Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          ewitab;
105     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }  
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172         
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv10           = sse2_invsqrt_f(rsq10);
230             rinv20           = sse2_invsqrt_f(rsq20);
231             rinv30           = sse2_invsqrt_f(rsq30);
232
233             rinvsq00         = sse2_inv_f(rsq00);
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,
257                                          vdwparam+vdwioffset0+vdwjidx0C,
258                                          vdwparam+vdwioffset0+vdwjidx0D,
259                                          &c6_00,&c12_00);
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
267             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
271
272             fscal            = fvdw;
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_ps(fscal,dx00);
276             ty               = _mm_mul_ps(fscal,dy00);
277             tz               = _mm_mul_ps(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_ps(fix0,tx);
281             fiy0             = _mm_add_ps(fiy0,ty);
282             fiz0             = _mm_add_ps(fiz0,tz);
283
284             fjx0             = _mm_add_ps(fjx0,tx);
285             fjy0             = _mm_add_ps(fjy0,ty);
286             fjz0             = _mm_add_ps(fjz0,tz);
287             
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r10              = _mm_mul_ps(rsq10,rinv10);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_ps(iq1,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
300             ewrt             = _mm_mul_ps(r10,ewtabscale);
301             ewitab           = _mm_cvttps_epi32(ewrt);
302             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
303             ewitab           = _mm_slli_epi32(ewitab,2);
304             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
305             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
306             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
307             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
308             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
309             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
310             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
311             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
312             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_ps(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_ps(fscal,dx10);
321             ty               = _mm_mul_ps(fscal,dy10);
322             tz               = _mm_mul_ps(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm_add_ps(fix1,tx);
326             fiy1             = _mm_add_ps(fiy1,ty);
327             fiz1             = _mm_add_ps(fiz1,tz);
328
329             fjx0             = _mm_add_ps(fjx0,tx);
330             fjy0             = _mm_add_ps(fjy0,ty);
331             fjz0             = _mm_add_ps(fjz0,tz);
332             
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r20              = _mm_mul_ps(rsq20,rinv20);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm_mul_ps(iq2,jq0);
341
342             /* EWALD ELECTROSTATICS */
343
344             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
345             ewrt             = _mm_mul_ps(r20,ewtabscale);
346             ewitab           = _mm_cvttps_epi32(ewrt);
347             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
348             ewitab           = _mm_slli_epi32(ewitab,2);
349             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
350             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
351             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
352             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
353             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
354             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
355             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
356             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
357             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_ps(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx20);
366             ty               = _mm_mul_ps(fscal,dy20);
367             tz               = _mm_mul_ps(fscal,dz20);
368
369             /* Update vectorial force */
370             fix2             = _mm_add_ps(fix2,tx);
371             fiy2             = _mm_add_ps(fiy2,ty);
372             fiz2             = _mm_add_ps(fiz2,tz);
373
374             fjx0             = _mm_add_ps(fjx0,tx);
375             fjy0             = _mm_add_ps(fjy0,ty);
376             fjz0             = _mm_add_ps(fjz0,tz);
377             
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r30              = _mm_mul_ps(rsq30,rinv30);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq30             = _mm_mul_ps(iq3,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_ps(r30,ewtabscale);
391             ewitab           = _mm_cvttps_epi32(ewrt);
392             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
393             ewitab           = _mm_slli_epi32(ewitab,2);
394             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
395             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
396             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
397             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
398             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
399             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
400             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
401             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
402             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_ps(fscal,dx30);
411             ty               = _mm_mul_ps(fscal,dy30);
412             tz               = _mm_mul_ps(fscal,dz30);
413
414             /* Update vectorial force */
415             fix3             = _mm_add_ps(fix3,tx);
416             fiy3             = _mm_add_ps(fiy3,ty);
417             fiz3             = _mm_add_ps(fiz3,tz);
418
419             fjx0             = _mm_add_ps(fjx0,tx);
420             fjy0             = _mm_add_ps(fjy0,ty);
421             fjz0             = _mm_add_ps(fjz0,tz);
422             
423             fjptrA             = f+j_coord_offsetA;
424             fjptrB             = f+j_coord_offsetB;
425             fjptrC             = f+j_coord_offsetC;
426             fjptrD             = f+j_coord_offsetD;
427
428             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 155 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             /* Get j neighbor index, and coordinate index */
437             jnrlistA         = jjnr[jidx];
438             jnrlistB         = jjnr[jidx+1];
439             jnrlistC         = jjnr[jidx+2];
440             jnrlistD         = jjnr[jidx+3];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
446             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
447             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
448             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
449             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452             j_coord_offsetC  = DIM*jnrC;
453             j_coord_offsetD  = DIM*jnrD;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                               x+j_coord_offsetC,x+j_coord_offsetD,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_ps(ix0,jx0);
462             dy00             = _mm_sub_ps(iy0,jy0);
463             dz00             = _mm_sub_ps(iz0,jz0);
464             dx10             = _mm_sub_ps(ix1,jx0);
465             dy10             = _mm_sub_ps(iy1,jy0);
466             dz10             = _mm_sub_ps(iz1,jz0);
467             dx20             = _mm_sub_ps(ix2,jx0);
468             dy20             = _mm_sub_ps(iy2,jy0);
469             dz20             = _mm_sub_ps(iz2,jz0);
470             dx30             = _mm_sub_ps(ix3,jx0);
471             dy30             = _mm_sub_ps(iy3,jy0);
472             dz30             = _mm_sub_ps(iz3,jz0);
473
474             /* Calculate squared distance and things based on it */
475             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
476             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
477             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
478             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
479
480             rinv10           = sse2_invsqrt_f(rsq10);
481             rinv20           = sse2_invsqrt_f(rsq20);
482             rinv30           = sse2_invsqrt_f(rsq30);
483
484             rinvsq00         = sse2_inv_f(rsq00);
485             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
486             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
487             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
488
489             /* Load parameters for j particles */
490             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
491                                                               charge+jnrC+0,charge+jnrD+0);
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494             vdwjidx0C        = 2*vdwtype[jnrC+0];
495             vdwjidx0D        = 2*vdwtype[jnrD+0];
496
497             fjx0             = _mm_setzero_ps();
498             fjy0             = _mm_setzero_ps();
499             fjz0             = _mm_setzero_ps();
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             /* Compute parameters for interactions between i and j atoms */
506             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
507                                          vdwparam+vdwioffset0+vdwjidx0B,
508                                          vdwparam+vdwioffset0+vdwjidx0C,
509                                          vdwparam+vdwioffset0+vdwjidx0D,
510                                          &c6_00,&c12_00);
511
512             /* LENNARD-JONES DISPERSION/REPULSION */
513
514             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
515             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
516             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
517             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
518             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
522             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
523
524             fscal            = fvdw;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_ps(fscal,dx00);
530             ty               = _mm_mul_ps(fscal,dy00);
531             tz               = _mm_mul_ps(fscal,dz00);
532
533             /* Update vectorial force */
534             fix0             = _mm_add_ps(fix0,tx);
535             fiy0             = _mm_add_ps(fiy0,ty);
536             fiz0             = _mm_add_ps(fiz0,tz);
537
538             fjx0             = _mm_add_ps(fjx0,tx);
539             fjy0             = _mm_add_ps(fjy0,ty);
540             fjz0             = _mm_add_ps(fjz0,tz);
541             
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             r10              = _mm_mul_ps(rsq10,rinv10);
547             r10              = _mm_andnot_ps(dummy_mask,r10);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq10             = _mm_mul_ps(iq1,jq0);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm_mul_ps(r10,ewtabscale);
556             ewitab           = _mm_cvttps_epi32(ewrt);
557             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
561             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
562             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
563             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
564             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
565             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
566             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
567             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_andnot_ps(dummy_mask,fscal);
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_ps(fscal,dx10);
579             ty               = _mm_mul_ps(fscal,dy10);
580             tz               = _mm_mul_ps(fscal,dz10);
581
582             /* Update vectorial force */
583             fix1             = _mm_add_ps(fix1,tx);
584             fiy1             = _mm_add_ps(fiy1,ty);
585             fiz1             = _mm_add_ps(fiz1,tz);
586
587             fjx0             = _mm_add_ps(fjx0,tx);
588             fjy0             = _mm_add_ps(fjy0,ty);
589             fjz0             = _mm_add_ps(fjz0,tz);
590             
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             r20              = _mm_mul_ps(rsq20,rinv20);
596             r20              = _mm_andnot_ps(dummy_mask,r20);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_ps(iq2,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_ps(r20,ewtabscale);
605             ewitab           = _mm_cvttps_epi32(ewrt);
606             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
610             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
611             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
612             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
613             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
614             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
615             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
616             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm_andnot_ps(dummy_mask,velec);
620             velecsum         = _mm_add_ps(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm_andnot_ps(dummy_mask,fscal);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_ps(fscal,dx20);
628             ty               = _mm_mul_ps(fscal,dy20);
629             tz               = _mm_mul_ps(fscal,dz20);
630
631             /* Update vectorial force */
632             fix2             = _mm_add_ps(fix2,tx);
633             fiy2             = _mm_add_ps(fiy2,ty);
634             fiz2             = _mm_add_ps(fiz2,tz);
635
636             fjx0             = _mm_add_ps(fjx0,tx);
637             fjy0             = _mm_add_ps(fjy0,ty);
638             fjz0             = _mm_add_ps(fjz0,tz);
639             
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             r30              = _mm_mul_ps(rsq30,rinv30);
645             r30              = _mm_andnot_ps(dummy_mask,r30);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq30             = _mm_mul_ps(iq3,jq0);
649
650             /* EWALD ELECTROSTATICS */
651
652             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
653             ewrt             = _mm_mul_ps(r30,ewtabscale);
654             ewitab           = _mm_cvttps_epi32(ewrt);
655             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
656             ewitab           = _mm_slli_epi32(ewitab,2);
657             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
658             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
659             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
660             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
661             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
662             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
663             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
664             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
665             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             velec            = _mm_andnot_ps(dummy_mask,velec);
669             velecsum         = _mm_add_ps(velecsum,velec);
670
671             fscal            = felec;
672
673             fscal            = _mm_andnot_ps(dummy_mask,fscal);
674
675             /* Calculate temporary vectorial force */
676             tx               = _mm_mul_ps(fscal,dx30);
677             ty               = _mm_mul_ps(fscal,dy30);
678             tz               = _mm_mul_ps(fscal,dz30);
679
680             /* Update vectorial force */
681             fix3             = _mm_add_ps(fix3,tx);
682             fiy3             = _mm_add_ps(fiy3,ty);
683             fiz3             = _mm_add_ps(fiz3,tz);
684
685             fjx0             = _mm_add_ps(fjx0,tx);
686             fjy0             = _mm_add_ps(fjy0,ty);
687             fjz0             = _mm_add_ps(fjz0,tz);
688             
689             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
690             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
691             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
692             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
693
694             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
695
696             /* Inner loop uses 158 flops */
697         }
698
699         /* End of innermost loop */
700
701         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
702                                               f+i_coord_offset,fshift+i_shift_offset);
703
704         ggid                        = gid[iidx];
705         /* Update potential energies */
706         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
707         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 26 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
721 }
722 /*
723  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
724  * Electrostatics interaction: Ewald
725  * VdW interaction:            LennardJones
726  * Geometry:                   Water4-Particle
727  * Calculate force/pot:        Force
728  */
729 void
730 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
731                     (t_nblist                    * gmx_restrict       nlist,
732                      rvec                        * gmx_restrict          xx,
733                      rvec                        * gmx_restrict          ff,
734                      struct t_forcerec           * gmx_restrict          fr,
735                      t_mdatoms                   * gmx_restrict     mdatoms,
736                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
737                      t_nrnb                      * gmx_restrict        nrnb)
738 {
739     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
740      * just 0 for non-waters.
741      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
742      * jnr indices corresponding to data put in the four positions in the SIMD register.
743      */
744     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
745     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
746     int              jnrA,jnrB,jnrC,jnrD;
747     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
748     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
749     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
750     real             rcutoff_scalar;
751     real             *shiftvec,*fshift,*x,*f;
752     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
753     real             scratch[4*DIM];
754     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
755     int              vdwioffset0;
756     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     int              vdwioffset1;
758     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     int              vdwioffset2;
760     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     int              vdwioffset3;
762     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
764     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
776     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
777     __m128i          ewitab;
778     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
779     real             *ewtab;
780     __m128           dummy_mask,cutoff_mask;
781     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
782     __m128           one     = _mm_set1_ps(1.0);
783     __m128           two     = _mm_set1_ps(2.0);
784     x                = xx[0];
785     f                = ff[0];
786
787     nri              = nlist->nri;
788     iinr             = nlist->iinr;
789     jindex           = nlist->jindex;
790     jjnr             = nlist->jjnr;
791     shiftidx         = nlist->shift;
792     gid              = nlist->gid;
793     shiftvec         = fr->shift_vec[0];
794     fshift           = fr->fshift[0];
795     facel            = _mm_set1_ps(fr->ic->epsfac);
796     charge           = mdatoms->chargeA;
797     nvdwtype         = fr->ntype;
798     vdwparam         = fr->nbfp;
799     vdwtype          = mdatoms->typeA;
800
801     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
802     ewtab            = fr->ic->tabq_coul_F;
803     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
804     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
805
806     /* Setup water-specific parameters */
807     inr              = nlist->iinr[0];
808     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
809     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
810     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
811     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
812
813     /* Avoid stupid compiler warnings */
814     jnrA = jnrB = jnrC = jnrD = 0;
815     j_coord_offsetA = 0;
816     j_coord_offsetB = 0;
817     j_coord_offsetC = 0;
818     j_coord_offsetD = 0;
819
820     outeriter        = 0;
821     inneriter        = 0;
822
823     for(iidx=0;iidx<4*DIM;iidx++)
824     {
825         scratch[iidx] = 0.0;
826     }  
827
828     /* Start outer loop over neighborlists */
829     for(iidx=0; iidx<nri; iidx++)
830     {
831         /* Load shift vector for this list */
832         i_shift_offset   = DIM*shiftidx[iidx];
833
834         /* Load limits for loop over neighbors */
835         j_index_start    = jindex[iidx];
836         j_index_end      = jindex[iidx+1];
837
838         /* Get outer coordinate index */
839         inr              = iinr[iidx];
840         i_coord_offset   = DIM*inr;
841
842         /* Load i particle coords and add shift vector */
843         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
844                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
845         
846         fix0             = _mm_setzero_ps();
847         fiy0             = _mm_setzero_ps();
848         fiz0             = _mm_setzero_ps();
849         fix1             = _mm_setzero_ps();
850         fiy1             = _mm_setzero_ps();
851         fiz1             = _mm_setzero_ps();
852         fix2             = _mm_setzero_ps();
853         fiy2             = _mm_setzero_ps();
854         fiz2             = _mm_setzero_ps();
855         fix3             = _mm_setzero_ps();
856         fiy3             = _mm_setzero_ps();
857         fiz3             = _mm_setzero_ps();
858
859         /* Start inner kernel loop */
860         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
861         {
862
863             /* Get j neighbor index, and coordinate index */
864             jnrA             = jjnr[jidx];
865             jnrB             = jjnr[jidx+1];
866             jnrC             = jjnr[jidx+2];
867             jnrD             = jjnr[jidx+3];
868             j_coord_offsetA  = DIM*jnrA;
869             j_coord_offsetB  = DIM*jnrB;
870             j_coord_offsetC  = DIM*jnrC;
871             j_coord_offsetD  = DIM*jnrD;
872
873             /* load j atom coordinates */
874             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
875                                               x+j_coord_offsetC,x+j_coord_offsetD,
876                                               &jx0,&jy0,&jz0);
877
878             /* Calculate displacement vector */
879             dx00             = _mm_sub_ps(ix0,jx0);
880             dy00             = _mm_sub_ps(iy0,jy0);
881             dz00             = _mm_sub_ps(iz0,jz0);
882             dx10             = _mm_sub_ps(ix1,jx0);
883             dy10             = _mm_sub_ps(iy1,jy0);
884             dz10             = _mm_sub_ps(iz1,jz0);
885             dx20             = _mm_sub_ps(ix2,jx0);
886             dy20             = _mm_sub_ps(iy2,jy0);
887             dz20             = _mm_sub_ps(iz2,jz0);
888             dx30             = _mm_sub_ps(ix3,jx0);
889             dy30             = _mm_sub_ps(iy3,jy0);
890             dz30             = _mm_sub_ps(iz3,jz0);
891
892             /* Calculate squared distance and things based on it */
893             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
894             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
895             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
896             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
897
898             rinv10           = sse2_invsqrt_f(rsq10);
899             rinv20           = sse2_invsqrt_f(rsq20);
900             rinv30           = sse2_invsqrt_f(rsq30);
901
902             rinvsq00         = sse2_inv_f(rsq00);
903             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
904             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
905             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
906
907             /* Load parameters for j particles */
908             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
909                                                               charge+jnrC+0,charge+jnrD+0);
910             vdwjidx0A        = 2*vdwtype[jnrA+0];
911             vdwjidx0B        = 2*vdwtype[jnrB+0];
912             vdwjidx0C        = 2*vdwtype[jnrC+0];
913             vdwjidx0D        = 2*vdwtype[jnrD+0];
914
915             fjx0             = _mm_setzero_ps();
916             fjy0             = _mm_setzero_ps();
917             fjz0             = _mm_setzero_ps();
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             /* Compute parameters for interactions between i and j atoms */
924             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
925                                          vdwparam+vdwioffset0+vdwjidx0B,
926                                          vdwparam+vdwioffset0+vdwjidx0C,
927                                          vdwparam+vdwioffset0+vdwjidx0D,
928                                          &c6_00,&c12_00);
929
930             /* LENNARD-JONES DISPERSION/REPULSION */
931
932             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
933             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
934
935             fscal            = fvdw;
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm_mul_ps(fscal,dx00);
939             ty               = _mm_mul_ps(fscal,dy00);
940             tz               = _mm_mul_ps(fscal,dz00);
941
942             /* Update vectorial force */
943             fix0             = _mm_add_ps(fix0,tx);
944             fiy0             = _mm_add_ps(fiy0,ty);
945             fiz0             = _mm_add_ps(fiz0,tz);
946
947             fjx0             = _mm_add_ps(fjx0,tx);
948             fjy0             = _mm_add_ps(fjy0,ty);
949             fjz0             = _mm_add_ps(fjz0,tz);
950             
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             r10              = _mm_mul_ps(rsq10,rinv10);
956
957             /* Compute parameters for interactions between i and j atoms */
958             qq10             = _mm_mul_ps(iq1,jq0);
959
960             /* EWALD ELECTROSTATICS */
961
962             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
963             ewrt             = _mm_mul_ps(r10,ewtabscale);
964             ewitab           = _mm_cvttps_epi32(ewrt);
965             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
966             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
967                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
968                                          &ewtabF,&ewtabFn);
969             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
970             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
971
972             fscal            = felec;
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_ps(fscal,dx10);
976             ty               = _mm_mul_ps(fscal,dy10);
977             tz               = _mm_mul_ps(fscal,dz10);
978
979             /* Update vectorial force */
980             fix1             = _mm_add_ps(fix1,tx);
981             fiy1             = _mm_add_ps(fiy1,ty);
982             fiz1             = _mm_add_ps(fiz1,tz);
983
984             fjx0             = _mm_add_ps(fjx0,tx);
985             fjy0             = _mm_add_ps(fjy0,ty);
986             fjz0             = _mm_add_ps(fjz0,tz);
987             
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             r20              = _mm_mul_ps(rsq20,rinv20);
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq20             = _mm_mul_ps(iq2,jq0);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm_mul_ps(r20,ewtabscale);
1001             ewitab           = _mm_cvttps_epi32(ewrt);
1002             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1003             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1004                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1005                                          &ewtabF,&ewtabFn);
1006             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1007             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1008
1009             fscal            = felec;
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = _mm_mul_ps(fscal,dx20);
1013             ty               = _mm_mul_ps(fscal,dy20);
1014             tz               = _mm_mul_ps(fscal,dz20);
1015
1016             /* Update vectorial force */
1017             fix2             = _mm_add_ps(fix2,tx);
1018             fiy2             = _mm_add_ps(fiy2,ty);
1019             fiz2             = _mm_add_ps(fiz2,tz);
1020
1021             fjx0             = _mm_add_ps(fjx0,tx);
1022             fjy0             = _mm_add_ps(fjy0,ty);
1023             fjz0             = _mm_add_ps(fjz0,tz);
1024             
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             r30              = _mm_mul_ps(rsq30,rinv30);
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq30             = _mm_mul_ps(iq3,jq0);
1033
1034             /* EWALD ELECTROSTATICS */
1035
1036             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1037             ewrt             = _mm_mul_ps(r30,ewtabscale);
1038             ewitab           = _mm_cvttps_epi32(ewrt);
1039             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1040             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1041                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1042                                          &ewtabF,&ewtabFn);
1043             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1044             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1045
1046             fscal            = felec;
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm_mul_ps(fscal,dx30);
1050             ty               = _mm_mul_ps(fscal,dy30);
1051             tz               = _mm_mul_ps(fscal,dz30);
1052
1053             /* Update vectorial force */
1054             fix3             = _mm_add_ps(fix3,tx);
1055             fiy3             = _mm_add_ps(fiy3,ty);
1056             fiz3             = _mm_add_ps(fiz3,tz);
1057
1058             fjx0             = _mm_add_ps(fjx0,tx);
1059             fjy0             = _mm_add_ps(fjy0,ty);
1060             fjz0             = _mm_add_ps(fjz0,tz);
1061             
1062             fjptrA             = f+j_coord_offsetA;
1063             fjptrB             = f+j_coord_offsetB;
1064             fjptrC             = f+j_coord_offsetC;
1065             fjptrD             = f+j_coord_offsetD;
1066
1067             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1068
1069             /* Inner loop uses 135 flops */
1070         }
1071
1072         if(jidx<j_index_end)
1073         {
1074
1075             /* Get j neighbor index, and coordinate index */
1076             jnrlistA         = jjnr[jidx];
1077             jnrlistB         = jjnr[jidx+1];
1078             jnrlistC         = jjnr[jidx+2];
1079             jnrlistD         = jjnr[jidx+3];
1080             /* Sign of each element will be negative for non-real atoms.
1081              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1082              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1083              */
1084             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1085             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1086             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1087             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1088             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1089             j_coord_offsetA  = DIM*jnrA;
1090             j_coord_offsetB  = DIM*jnrB;
1091             j_coord_offsetC  = DIM*jnrC;
1092             j_coord_offsetD  = DIM*jnrD;
1093
1094             /* load j atom coordinates */
1095             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1096                                               x+j_coord_offsetC,x+j_coord_offsetD,
1097                                               &jx0,&jy0,&jz0);
1098
1099             /* Calculate displacement vector */
1100             dx00             = _mm_sub_ps(ix0,jx0);
1101             dy00             = _mm_sub_ps(iy0,jy0);
1102             dz00             = _mm_sub_ps(iz0,jz0);
1103             dx10             = _mm_sub_ps(ix1,jx0);
1104             dy10             = _mm_sub_ps(iy1,jy0);
1105             dz10             = _mm_sub_ps(iz1,jz0);
1106             dx20             = _mm_sub_ps(ix2,jx0);
1107             dy20             = _mm_sub_ps(iy2,jy0);
1108             dz20             = _mm_sub_ps(iz2,jz0);
1109             dx30             = _mm_sub_ps(ix3,jx0);
1110             dy30             = _mm_sub_ps(iy3,jy0);
1111             dz30             = _mm_sub_ps(iz3,jz0);
1112
1113             /* Calculate squared distance and things based on it */
1114             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1115             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1116             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1117             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1118
1119             rinv10           = sse2_invsqrt_f(rsq10);
1120             rinv20           = sse2_invsqrt_f(rsq20);
1121             rinv30           = sse2_invsqrt_f(rsq30);
1122
1123             rinvsq00         = sse2_inv_f(rsq00);
1124             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1125             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1126             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1127
1128             /* Load parameters for j particles */
1129             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1130                                                               charge+jnrC+0,charge+jnrD+0);
1131             vdwjidx0A        = 2*vdwtype[jnrA+0];
1132             vdwjidx0B        = 2*vdwtype[jnrB+0];
1133             vdwjidx0C        = 2*vdwtype[jnrC+0];
1134             vdwjidx0D        = 2*vdwtype[jnrD+0];
1135
1136             fjx0             = _mm_setzero_ps();
1137             fjy0             = _mm_setzero_ps();
1138             fjz0             = _mm_setzero_ps();
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1146                                          vdwparam+vdwioffset0+vdwjidx0B,
1147                                          vdwparam+vdwioffset0+vdwjidx0C,
1148                                          vdwparam+vdwioffset0+vdwjidx0D,
1149                                          &c6_00,&c12_00);
1150
1151             /* LENNARD-JONES DISPERSION/REPULSION */
1152
1153             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1154             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1155
1156             fscal            = fvdw;
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160             /* Calculate temporary vectorial force */
1161             tx               = _mm_mul_ps(fscal,dx00);
1162             ty               = _mm_mul_ps(fscal,dy00);
1163             tz               = _mm_mul_ps(fscal,dz00);
1164
1165             /* Update vectorial force */
1166             fix0             = _mm_add_ps(fix0,tx);
1167             fiy0             = _mm_add_ps(fiy0,ty);
1168             fiz0             = _mm_add_ps(fiz0,tz);
1169
1170             fjx0             = _mm_add_ps(fjx0,tx);
1171             fjy0             = _mm_add_ps(fjy0,ty);
1172             fjz0             = _mm_add_ps(fjz0,tz);
1173             
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             r10              = _mm_mul_ps(rsq10,rinv10);
1179             r10              = _mm_andnot_ps(dummy_mask,r10);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq10             = _mm_mul_ps(iq1,jq0);
1183
1184             /* EWALD ELECTROSTATICS */
1185
1186             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1187             ewrt             = _mm_mul_ps(r10,ewtabscale);
1188             ewitab           = _mm_cvttps_epi32(ewrt);
1189             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1190             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1191                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1192                                          &ewtabF,&ewtabFn);
1193             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1194             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1199
1200             /* Calculate temporary vectorial force */
1201             tx               = _mm_mul_ps(fscal,dx10);
1202             ty               = _mm_mul_ps(fscal,dy10);
1203             tz               = _mm_mul_ps(fscal,dz10);
1204
1205             /* Update vectorial force */
1206             fix1             = _mm_add_ps(fix1,tx);
1207             fiy1             = _mm_add_ps(fiy1,ty);
1208             fiz1             = _mm_add_ps(fiz1,tz);
1209
1210             fjx0             = _mm_add_ps(fjx0,tx);
1211             fjy0             = _mm_add_ps(fjy0,ty);
1212             fjz0             = _mm_add_ps(fjz0,tz);
1213             
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             r20              = _mm_mul_ps(rsq20,rinv20);
1219             r20              = _mm_andnot_ps(dummy_mask,r20);
1220
1221             /* Compute parameters for interactions between i and j atoms */
1222             qq20             = _mm_mul_ps(iq2,jq0);
1223
1224             /* EWALD ELECTROSTATICS */
1225
1226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1227             ewrt             = _mm_mul_ps(r20,ewtabscale);
1228             ewitab           = _mm_cvttps_epi32(ewrt);
1229             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1230             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1231                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1232                                          &ewtabF,&ewtabFn);
1233             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1234             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1235
1236             fscal            = felec;
1237
1238             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1239
1240             /* Calculate temporary vectorial force */
1241             tx               = _mm_mul_ps(fscal,dx20);
1242             ty               = _mm_mul_ps(fscal,dy20);
1243             tz               = _mm_mul_ps(fscal,dz20);
1244
1245             /* Update vectorial force */
1246             fix2             = _mm_add_ps(fix2,tx);
1247             fiy2             = _mm_add_ps(fiy2,ty);
1248             fiz2             = _mm_add_ps(fiz2,tz);
1249
1250             fjx0             = _mm_add_ps(fjx0,tx);
1251             fjy0             = _mm_add_ps(fjy0,ty);
1252             fjz0             = _mm_add_ps(fjz0,tz);
1253             
1254             /**************************
1255              * CALCULATE INTERACTIONS *
1256              **************************/
1257
1258             r30              = _mm_mul_ps(rsq30,rinv30);
1259             r30              = _mm_andnot_ps(dummy_mask,r30);
1260
1261             /* Compute parameters for interactions between i and j atoms */
1262             qq30             = _mm_mul_ps(iq3,jq0);
1263
1264             /* EWALD ELECTROSTATICS */
1265
1266             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1267             ewrt             = _mm_mul_ps(r30,ewtabscale);
1268             ewitab           = _mm_cvttps_epi32(ewrt);
1269             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1270             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1271                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1272                                          &ewtabF,&ewtabFn);
1273             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1274             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1279
1280             /* Calculate temporary vectorial force */
1281             tx               = _mm_mul_ps(fscal,dx30);
1282             ty               = _mm_mul_ps(fscal,dy30);
1283             tz               = _mm_mul_ps(fscal,dz30);
1284
1285             /* Update vectorial force */
1286             fix3             = _mm_add_ps(fix3,tx);
1287             fiy3             = _mm_add_ps(fiy3,ty);
1288             fiz3             = _mm_add_ps(fiz3,tz);
1289
1290             fjx0             = _mm_add_ps(fjx0,tx);
1291             fjy0             = _mm_add_ps(fjy0,ty);
1292             fjz0             = _mm_add_ps(fjz0,tz);
1293             
1294             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1295             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1296             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1297             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1298
1299             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1300
1301             /* Inner loop uses 138 flops */
1302         }
1303
1304         /* End of innermost loop */
1305
1306         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1307                                               f+i_coord_offset,fshift+i_shift_offset);
1308
1309         /* Increment number of inner iterations */
1310         inneriter                  += j_index_end - j_index_start;
1311
1312         /* Outer loop uses 24 flops */
1313     }
1314
1315     /* Increment number of outer iterations */
1316     outeriter        += nri;
1317
1318     /* Update outer/inner flops */
1319
1320     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1321 }