             tz               = _mm_mul_ps(fscal,dz21);
2206
2207             /* Update vectorial force */
2208             fix2             = _mm_add_ps(fix2,tx);
2209             fiy2             = _mm_add_ps(fiy2,ty);
2210             fiz2             = _mm_add_ps(fiz2,tz);
2211
2212             fjx1             = _mm_add_ps(fjx1,tx);
2213             fjy1             = _mm_add_ps(fjy1,ty);
2214             fjz1             = _mm_add_ps(fjz1,tz);
2215             
2216             /**************************
2217              * CALCULATE INTERACTIONS *
2218              **************************/
2219
2220             r22              = _mm_mul_ps(rsq22,rinv22);
2221             r22              = _mm_andnot_ps(dummy_mask,r22);
2222
2223             /* EWALD ELECTROSTATICS */
2224
2225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2226             ewrt             = _mm_mul_ps(r22,ewtabscale);
2227             ewitab           = _mm_cvttps_epi32(ewrt);
2228             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2229             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2230                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2231                                          &ewtabF,&ewtabFn);
2232             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2233             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2234
2235             fscal            = felec;
2236
2237             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2238
2239             /* Calculate temporary vectorial force */
2240             tx               = _mm_mul_ps(fscal,dx22);
2241             ty               = _mm_mul_ps(fscal,dy22);
2242             tz               = _mm_mul_ps(fscal,dz22);
2243
2244             /* Update vectorial force */
2245             fix2             = _mm_add_ps(fix2,tx);
2246             fiy2             = _mm_add_ps(fiy2,ty);
2247             fiz2             = _mm_add_ps(fiz2,tz);
2248
2249             fjx2             = _mm_add_ps(fjx2,tx);
2250             fjy2             = _mm_add_ps(fjy2,ty);
2251             fjz2             = _mm_add_ps(fjz2,tz);
2252             
2253             /**************************
2254              * CALCULATE INTERACTIONS *
2255              **************************/
2256
2257             r23              = _mm_mul_ps(rsq23,rinv23);
2258             r23              = _mm_andnot_ps(dummy_mask,r23);
2259
2260             /* EWALD ELECTROSTATICS */
2261
2262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2263             ewrt             = _mm_mul_ps(r23,ewtabscale);
2264             ewitab           = _mm_cvttps_epi32(ewrt);
2265             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2266             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2267                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2268                                          &ewtabF,&ewtabFn);
2269             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2270             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2271
2272             fscal            = felec;
2273
2274             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2275
2276             /* Calculate temporary vectorial force */
2277             tx               = _mm_mul_ps(fscal,dx23);
2278             ty               = _mm_mul_ps(fscal,dy23);
2279             tz               = _mm_mul_ps(fscal,dz23);
2280
2281             /* Update vectorial force */
2282             fix2             = _mm_add_ps(fix2,tx);
2283             fiy2             = _mm_add_ps(fiy2,ty);
2284             fiz2             = _mm_add_ps(fiz2,tz);
2285
2286             fjx3             = _mm_add_ps(fjx3,tx);
2287             fjy3             = _mm_add_ps(fjy3,ty);
2288             fjz3             = _mm_add_ps(fjz3,tz);
2289             
2290             /**************************
2291              * CALCULATE INTERACTIONS *
2292              **************************/
2293
2294             r31              = _mm_mul_ps(rsq31,rinv31);
2295             r31              = _mm_andnot_ps(dummy_mask,r31);
2296
2297             /* EWALD ELECTROSTATICS */
2298
2299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2300             ewrt             = _mm_mul_ps(r31,ewtabscale);
2301             ewitab           = _mm_cvttps_epi32(ewrt);
2302             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2303             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2304                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2305                                          &ewtabF,&ewtabFn);
2306             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2307             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2308
2309             fscal            = felec;
2310
2311             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2312
2313             /* Calculate temporary vectorial force */
2314             tx               = _mm_mul_ps(fscal,dx31);
2315             ty               = _mm_mul_ps(fscal,dy31);
2316             tz               = _mm_mul_ps(fscal,dz31);
2317
2318             /* Update vectorial force */
2319             fix3             = _mm_add_ps(fix3,tx);
2320             fiy3             = _mm_add_ps(fiy3,ty);
2321             fiz3             = _mm_add_ps(fiz3,tz);
2322
2323             fjx1             = _mm_add_ps(fjx1,tx);
2324             fjy1             = _mm_add_ps(fjy1,ty);
2325             fjz1             = _mm_add_ps(fjz1,tz);
2326             
2327             /**************************
2328              * CALCULATE INTERACTIONS *
2329              **************************/
2330
2331             r32              = _mm_mul_ps(rsq32,rinv32);
2332             r32              = _mm_andnot_ps(dummy_mask,r32);
2333
2334             /* EWALD ELECTROSTATICS */
2335
2336             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2337             ewrt             = _mm_mul_ps(r32,ewtabscale);
2338             ewitab           = _mm_cvttps_epi32(ewrt);
2339             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2340             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2341                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2342                                          &ewtabF,&ewtabFn);
2343             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2344             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2345
2346             fscal            = felec;
2347
2348             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2349
2350             /* Calculate temporary vectorial force */
2351             tx               = _mm_mul_ps(fscal,dx32);
2352             ty               = _mm_mul_ps(fscal,dy32);
2353             tz               = _mm_mul_ps(fscal,dz32);
2354
2355             /* Update vectorial force */
2356             fix3             = _mm_add_ps(fix3,tx);
2357             fiy3             = _mm_add_ps(fiy3,ty);
2358             fiz3             = _mm_add_ps(fiz3,tz);
2359
2360             fjx2             = _mm_add_ps(fjx2,tx);
2361             fjy2             = _mm_add_ps(fjy2,ty);
2362             fjz2             = _mm_add_ps(fjz2,tz);
2363             
2364             /**************************
2365              * CALCULATE INTERACTIONS *
2366              **************************/
2367
2368             r33              = _mm_mul_ps(rsq33,rinv33);
2369             r33              = _mm_andnot_ps(dummy_mask,r33);
2370
2371             /* EWALD ELECTROSTATICS */
2372
2373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2374             ewrt             = _mm_mul_ps(r33,ewtabscale);
2375             ewitab           = _mm_cvttps_epi32(ewrt);
2376             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2377             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2378                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2379                                          &ewtabF,&ewtabFn);
2380             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2381             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2382
2383             fscal            = felec;
2384
2385             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2386
2387             /* Calculate temporary vectorial force */
2388             tx               = _mm_mul_ps(fscal,dx33);
2389             ty               = _mm_mul_ps(fscal,dy33);
2390             tz               = _mm_mul_ps(fscal,dz33);
2391
2392             /* Update vectorial force */
2393             fix3             = _mm_add_ps(fix3,tx);
2394             fiy3             = _mm_add_ps(fiy3,ty);
2395             fiz3             = _mm_add_ps(fiz3,tz);
2396
2397             fjx3             = _mm_add_ps(fjx3,tx);
2398             fjy3             = _mm_add_ps(fjy3,ty);
2399             fjz3             = _mm_add_ps(fjz3,tz);
2400             
2401             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2402             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2403             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2404             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2405
2406             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2407                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2408                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2409
2410             /* Inner loop uses 363 flops */
2411         }
2412
2413         /* End of innermost loop */
2414
2415         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2416                                               f+i_coord_offset,fshift+i_shift_offset);
2417
2418         /* Increment number of inner iterations */
2419         inneriter                  += j_index_end - j_index_start;
2420
2421         /* Outer loop uses 24 flops */
2422     }
2423
2424     /* Increment number of outer iterations */
2425     outeriter        += nri;
2426
2427     /* Update outer/inner flops */
2428
2429     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*363);
2430 }