0c55154cee7baa6cef337bb51d260eab94d0d285
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          ewitab;
106     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
139     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }  
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173         
174         fix0             = _mm_setzero_ps();
175         fiy0             = _mm_setzero_ps();
176         fiz0             = _mm_setzero_ps();
177         fix1             = _mm_setzero_ps();
178         fiy1             = _mm_setzero_ps();
179         fiz1             = _mm_setzero_ps();
180         fix2             = _mm_setzero_ps();
181         fiy2             = _mm_setzero_ps();
182         fiz2             = _mm_setzero_ps();
183         fix3             = _mm_setzero_ps();
184         fiy3             = _mm_setzero_ps();
185         fiz3             = _mm_setzero_ps();
186
187         /* Reset potential sums */
188         velecsum         = _mm_setzero_ps();
189         vvdwsum          = _mm_setzero_ps();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               x+j_coord_offsetC,x+j_coord_offsetD,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_ps(ix0,jx0);
212             dy00             = _mm_sub_ps(iy0,jy0);
213             dz00             = _mm_sub_ps(iz0,jz0);
214             dx10             = _mm_sub_ps(ix1,jx0);
215             dy10             = _mm_sub_ps(iy1,jy0);
216             dz10             = _mm_sub_ps(iz1,jz0);
217             dx20             = _mm_sub_ps(ix2,jx0);
218             dy20             = _mm_sub_ps(iy2,jy0);
219             dz20             = _mm_sub_ps(iz2,jz0);
220             dx30             = _mm_sub_ps(ix3,jx0);
221             dy30             = _mm_sub_ps(iy3,jy0);
222             dz30             = _mm_sub_ps(iz3,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
229
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             rinvsq00         = gmx_mm_inv_ps(rsq00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                               charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm_setzero_ps();
248             fjy0             = _mm_setzero_ps();
249             fjz0             = _mm_setzero_ps();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             /* Compute parameters for interactions between i and j atoms */
256             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
257                                          vdwparam+vdwioffset0+vdwjidx0B,
258                                          vdwparam+vdwioffset0+vdwjidx0C,
259                                          vdwparam+vdwioffset0+vdwjidx0D,
260                                          &c6_00,&c12_00);
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
266             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
267             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
268             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
272
273             fscal            = fvdw;
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm_mul_ps(fscal,dx00);
277             ty               = _mm_mul_ps(fscal,dy00);
278             tz               = _mm_mul_ps(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm_add_ps(fix0,tx);
282             fiy0             = _mm_add_ps(fiy0,ty);
283             fiz0             = _mm_add_ps(fiz0,tz);
284
285             fjx0             = _mm_add_ps(fjx0,tx);
286             fjy0             = _mm_add_ps(fjy0,ty);
287             fjz0             = _mm_add_ps(fjz0,tz);
288             
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             r10              = _mm_mul_ps(rsq10,rinv10);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq10             = _mm_mul_ps(iq1,jq0);
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = _mm_mul_ps(r10,ewtabscale);
302             ewitab           = _mm_cvttps_epi32(ewrt);
303             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
304             ewitab           = _mm_slli_epi32(ewitab,2);
305             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
306             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
307             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
308             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
309             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
310             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
311             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
312             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
313             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
314
315             /* Update potential sum for this i atom from the interaction with this j atom. */
316             velecsum         = _mm_add_ps(velecsum,velec);
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = _mm_mul_ps(fscal,dx10);
322             ty               = _mm_mul_ps(fscal,dy10);
323             tz               = _mm_mul_ps(fscal,dz10);
324
325             /* Update vectorial force */
326             fix1             = _mm_add_ps(fix1,tx);
327             fiy1             = _mm_add_ps(fiy1,ty);
328             fiz1             = _mm_add_ps(fiz1,tz);
329
330             fjx0             = _mm_add_ps(fjx0,tx);
331             fjy0             = _mm_add_ps(fjy0,ty);
332             fjz0             = _mm_add_ps(fjz0,tz);
333             
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r20              = _mm_mul_ps(rsq20,rinv20);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq20             = _mm_mul_ps(iq2,jq0);
342
343             /* EWALD ELECTROSTATICS */
344
345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
346             ewrt             = _mm_mul_ps(r20,ewtabscale);
347             ewitab           = _mm_cvttps_epi32(ewrt);
348             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
349             ewitab           = _mm_slli_epi32(ewitab,2);
350             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
351             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
352             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
353             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
354             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
355             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
356             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
357             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
358             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velecsum         = _mm_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_ps(fscal,dx20);
367             ty               = _mm_mul_ps(fscal,dy20);
368             tz               = _mm_mul_ps(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_ps(fix2,tx);
372             fiy2             = _mm_add_ps(fiy2,ty);
373             fiz2             = _mm_add_ps(fiz2,tz);
374
375             fjx0             = _mm_add_ps(fjx0,tx);
376             fjy0             = _mm_add_ps(fjy0,ty);
377             fjz0             = _mm_add_ps(fjz0,tz);
378             
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r30              = _mm_mul_ps(rsq30,rinv30);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq30             = _mm_mul_ps(iq3,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_ps(r30,ewtabscale);
392             ewitab           = _mm_cvttps_epi32(ewrt);
393             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
394             ewitab           = _mm_slli_epi32(ewitab,2);
395             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
396             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
397             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
398             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
399             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
400             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
401             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
402             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
403             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velecsum         = _mm_add_ps(velecsum,velec);
407
408             fscal            = felec;
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm_mul_ps(fscal,dx30);
412             ty               = _mm_mul_ps(fscal,dy30);
413             tz               = _mm_mul_ps(fscal,dz30);
414
415             /* Update vectorial force */
416             fix3             = _mm_add_ps(fix3,tx);
417             fiy3             = _mm_add_ps(fiy3,ty);
418             fiz3             = _mm_add_ps(fiz3,tz);
419
420             fjx0             = _mm_add_ps(fjx0,tx);
421             fjy0             = _mm_add_ps(fjy0,ty);
422             fjz0             = _mm_add_ps(fjz0,tz);
423             
424             fjptrA             = f+j_coord_offsetA;
425             fjptrB             = f+j_coord_offsetB;
426             fjptrC             = f+j_coord_offsetC;
427             fjptrD             = f+j_coord_offsetD;
428
429             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
430
431             /* Inner loop uses 155 flops */
432         }
433
434         if(jidx<j_index_end)
435         {
436
437             /* Get j neighbor index, and coordinate index */
438             jnrlistA         = jjnr[jidx];
439             jnrlistB         = jjnr[jidx+1];
440             jnrlistC         = jjnr[jidx+2];
441             jnrlistD         = jjnr[jidx+3];
442             /* Sign of each element will be negative for non-real atoms.
443              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
444              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
445              */
446             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
447             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
448             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
449             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
450             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
451             j_coord_offsetA  = DIM*jnrA;
452             j_coord_offsetB  = DIM*jnrB;
453             j_coord_offsetC  = DIM*jnrC;
454             j_coord_offsetD  = DIM*jnrD;
455
456             /* load j atom coordinates */
457             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
458                                               x+j_coord_offsetC,x+j_coord_offsetD,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _mm_sub_ps(ix0,jx0);
463             dy00             = _mm_sub_ps(iy0,jy0);
464             dz00             = _mm_sub_ps(iz0,jz0);
465             dx10             = _mm_sub_ps(ix1,jx0);
466             dy10             = _mm_sub_ps(iy1,jy0);
467             dz10             = _mm_sub_ps(iz1,jz0);
468             dx20             = _mm_sub_ps(ix2,jx0);
469             dy20             = _mm_sub_ps(iy2,jy0);
470             dz20             = _mm_sub_ps(iz2,jz0);
471             dx30             = _mm_sub_ps(ix3,jx0);
472             dy30             = _mm_sub_ps(iy3,jy0);
473             dz30             = _mm_sub_ps(iz3,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
477             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
478             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
479             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
480
481             rinv10           = gmx_mm_invsqrt_ps(rsq10);
482             rinv20           = gmx_mm_invsqrt_ps(rsq20);
483             rinv30           = gmx_mm_invsqrt_ps(rsq30);
484
485             rinvsq00         = gmx_mm_inv_ps(rsq00);
486             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
487             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
488             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
489
490             /* Load parameters for j particles */
491             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
492                                                               charge+jnrC+0,charge+jnrD+0);
493             vdwjidx0A        = 2*vdwtype[jnrA+0];
494             vdwjidx0B        = 2*vdwtype[jnrB+0];
495             vdwjidx0C        = 2*vdwtype[jnrC+0];
496             vdwjidx0D        = 2*vdwtype[jnrD+0];
497
498             fjx0             = _mm_setzero_ps();
499             fjy0             = _mm_setzero_ps();
500             fjz0             = _mm_setzero_ps();
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             /* Compute parameters for interactions between i and j atoms */
507             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
508                                          vdwparam+vdwioffset0+vdwjidx0B,
509                                          vdwparam+vdwioffset0+vdwjidx0C,
510                                          vdwparam+vdwioffset0+vdwjidx0D,
511                                          &c6_00,&c12_00);
512
513             /* LENNARD-JONES DISPERSION/REPULSION */
514
515             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
516             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
517             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
518             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
519             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
523             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
524
525             fscal            = fvdw;
526
527             fscal            = _mm_andnot_ps(dummy_mask,fscal);
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_ps(fscal,dx00);
531             ty               = _mm_mul_ps(fscal,dy00);
532             tz               = _mm_mul_ps(fscal,dz00);
533
534             /* Update vectorial force */
535             fix0             = _mm_add_ps(fix0,tx);
536             fiy0             = _mm_add_ps(fiy0,ty);
537             fiz0             = _mm_add_ps(fiz0,tz);
538
539             fjx0             = _mm_add_ps(fjx0,tx);
540             fjy0             = _mm_add_ps(fjy0,ty);
541             fjz0             = _mm_add_ps(fjz0,tz);
542             
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r10              = _mm_mul_ps(rsq10,rinv10);
548             r10              = _mm_andnot_ps(dummy_mask,r10);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _mm_mul_ps(iq1,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _mm_mul_ps(r10,ewtabscale);
557             ewitab           = _mm_cvttps_epi32(ewrt);
558             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
559             ewitab           = _mm_slli_epi32(ewitab,2);
560             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
561             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
562             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
563             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
564             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
565             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
566             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
567             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
568             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_andnot_ps(dummy_mask,velec);
572             velecsum         = _mm_add_ps(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_andnot_ps(dummy_mask,fscal);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_ps(fscal,dx10);
580             ty               = _mm_mul_ps(fscal,dy10);
581             tz               = _mm_mul_ps(fscal,dz10);
582
583             /* Update vectorial force */
584             fix1             = _mm_add_ps(fix1,tx);
585             fiy1             = _mm_add_ps(fiy1,ty);
586             fiz1             = _mm_add_ps(fiz1,tz);
587
588             fjx0             = _mm_add_ps(fjx0,tx);
589             fjy0             = _mm_add_ps(fjy0,ty);
590             fjz0             = _mm_add_ps(fjz0,tz);
591             
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             r20              = _mm_mul_ps(rsq20,rinv20);
597             r20              = _mm_andnot_ps(dummy_mask,r20);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq20             = _mm_mul_ps(iq2,jq0);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_ps(r20,ewtabscale);
606             ewitab           = _mm_cvttps_epi32(ewrt);
607             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
608             ewitab           = _mm_slli_epi32(ewitab,2);
609             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
610             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
611             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
612             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
613             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
614             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
615             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
616             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
617             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_andnot_ps(dummy_mask,velec);
621             velecsum         = _mm_add_ps(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm_andnot_ps(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_ps(fscal,dx20);
629             ty               = _mm_mul_ps(fscal,dy20);
630             tz               = _mm_mul_ps(fscal,dz20);
631
632             /* Update vectorial force */
633             fix2             = _mm_add_ps(fix2,tx);
634             fiy2             = _mm_add_ps(fiy2,ty);
635             fiz2             = _mm_add_ps(fiz2,tz);
636
637             fjx0             = _mm_add_ps(fjx0,tx);
638             fjy0             = _mm_add_ps(fjy0,ty);
639             fjz0             = _mm_add_ps(fjz0,tz);
640             
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             r30              = _mm_mul_ps(rsq30,rinv30);
646             r30              = _mm_andnot_ps(dummy_mask,r30);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq30             = _mm_mul_ps(iq3,jq0);
650
651             /* EWALD ELECTROSTATICS */
652
653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654             ewrt             = _mm_mul_ps(r30,ewtabscale);
655             ewitab           = _mm_cvttps_epi32(ewrt);
656             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
657             ewitab           = _mm_slli_epi32(ewitab,2);
658             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
659             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
660             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
661             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
662             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
663             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
664             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
665             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
666             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm_andnot_ps(dummy_mask,velec);
670             velecsum         = _mm_add_ps(velecsum,velec);
671
672             fscal            = felec;
673
674             fscal            = _mm_andnot_ps(dummy_mask,fscal);
675
676             /* Calculate temporary vectorial force */
677             tx               = _mm_mul_ps(fscal,dx30);
678             ty               = _mm_mul_ps(fscal,dy30);
679             tz               = _mm_mul_ps(fscal,dz30);
680
681             /* Update vectorial force */
682             fix3             = _mm_add_ps(fix3,tx);
683             fiy3             = _mm_add_ps(fiy3,ty);
684             fiz3             = _mm_add_ps(fiz3,tz);
685
686             fjx0             = _mm_add_ps(fjx0,tx);
687             fjy0             = _mm_add_ps(fjy0,ty);
688             fjz0             = _mm_add_ps(fjz0,tz);
689             
690             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
691             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
692             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
693             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
694
695             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
696
697             /* Inner loop uses 158 flops */
698         }
699
700         /* End of innermost loop */
701
702         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
703                                               f+i_coord_offset,fshift+i_shift_offset);
704
705         ggid                        = gid[iidx];
706         /* Update potential energies */
707         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
708         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
709
710         /* Increment number of inner iterations */
711         inneriter                  += j_index_end - j_index_start;
712
713         /* Outer loop uses 26 flops */
714     }
715
716     /* Increment number of outer iterations */
717     outeriter        += nri;
718
719     /* Update outer/inner flops */
720
721     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
722 }
723 /*
724  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
725  * Electrostatics interaction: Ewald
726  * VdW interaction:            LennardJones
727  * Geometry:                   Water4-Particle
728  * Calculate force/pot:        Force
729  */
730 void
731 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_single
732                     (t_nblist                    * gmx_restrict       nlist,
733                      rvec                        * gmx_restrict          xx,
734                      rvec                        * gmx_restrict          ff,
735                      t_forcerec                  * gmx_restrict          fr,
736                      t_mdatoms                   * gmx_restrict     mdatoms,
737                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
738                      t_nrnb                      * gmx_restrict        nrnb)
739 {
740     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
741      * just 0 for non-waters.
742      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
743      * jnr indices corresponding to data put in the four positions in the SIMD register.
744      */
745     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
746     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
747     int              jnrA,jnrB,jnrC,jnrD;
748     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
749     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
750     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
751     real             rcutoff_scalar;
752     real             *shiftvec,*fshift,*x,*f;
753     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
754     real             scratch[4*DIM];
755     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
756     int              vdwioffset0;
757     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
758     int              vdwioffset1;
759     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
760     int              vdwioffset2;
761     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
762     int              vdwioffset3;
763     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
764     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
765     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
766     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
767     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
768     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
769     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
770     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
771     real             *charge;
772     int              nvdwtype;
773     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
774     int              *vdwtype;
775     real             *vdwparam;
776     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
777     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
778     __m128i          ewitab;
779     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
780     real             *ewtab;
781     __m128           dummy_mask,cutoff_mask;
782     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
783     __m128           one     = _mm_set1_ps(1.0);
784     __m128           two     = _mm_set1_ps(2.0);
785     x                = xx[0];
786     f                = ff[0];
787
788     nri              = nlist->nri;
789     iinr             = nlist->iinr;
790     jindex           = nlist->jindex;
791     jjnr             = nlist->jjnr;
792     shiftidx         = nlist->shift;
793     gid              = nlist->gid;
794     shiftvec         = fr->shift_vec[0];
795     fshift           = fr->fshift[0];
796     facel            = _mm_set1_ps(fr->epsfac);
797     charge           = mdatoms->chargeA;
798     nvdwtype         = fr->ntype;
799     vdwparam         = fr->nbfp;
800     vdwtype          = mdatoms->typeA;
801
802     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
803     ewtab            = fr->ic->tabq_coul_F;
804     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
805     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
806
807     /* Setup water-specific parameters */
808     inr              = nlist->iinr[0];
809     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
810     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
811     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
812     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
813
814     /* Avoid stupid compiler warnings */
815     jnrA = jnrB = jnrC = jnrD = 0;
816     j_coord_offsetA = 0;
817     j_coord_offsetB = 0;
818     j_coord_offsetC = 0;
819     j_coord_offsetD = 0;
820
821     outeriter        = 0;
822     inneriter        = 0;
823
824     for(iidx=0;iidx<4*DIM;iidx++)
825     {
826         scratch[iidx] = 0.0;
827     }  
828
829     /* Start outer loop over neighborlists */
830     for(iidx=0; iidx<nri; iidx++)
831     {
832         /* Load shift vector for this list */
833         i_shift_offset   = DIM*shiftidx[iidx];
834
835         /* Load limits for loop over neighbors */
836         j_index_start    = jindex[iidx];
837         j_index_end      = jindex[iidx+1];
838
839         /* Get outer coordinate index */
840         inr              = iinr[iidx];
841         i_coord_offset   = DIM*inr;
842
843         /* Load i particle coords and add shift vector */
844         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
845                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
846         
847         fix0             = _mm_setzero_ps();
848         fiy0             = _mm_setzero_ps();
849         fiz0             = _mm_setzero_ps();
850         fix1             = _mm_setzero_ps();
851         fiy1             = _mm_setzero_ps();
852         fiz1             = _mm_setzero_ps();
853         fix2             = _mm_setzero_ps();
854         fiy2             = _mm_setzero_ps();
855         fiz2             = _mm_setzero_ps();
856         fix3             = _mm_setzero_ps();
857         fiy3             = _mm_setzero_ps();
858         fiz3             = _mm_setzero_ps();
859
860         /* Start inner kernel loop */
861         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
862         {
863
864             /* Get j neighbor index, and coordinate index */
865             jnrA             = jjnr[jidx];
866             jnrB             = jjnr[jidx+1];
867             jnrC             = jjnr[jidx+2];
868             jnrD             = jjnr[jidx+3];
869             j_coord_offsetA  = DIM*jnrA;
870             j_coord_offsetB  = DIM*jnrB;
871             j_coord_offsetC  = DIM*jnrC;
872             j_coord_offsetD  = DIM*jnrD;
873
874             /* load j atom coordinates */
875             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
876                                               x+j_coord_offsetC,x+j_coord_offsetD,
877                                               &jx0,&jy0,&jz0);
878
879             /* Calculate displacement vector */
880             dx00             = _mm_sub_ps(ix0,jx0);
881             dy00             = _mm_sub_ps(iy0,jy0);
882             dz00             = _mm_sub_ps(iz0,jz0);
883             dx10             = _mm_sub_ps(ix1,jx0);
884             dy10             = _mm_sub_ps(iy1,jy0);
885             dz10             = _mm_sub_ps(iz1,jz0);
886             dx20             = _mm_sub_ps(ix2,jx0);
887             dy20             = _mm_sub_ps(iy2,jy0);
888             dz20             = _mm_sub_ps(iz2,jz0);
889             dx30             = _mm_sub_ps(ix3,jx0);
890             dy30             = _mm_sub_ps(iy3,jy0);
891             dz30             = _mm_sub_ps(iz3,jz0);
892
893             /* Calculate squared distance and things based on it */
894             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
895             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
896             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
897             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
898
899             rinv10           = gmx_mm_invsqrt_ps(rsq10);
900             rinv20           = gmx_mm_invsqrt_ps(rsq20);
901             rinv30           = gmx_mm_invsqrt_ps(rsq30);
902
903             rinvsq00         = gmx_mm_inv_ps(rsq00);
904             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
905             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
906             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
907
908             /* Load parameters for j particles */
909             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
910                                                               charge+jnrC+0,charge+jnrD+0);
911             vdwjidx0A        = 2*vdwtype[jnrA+0];
912             vdwjidx0B        = 2*vdwtype[jnrB+0];
913             vdwjidx0C        = 2*vdwtype[jnrC+0];
914             vdwjidx0D        = 2*vdwtype[jnrD+0];
915
916             fjx0             = _mm_setzero_ps();
917             fjy0             = _mm_setzero_ps();
918             fjz0             = _mm_setzero_ps();
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             /* Compute parameters for interactions between i and j atoms */
925             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
926                                          vdwparam+vdwioffset0+vdwjidx0B,
927                                          vdwparam+vdwioffset0+vdwjidx0C,
928                                          vdwparam+vdwioffset0+vdwjidx0D,
929                                          &c6_00,&c12_00);
930
931             /* LENNARD-JONES DISPERSION/REPULSION */
932
933             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
934             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
935
936             fscal            = fvdw;
937
938             /* Calculate temporary vectorial force */
939             tx               = _mm_mul_ps(fscal,dx00);
940             ty               = _mm_mul_ps(fscal,dy00);
941             tz               = _mm_mul_ps(fscal,dz00);
942
943             /* Update vectorial force */
944             fix0             = _mm_add_ps(fix0,tx);
945             fiy0             = _mm_add_ps(fiy0,ty);
946             fiz0             = _mm_add_ps(fiz0,tz);
947
948             fjx0             = _mm_add_ps(fjx0,tx);
949             fjy0             = _mm_add_ps(fjy0,ty);
950             fjz0             = _mm_add_ps(fjz0,tz);
951             
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             r10              = _mm_mul_ps(rsq10,rinv10);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq10             = _mm_mul_ps(iq1,jq0);
960
961             /* EWALD ELECTROSTATICS */
962
963             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964             ewrt             = _mm_mul_ps(r10,ewtabscale);
965             ewitab           = _mm_cvttps_epi32(ewrt);
966             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
967             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
968                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
969                                          &ewtabF,&ewtabFn);
970             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
971             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
972
973             fscal            = felec;
974
975             /* Calculate temporary vectorial force */
976             tx               = _mm_mul_ps(fscal,dx10);
977             ty               = _mm_mul_ps(fscal,dy10);
978             tz               = _mm_mul_ps(fscal,dz10);
979
980             /* Update vectorial force */
981             fix1             = _mm_add_ps(fix1,tx);
982             fiy1             = _mm_add_ps(fiy1,ty);
983             fiz1             = _mm_add_ps(fiz1,tz);
984
985             fjx0             = _mm_add_ps(fjx0,tx);
986             fjy0             = _mm_add_ps(fjy0,ty);
987             fjz0             = _mm_add_ps(fjz0,tz);
988             
989             /**************************
990              * CALCULATE INTERACTIONS *
991              **************************/
992
993             r20              = _mm_mul_ps(rsq20,rinv20);
994
995             /* Compute parameters for interactions between i and j atoms */
996             qq20             = _mm_mul_ps(iq2,jq0);
997
998             /* EWALD ELECTROSTATICS */
999
1000             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1001             ewrt             = _mm_mul_ps(r20,ewtabscale);
1002             ewitab           = _mm_cvttps_epi32(ewrt);
1003             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1004             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1005                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1006                                          &ewtabF,&ewtabFn);
1007             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1008             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1009
1010             fscal            = felec;
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx20);
1014             ty               = _mm_mul_ps(fscal,dy20);
1015             tz               = _mm_mul_ps(fscal,dz20);
1016
1017             /* Update vectorial force */
1018             fix2             = _mm_add_ps(fix2,tx);
1019             fiy2             = _mm_add_ps(fiy2,ty);
1020             fiz2             = _mm_add_ps(fiz2,tz);
1021
1022             fjx0             = _mm_add_ps(fjx0,tx);
1023             fjy0             = _mm_add_ps(fjy0,ty);
1024             fjz0             = _mm_add_ps(fjz0,tz);
1025             
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             r30              = _mm_mul_ps(rsq30,rinv30);
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq30             = _mm_mul_ps(iq3,jq0);
1034
1035             /* EWALD ELECTROSTATICS */
1036
1037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038             ewrt             = _mm_mul_ps(r30,ewtabscale);
1039             ewitab           = _mm_cvttps_epi32(ewrt);
1040             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1041             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1042                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1043                                          &ewtabF,&ewtabFn);
1044             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1045             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1046
1047             fscal            = felec;
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx30);
1051             ty               = _mm_mul_ps(fscal,dy30);
1052             tz               = _mm_mul_ps(fscal,dz30);
1053
1054             /* Update vectorial force */
1055             fix3             = _mm_add_ps(fix3,tx);
1056             fiy3             = _mm_add_ps(fiy3,ty);
1057             fiz3             = _mm_add_ps(fiz3,tz);
1058
1059             fjx0             = _mm_add_ps(fjx0,tx);
1060             fjy0             = _mm_add_ps(fjy0,ty);
1061             fjz0             = _mm_add_ps(fjz0,tz);
1062             
1063             fjptrA             = f+j_coord_offsetA;
1064             fjptrB             = f+j_coord_offsetB;
1065             fjptrC             = f+j_coord_offsetC;
1066             fjptrD             = f+j_coord_offsetD;
1067
1068             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1069
1070             /* Inner loop uses 135 flops */
1071         }
1072
1073         if(jidx<j_index_end)
1074         {
1075
1076             /* Get j neighbor index, and coordinate index */
1077             jnrlistA         = jjnr[jidx];
1078             jnrlistB         = jjnr[jidx+1];
1079             jnrlistC         = jjnr[jidx+2];
1080             jnrlistD         = jjnr[jidx+3];
1081             /* Sign of each element will be negative for non-real atoms.
1082              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1083              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1084              */
1085             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1086             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1087             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1088             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1089             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1090             j_coord_offsetA  = DIM*jnrA;
1091             j_coord_offsetB  = DIM*jnrB;
1092             j_coord_offsetC  = DIM*jnrC;
1093             j_coord_offsetD  = DIM*jnrD;
1094
1095             /* load j atom coordinates */
1096             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1097                                               x+j_coord_offsetC,x+j_coord_offsetD,
1098                                               &jx0,&jy0,&jz0);
1099
1100             /* Calculate displacement vector */
1101             dx00             = _mm_sub_ps(ix0,jx0);
1102             dy00             = _mm_sub_ps(iy0,jy0);
1103             dz00             = _mm_sub_ps(iz0,jz0);
1104             dx10             = _mm_sub_ps(ix1,jx0);
1105             dy10             = _mm_sub_ps(iy1,jy0);
1106             dz10             = _mm_sub_ps(iz1,jz0);
1107             dx20             = _mm_sub_ps(ix2,jx0);
1108             dy20             = _mm_sub_ps(iy2,jy0);
1109             dz20             = _mm_sub_ps(iz2,jz0);
1110             dx30             = _mm_sub_ps(ix3,jx0);
1111             dy30             = _mm_sub_ps(iy3,jy0);
1112             dz30             = _mm_sub_ps(iz3,jz0);
1113
1114             /* Calculate squared distance and things based on it */
1115             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1116             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1117             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1118             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1119
1120             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1121             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1122             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1123
1124             rinvsq00         = gmx_mm_inv_ps(rsq00);
1125             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1126             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1127             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1128
1129             /* Load parameters for j particles */
1130             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1131                                                               charge+jnrC+0,charge+jnrD+0);
1132             vdwjidx0A        = 2*vdwtype[jnrA+0];
1133             vdwjidx0B        = 2*vdwtype[jnrB+0];
1134             vdwjidx0C        = 2*vdwtype[jnrC+0];
1135             vdwjidx0D        = 2*vdwtype[jnrD+0];
1136
1137             fjx0             = _mm_setzero_ps();
1138             fjy0             = _mm_setzero_ps();
1139             fjz0             = _mm_setzero_ps();
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             /* Compute parameters for interactions between i and j atoms */
1146             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1147                                          vdwparam+vdwioffset0+vdwjidx0B,
1148                                          vdwparam+vdwioffset0+vdwjidx0C,
1149                                          vdwparam+vdwioffset0+vdwjidx0D,
1150                                          &c6_00,&c12_00);
1151
1152             /* LENNARD-JONES DISPERSION/REPULSION */
1153
1154             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1155             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1156
1157             fscal            = fvdw;
1158
1159             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1160
1161             /* Calculate temporary vectorial force */
1162             tx               = _mm_mul_ps(fscal,dx00);
1163             ty               = _mm_mul_ps(fscal,dy00);
1164             tz               = _mm_mul_ps(fscal,dz00);
1165
1166             /* Update vectorial force */
1167             fix0             = _mm_add_ps(fix0,tx);
1168             fiy0             = _mm_add_ps(fiy0,ty);
1169             fiz0             = _mm_add_ps(fiz0,tz);
1170
1171             fjx0             = _mm_add_ps(fjx0,tx);
1172             fjy0             = _mm_add_ps(fjy0,ty);
1173             fjz0             = _mm_add_ps(fjz0,tz);
1174             
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             r10              = _mm_mul_ps(rsq10,rinv10);
1180             r10              = _mm_andnot_ps(dummy_mask,r10);
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm_mul_ps(iq1,jq0);
1184
1185             /* EWALD ELECTROSTATICS */
1186
1187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1188             ewrt             = _mm_mul_ps(r10,ewtabscale);
1189             ewitab           = _mm_cvttps_epi32(ewrt);
1190             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1191             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1192                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1193                                          &ewtabF,&ewtabFn);
1194             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1195             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1200
1201             /* Calculate temporary vectorial force */
1202             tx               = _mm_mul_ps(fscal,dx10);
1203             ty               = _mm_mul_ps(fscal,dy10);
1204             tz               = _mm_mul_ps(fscal,dz10);
1205
1206             /* Update vectorial force */
1207             fix1             = _mm_add_ps(fix1,tx);
1208             fiy1             = _mm_add_ps(fiy1,ty);
1209             fiz1             = _mm_add_ps(fiz1,tz);
1210
1211             fjx0             = _mm_add_ps(fjx0,tx);
1212             fjy0             = _mm_add_ps(fjy0,ty);
1213             fjz0             = _mm_add_ps(fjz0,tz);
1214             
1215             /**************************
1216              * CALCULATE INTERACTIONS *
1217              **************************/
1218
1219             r20              = _mm_mul_ps(rsq20,rinv20);
1220             r20              = _mm_andnot_ps(dummy_mask,r20);
1221
1222             /* Compute parameters for interactions between i and j atoms */
1223             qq20             = _mm_mul_ps(iq2,jq0);
1224
1225             /* EWALD ELECTROSTATICS */
1226
1227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1228             ewrt             = _mm_mul_ps(r20,ewtabscale);
1229             ewitab           = _mm_cvttps_epi32(ewrt);
1230             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1231             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1232                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1233                                          &ewtabF,&ewtabFn);
1234             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1235             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_ps(fscal,dx20);
1243             ty               = _mm_mul_ps(fscal,dy20);
1244             tz               = _mm_mul_ps(fscal,dz20);
1245
1246             /* Update vectorial force */
1247             fix2             = _mm_add_ps(fix2,tx);
1248             fiy2             = _mm_add_ps(fiy2,ty);
1249             fiz2             = _mm_add_ps(fiz2,tz);
1250
1251             fjx0             = _mm_add_ps(fjx0,tx);
1252             fjy0             = _mm_add_ps(fjy0,ty);
1253             fjz0             = _mm_add_ps(fjz0,tz);
1254             
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             r30              = _mm_mul_ps(rsq30,rinv30);
1260             r30              = _mm_andnot_ps(dummy_mask,r30);
1261
1262             /* Compute parameters for interactions between i and j atoms */
1263             qq30             = _mm_mul_ps(iq3,jq0);
1264
1265             /* EWALD ELECTROSTATICS */
1266
1267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1268             ewrt             = _mm_mul_ps(r30,ewtabscale);
1269             ewitab           = _mm_cvttps_epi32(ewrt);
1270             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1271             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1272                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1273                                          &ewtabF,&ewtabFn);
1274             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1275             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1276
1277             fscal            = felec;
1278
1279             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm_mul_ps(fscal,dx30);
1283             ty               = _mm_mul_ps(fscal,dy30);
1284             tz               = _mm_mul_ps(fscal,dz30);
1285
1286             /* Update vectorial force */
1287             fix3             = _mm_add_ps(fix3,tx);
1288             fiy3             = _mm_add_ps(fiy3,ty);
1289             fiz3             = _mm_add_ps(fiz3,tz);
1290
1291             fjx0             = _mm_add_ps(fjx0,tx);
1292             fjy0             = _mm_add_ps(fjy0,ty);
1293             fjz0             = _mm_add_ps(fjz0,tz);
1294             
1295             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1296             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1297             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1298             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1299
1300             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1301
1302             /* Inner loop uses 138 flops */
1303         }
1304
1305         /* End of innermost loop */
1306
1307         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1308                                               f+i_coord_offset,fshift+i_shift_offset);
1309
1310         /* Increment number of inner iterations */
1311         inneriter                  += j_index_end - j_index_start;
1312
1313         /* Outer loop uses 24 flops */
1314     }
1315
1316     /* Increment number of outer iterations */
1317     outeriter        += nri;
1318
1319     /* Update outer/inner flops */
1320
1321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1322 }