Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse2_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }  
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169         
170         fix0             = _mm_setzero_ps();
171         fiy0             = _mm_setzero_ps();
172         fiz0             = _mm_setzero_ps();
173         fix1             = _mm_setzero_ps();
174         fiy1             = _mm_setzero_ps();
175         fiz1             = _mm_setzero_ps();
176         fix2             = _mm_setzero_ps();
177         fiy2             = _mm_setzero_ps();
178         fiz2             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
218
219             rinv00           = sse2_invsqrt_f(rsq00);
220             rinv10           = sse2_invsqrt_f(rsq10);
221             rinv20           = sse2_invsqrt_f(rsq20);
222
223             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
224             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
225             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* EWALD ELECTROSTATICS */
254
255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
256             ewrt             = _mm_mul_ps(r00,ewtabscale);
257             ewitab           = _mm_cvttps_epi32(ewrt);
258             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
259             ewitab           = _mm_slli_epi32(ewitab,2);
260             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
261             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
262             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
263             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
264             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
265             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
266             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
267             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
268             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
269
270             /* LENNARD-JONES DISPERSION/REPULSION */
271
272             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
273             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
274             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
275             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
276             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_ps(velecsum,velec);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm_add_ps(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_ps(fscal,dx00);
286             ty               = _mm_mul_ps(fscal,dy00);
287             tz               = _mm_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_ps(fix0,tx);
291             fiy0             = _mm_add_ps(fiy0,ty);
292             fiz0             = _mm_add_ps(fiz0,tz);
293
294             fjx0             = _mm_add_ps(fjx0,tx);
295             fjy0             = _mm_add_ps(fjy0,ty);
296             fjz0             = _mm_add_ps(fjz0,tz);
297             
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_ps(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_ps(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_ps(r10,ewtabscale);
311             ewitab           = _mm_cvttps_epi32(ewrt);
312             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
316             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
317             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
318             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
319             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
320             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
321             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
322             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm_add_ps(velecsum,velec);
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_ps(fscal,dx10);
331             ty               = _mm_mul_ps(fscal,dy10);
332             tz               = _mm_mul_ps(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_ps(fix1,tx);
336             fiy1             = _mm_add_ps(fiy1,ty);
337             fiz1             = _mm_add_ps(fiz1,tz);
338
339             fjx0             = _mm_add_ps(fjx0,tx);
340             fjy0             = _mm_add_ps(fjy0,ty);
341             fjz0             = _mm_add_ps(fjz0,tz);
342             
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm_mul_ps(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_ps(iq2,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm_mul_ps(r20,ewtabscale);
356             ewitab           = _mm_cvttps_epi32(ewrt);
357             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
358             ewitab           = _mm_slli_epi32(ewitab,2);
359             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
360             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
361             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
362             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
363             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
364             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
365             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
366             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
367             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velecsum         = _mm_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm_mul_ps(fscal,dx20);
376             ty               = _mm_mul_ps(fscal,dy20);
377             tz               = _mm_mul_ps(fscal,dz20);
378
379             /* Update vectorial force */
380             fix2             = _mm_add_ps(fix2,tx);
381             fiy2             = _mm_add_ps(fiy2,ty);
382             fiz2             = _mm_add_ps(fiz2,tz);
383
384             fjx0             = _mm_add_ps(fjx0,tx);
385             fjy0             = _mm_add_ps(fjy0,ty);
386             fjz0             = _mm_add_ps(fjz0,tz);
387             
388             fjptrA             = f+j_coord_offsetA;
389             fjptrB             = f+j_coord_offsetB;
390             fjptrC             = f+j_coord_offsetC;
391             fjptrD             = f+j_coord_offsetD;
392
393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 135 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             /* Get j neighbor index, and coordinate index */
402             jnrlistA         = jjnr[jidx];
403             jnrlistB         = jjnr[jidx+1];
404             jnrlistC         = jjnr[jidx+2];
405             jnrlistD         = jjnr[jidx+3];
406             /* Sign of each element will be negative for non-real atoms.
407              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
408              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
409              */
410             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
411             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
412             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
413             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
414             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
415             j_coord_offsetA  = DIM*jnrA;
416             j_coord_offsetB  = DIM*jnrB;
417             j_coord_offsetC  = DIM*jnrC;
418             j_coord_offsetD  = DIM*jnrD;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
422                                               x+j_coord_offsetC,x+j_coord_offsetD,
423                                               &jx0,&jy0,&jz0);
424
425             /* Calculate displacement vector */
426             dx00             = _mm_sub_ps(ix0,jx0);
427             dy00             = _mm_sub_ps(iy0,jy0);
428             dz00             = _mm_sub_ps(iz0,jz0);
429             dx10             = _mm_sub_ps(ix1,jx0);
430             dy10             = _mm_sub_ps(iy1,jy0);
431             dz10             = _mm_sub_ps(iz1,jz0);
432             dx20             = _mm_sub_ps(ix2,jx0);
433             dy20             = _mm_sub_ps(iy2,jy0);
434             dz20             = _mm_sub_ps(iz2,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
438             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
439             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
440
441             rinv00           = sse2_invsqrt_f(rsq00);
442             rinv10           = sse2_invsqrt_f(rsq10);
443             rinv20           = sse2_invsqrt_f(rsq20);
444
445             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
446             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
447             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
448
449             /* Load parameters for j particles */
450             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
451                                                               charge+jnrC+0,charge+jnrD+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453             vdwjidx0B        = 2*vdwtype[jnrB+0];
454             vdwjidx0C        = 2*vdwtype[jnrC+0];
455             vdwjidx0D        = 2*vdwtype[jnrD+0];
456
457             fjx0             = _mm_setzero_ps();
458             fjy0             = _mm_setzero_ps();
459             fjz0             = _mm_setzero_ps();
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             r00              = _mm_mul_ps(rsq00,rinv00);
466             r00              = _mm_andnot_ps(dummy_mask,r00);
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq00             = _mm_mul_ps(iq0,jq0);
470             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
471                                          vdwparam+vdwioffset0+vdwjidx0B,
472                                          vdwparam+vdwioffset0+vdwjidx0C,
473                                          vdwparam+vdwioffset0+vdwjidx0D,
474                                          &c6_00,&c12_00);
475
476             /* EWALD ELECTROSTATICS */
477
478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
479             ewrt             = _mm_mul_ps(r00,ewtabscale);
480             ewitab           = _mm_cvttps_epi32(ewrt);
481             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
482             ewitab           = _mm_slli_epi32(ewitab,2);
483             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
484             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
485             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
486             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
487             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
488             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
489             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
490             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
491             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
492
493             /* LENNARD-JONES DISPERSION/REPULSION */
494
495             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
496             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
497             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
498             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
499             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             velec            = _mm_andnot_ps(dummy_mask,velec);
503             velecsum         = _mm_add_ps(velecsum,velec);
504             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
505             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
506
507             fscal            = _mm_add_ps(felec,fvdw);
508
509             fscal            = _mm_andnot_ps(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm_mul_ps(fscal,dx00);
513             ty               = _mm_mul_ps(fscal,dy00);
514             tz               = _mm_mul_ps(fscal,dz00);
515
516             /* Update vectorial force */
517             fix0             = _mm_add_ps(fix0,tx);
518             fiy0             = _mm_add_ps(fiy0,ty);
519             fiz0             = _mm_add_ps(fiz0,tz);
520
521             fjx0             = _mm_add_ps(fjx0,tx);
522             fjy0             = _mm_add_ps(fjy0,ty);
523             fjz0             = _mm_add_ps(fjz0,tz);
524             
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r10              = _mm_mul_ps(rsq10,rinv10);
530             r10              = _mm_andnot_ps(dummy_mask,r10);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_ps(iq1,jq0);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
538             ewrt             = _mm_mul_ps(r10,ewtabscale);
539             ewitab           = _mm_cvttps_epi32(ewrt);
540             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
541             ewitab           = _mm_slli_epi32(ewitab,2);
542             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
543             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
544             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
545             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
546             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
547             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
548             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
549             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
550             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_andnot_ps(dummy_mask,velec);
554             velecsum         = _mm_add_ps(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_andnot_ps(dummy_mask,fscal);
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm_mul_ps(fscal,dx10);
562             ty               = _mm_mul_ps(fscal,dy10);
563             tz               = _mm_mul_ps(fscal,dz10);
564
565             /* Update vectorial force */
566             fix1             = _mm_add_ps(fix1,tx);
567             fiy1             = _mm_add_ps(fiy1,ty);
568             fiz1             = _mm_add_ps(fiz1,tz);
569
570             fjx0             = _mm_add_ps(fjx0,tx);
571             fjy0             = _mm_add_ps(fjy0,ty);
572             fjz0             = _mm_add_ps(fjz0,tz);
573             
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             r20              = _mm_mul_ps(rsq20,rinv20);
579             r20              = _mm_andnot_ps(dummy_mask,r20);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq20             = _mm_mul_ps(iq2,jq0);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _mm_mul_ps(r20,ewtabscale);
588             ewitab           = _mm_cvttps_epi32(ewrt);
589             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
590             ewitab           = _mm_slli_epi32(ewitab,2);
591             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
592             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
593             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
594             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
595             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
596             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
597             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
598             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
599             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _mm_andnot_ps(dummy_mask,velec);
603             velecsum         = _mm_add_ps(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_andnot_ps(dummy_mask,fscal);
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_ps(fscal,dx20);
611             ty               = _mm_mul_ps(fscal,dy20);
612             tz               = _mm_mul_ps(fscal,dz20);
613
614             /* Update vectorial force */
615             fix2             = _mm_add_ps(fix2,tx);
616             fiy2             = _mm_add_ps(fiy2,ty);
617             fiz2             = _mm_add_ps(fiz2,tz);
618
619             fjx0             = _mm_add_ps(fjx0,tx);
620             fjy0             = _mm_add_ps(fjy0,ty);
621             fjz0             = _mm_add_ps(fjz0,tz);
622             
623             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
624             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
625             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
626             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
627
628             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
629
630             /* Inner loop uses 138 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         ggid                        = gid[iidx];
639         /* Update potential energies */
640         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
641         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
642
643         /* Increment number of inner iterations */
644         inneriter                  += j_index_end - j_index_start;
645
646         /* Outer loop uses 20 flops */
647     }
648
649     /* Increment number of outer iterations */
650     outeriter        += nri;
651
652     /* Update outer/inner flops */
653
654     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
655 }
656 /*
657  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
658  * Electrostatics interaction: Ewald
659  * VdW interaction:            LennardJones
660  * Geometry:                   Water3-Particle
661  * Calculate force/pot:        Force
662  */
663 void
664 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
665                     (t_nblist                    * gmx_restrict       nlist,
666                      rvec                        * gmx_restrict          xx,
667                      rvec                        * gmx_restrict          ff,
668                      struct t_forcerec           * gmx_restrict          fr,
669                      t_mdatoms                   * gmx_restrict     mdatoms,
670                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
671                      t_nrnb                      * gmx_restrict        nrnb)
672 {
673     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
674      * just 0 for non-waters.
675      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
676      * jnr indices corresponding to data put in the four positions in the SIMD register.
677      */
678     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
679     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
680     int              jnrA,jnrB,jnrC,jnrD;
681     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
682     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
683     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
684     real             rcutoff_scalar;
685     real             *shiftvec,*fshift,*x,*f;
686     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
687     real             scratch[4*DIM];
688     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
689     int              vdwioffset0;
690     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
691     int              vdwioffset1;
692     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
693     int              vdwioffset2;
694     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
695     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
696     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
697     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
698     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
699     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
700     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
701     real             *charge;
702     int              nvdwtype;
703     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
704     int              *vdwtype;
705     real             *vdwparam;
706     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
707     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
708     __m128i          ewitab;
709     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
710     real             *ewtab;
711     __m128           dummy_mask,cutoff_mask;
712     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
713     __m128           one     = _mm_set1_ps(1.0);
714     __m128           two     = _mm_set1_ps(2.0);
715     x                = xx[0];
716     f                = ff[0];
717
718     nri              = nlist->nri;
719     iinr             = nlist->iinr;
720     jindex           = nlist->jindex;
721     jjnr             = nlist->jjnr;
722     shiftidx         = nlist->shift;
723     gid              = nlist->gid;
724     shiftvec         = fr->shift_vec[0];
725     fshift           = fr->fshift[0];
726     facel            = _mm_set1_ps(fr->ic->epsfac);
727     charge           = mdatoms->chargeA;
728     nvdwtype         = fr->ntype;
729     vdwparam         = fr->nbfp;
730     vdwtype          = mdatoms->typeA;
731
732     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
733     ewtab            = fr->ic->tabq_coul_F;
734     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
735     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
736
737     /* Setup water-specific parameters */
738     inr              = nlist->iinr[0];
739     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
740     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
741     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
742     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
743
744     /* Avoid stupid compiler warnings */
745     jnrA = jnrB = jnrC = jnrD = 0;
746     j_coord_offsetA = 0;
747     j_coord_offsetB = 0;
748     j_coord_offsetC = 0;
749     j_coord_offsetD = 0;
750
751     outeriter        = 0;
752     inneriter        = 0;
753
754     for(iidx=0;iidx<4*DIM;iidx++)
755     {
756         scratch[iidx] = 0.0;
757     }  
758
759     /* Start outer loop over neighborlists */
760     for(iidx=0; iidx<nri; iidx++)
761     {
762         /* Load shift vector for this list */
763         i_shift_offset   = DIM*shiftidx[iidx];
764
765         /* Load limits for loop over neighbors */
766         j_index_start    = jindex[iidx];
767         j_index_end      = jindex[iidx+1];
768
769         /* Get outer coordinate index */
770         inr              = iinr[iidx];
771         i_coord_offset   = DIM*inr;
772
773         /* Load i particle coords and add shift vector */
774         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
775                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
776         
777         fix0             = _mm_setzero_ps();
778         fiy0             = _mm_setzero_ps();
779         fiz0             = _mm_setzero_ps();
780         fix1             = _mm_setzero_ps();
781         fiy1             = _mm_setzero_ps();
782         fiz1             = _mm_setzero_ps();
783         fix2             = _mm_setzero_ps();
784         fiy2             = _mm_setzero_ps();
785         fiz2             = _mm_setzero_ps();
786
787         /* Start inner kernel loop */
788         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
789         {
790
791             /* Get j neighbor index, and coordinate index */
792             jnrA             = jjnr[jidx];
793             jnrB             = jjnr[jidx+1];
794             jnrC             = jjnr[jidx+2];
795             jnrD             = jjnr[jidx+3];
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798             j_coord_offsetC  = DIM*jnrC;
799             j_coord_offsetD  = DIM*jnrD;
800
801             /* load j atom coordinates */
802             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
803                                               x+j_coord_offsetC,x+j_coord_offsetD,
804                                               &jx0,&jy0,&jz0);
805
806             /* Calculate displacement vector */
807             dx00             = _mm_sub_ps(ix0,jx0);
808             dy00             = _mm_sub_ps(iy0,jy0);
809             dz00             = _mm_sub_ps(iz0,jz0);
810             dx10             = _mm_sub_ps(ix1,jx0);
811             dy10             = _mm_sub_ps(iy1,jy0);
812             dz10             = _mm_sub_ps(iz1,jz0);
813             dx20             = _mm_sub_ps(ix2,jx0);
814             dy20             = _mm_sub_ps(iy2,jy0);
815             dz20             = _mm_sub_ps(iz2,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
819             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
820             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
821
822             rinv00           = sse2_invsqrt_f(rsq00);
823             rinv10           = sse2_invsqrt_f(rsq10);
824             rinv20           = sse2_invsqrt_f(rsq20);
825
826             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
827             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
828             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
829
830             /* Load parameters for j particles */
831             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
832                                                               charge+jnrC+0,charge+jnrD+0);
833             vdwjidx0A        = 2*vdwtype[jnrA+0];
834             vdwjidx0B        = 2*vdwtype[jnrB+0];
835             vdwjidx0C        = 2*vdwtype[jnrC+0];
836             vdwjidx0D        = 2*vdwtype[jnrD+0];
837
838             fjx0             = _mm_setzero_ps();
839             fjy0             = _mm_setzero_ps();
840             fjz0             = _mm_setzero_ps();
841
842             /**************************
843              * CALCULATE INTERACTIONS *
844              **************************/
845
846             r00              = _mm_mul_ps(rsq00,rinv00);
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq00             = _mm_mul_ps(iq0,jq0);
850             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
851                                          vdwparam+vdwioffset0+vdwjidx0B,
852                                          vdwparam+vdwioffset0+vdwjidx0C,
853                                          vdwparam+vdwioffset0+vdwjidx0D,
854                                          &c6_00,&c12_00);
855
856             /* EWALD ELECTROSTATICS */
857
858             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
859             ewrt             = _mm_mul_ps(r00,ewtabscale);
860             ewitab           = _mm_cvttps_epi32(ewrt);
861             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
862             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
863                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
864                                          &ewtabF,&ewtabFn);
865             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
866             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
867
868             /* LENNARD-JONES DISPERSION/REPULSION */
869
870             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
871             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
872
873             fscal            = _mm_add_ps(felec,fvdw);
874
875             /* Calculate temporary vectorial force */
876             tx               = _mm_mul_ps(fscal,dx00);
877             ty               = _mm_mul_ps(fscal,dy00);
878             tz               = _mm_mul_ps(fscal,dz00);
879
880             /* Update vectorial force */
881             fix0             = _mm_add_ps(fix0,tx);
882             fiy0             = _mm_add_ps(fiy0,ty);
883             fiz0             = _mm_add_ps(fiz0,tz);
884
885             fjx0             = _mm_add_ps(fjx0,tx);
886             fjy0             = _mm_add_ps(fjy0,ty);
887             fjz0             = _mm_add_ps(fjz0,tz);
888             
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             r10              = _mm_mul_ps(rsq10,rinv10);
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq10             = _mm_mul_ps(iq1,jq0);
897
898             /* EWALD ELECTROSTATICS */
899
900             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
901             ewrt             = _mm_mul_ps(r10,ewtabscale);
902             ewitab           = _mm_cvttps_epi32(ewrt);
903             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
904             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
905                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
906                                          &ewtabF,&ewtabFn);
907             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
908             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
909
910             fscal            = felec;
911
912             /* Calculate temporary vectorial force */
913             tx               = _mm_mul_ps(fscal,dx10);
914             ty               = _mm_mul_ps(fscal,dy10);
915             tz               = _mm_mul_ps(fscal,dz10);
916
917             /* Update vectorial force */
918             fix1             = _mm_add_ps(fix1,tx);
919             fiy1             = _mm_add_ps(fiy1,ty);
920             fiz1             = _mm_add_ps(fiz1,tz);
921
922             fjx0             = _mm_add_ps(fjx0,tx);
923             fjy0             = _mm_add_ps(fjy0,ty);
924             fjz0             = _mm_add_ps(fjz0,tz);
925             
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             r20              = _mm_mul_ps(rsq20,rinv20);
931
932             /* Compute parameters for interactions between i and j atoms */
933             qq20             = _mm_mul_ps(iq2,jq0);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _mm_mul_ps(r20,ewtabscale);
939             ewitab           = _mm_cvttps_epi32(ewrt);
940             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
941             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
942                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
943                                          &ewtabF,&ewtabFn);
944             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
945             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
946
947             fscal            = felec;
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_ps(fscal,dx20);
951             ty               = _mm_mul_ps(fscal,dy20);
952             tz               = _mm_mul_ps(fscal,dz20);
953
954             /* Update vectorial force */
955             fix2             = _mm_add_ps(fix2,tx);
956             fiy2             = _mm_add_ps(fiy2,ty);
957             fiz2             = _mm_add_ps(fiz2,tz);
958
959             fjx0             = _mm_add_ps(fjx0,tx);
960             fjy0             = _mm_add_ps(fjy0,ty);
961             fjz0             = _mm_add_ps(fjz0,tz);
962             
963             fjptrA             = f+j_coord_offsetA;
964             fjptrB             = f+j_coord_offsetB;
965             fjptrC             = f+j_coord_offsetC;
966             fjptrD             = f+j_coord_offsetD;
967
968             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
969
970             /* Inner loop uses 115 flops */
971         }
972
973         if(jidx<j_index_end)
974         {
975
976             /* Get j neighbor index, and coordinate index */
977             jnrlistA         = jjnr[jidx];
978             jnrlistB         = jjnr[jidx+1];
979             jnrlistC         = jjnr[jidx+2];
980             jnrlistD         = jjnr[jidx+3];
981             /* Sign of each element will be negative for non-real atoms.
982              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
983              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
984              */
985             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
986             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
987             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
988             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
989             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
990             j_coord_offsetA  = DIM*jnrA;
991             j_coord_offsetB  = DIM*jnrB;
992             j_coord_offsetC  = DIM*jnrC;
993             j_coord_offsetD  = DIM*jnrD;
994
995             /* load j atom coordinates */
996             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
997                                               x+j_coord_offsetC,x+j_coord_offsetD,
998                                               &jx0,&jy0,&jz0);
999
1000             /* Calculate displacement vector */
1001             dx00             = _mm_sub_ps(ix0,jx0);
1002             dy00             = _mm_sub_ps(iy0,jy0);
1003             dz00             = _mm_sub_ps(iz0,jz0);
1004             dx10             = _mm_sub_ps(ix1,jx0);
1005             dy10             = _mm_sub_ps(iy1,jy0);
1006             dz10             = _mm_sub_ps(iz1,jz0);
1007             dx20             = _mm_sub_ps(ix2,jx0);
1008             dy20             = _mm_sub_ps(iy2,jy0);
1009             dz20             = _mm_sub_ps(iz2,jz0);
1010
1011             /* Calculate squared distance and things based on it */
1012             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1013             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1014             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1015
1016             rinv00           = sse2_invsqrt_f(rsq00);
1017             rinv10           = sse2_invsqrt_f(rsq10);
1018             rinv20           = sse2_invsqrt_f(rsq20);
1019
1020             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1021             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1022             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1023
1024             /* Load parameters for j particles */
1025             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1026                                                               charge+jnrC+0,charge+jnrD+0);
1027             vdwjidx0A        = 2*vdwtype[jnrA+0];
1028             vdwjidx0B        = 2*vdwtype[jnrB+0];
1029             vdwjidx0C        = 2*vdwtype[jnrC+0];
1030             vdwjidx0D        = 2*vdwtype[jnrD+0];
1031
1032             fjx0             = _mm_setzero_ps();
1033             fjy0             = _mm_setzero_ps();
1034             fjz0             = _mm_setzero_ps();
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             r00              = _mm_mul_ps(rsq00,rinv00);
1041             r00              = _mm_andnot_ps(dummy_mask,r00);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq00             = _mm_mul_ps(iq0,jq0);
1045             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1046                                          vdwparam+vdwioffset0+vdwjidx0B,
1047                                          vdwparam+vdwioffset0+vdwjidx0C,
1048                                          vdwparam+vdwioffset0+vdwjidx0D,
1049                                          &c6_00,&c12_00);
1050
1051             /* EWALD ELECTROSTATICS */
1052
1053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054             ewrt             = _mm_mul_ps(r00,ewtabscale);
1055             ewitab           = _mm_cvttps_epi32(ewrt);
1056             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1057             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1058                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1059                                          &ewtabF,&ewtabFn);
1060             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1061             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1062
1063             /* LENNARD-JONES DISPERSION/REPULSION */
1064
1065             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1066             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1067
1068             fscal            = _mm_add_ps(felec,fvdw);
1069
1070             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1071
1072             /* Calculate temporary vectorial force */
1073             tx               = _mm_mul_ps(fscal,dx00);
1074             ty               = _mm_mul_ps(fscal,dy00);
1075             tz               = _mm_mul_ps(fscal,dz00);
1076
1077             /* Update vectorial force */
1078             fix0             = _mm_add_ps(fix0,tx);
1079             fiy0             = _mm_add_ps(fiy0,ty);
1080             fiz0             = _mm_add_ps(fiz0,tz);
1081
1082             fjx0             = _mm_add_ps(fjx0,tx);
1083             fjy0             = _mm_add_ps(fjy0,ty);
1084             fjz0             = _mm_add_ps(fjz0,tz);
1085             
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             r10              = _mm_mul_ps(rsq10,rinv10);
1091             r10              = _mm_andnot_ps(dummy_mask,r10);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq10             = _mm_mul_ps(iq1,jq0);
1095
1096             /* EWALD ELECTROSTATICS */
1097
1098             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1099             ewrt             = _mm_mul_ps(r10,ewtabscale);
1100             ewitab           = _mm_cvttps_epi32(ewrt);
1101             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1102             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1103                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1104                                          &ewtabF,&ewtabFn);
1105             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1106             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx10);
1114             ty               = _mm_mul_ps(fscal,dy10);
1115             tz               = _mm_mul_ps(fscal,dz10);
1116
1117             /* Update vectorial force */
1118             fix1             = _mm_add_ps(fix1,tx);
1119             fiy1             = _mm_add_ps(fiy1,ty);
1120             fiz1             = _mm_add_ps(fiz1,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125             
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             r20              = _mm_mul_ps(rsq20,rinv20);
1131             r20              = _mm_andnot_ps(dummy_mask,r20);
1132
1133             /* Compute parameters for interactions between i and j atoms */
1134             qq20             = _mm_mul_ps(iq2,jq0);
1135
1136             /* EWALD ELECTROSTATICS */
1137
1138             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1139             ewrt             = _mm_mul_ps(r20,ewtabscale);
1140             ewitab           = _mm_cvttps_epi32(ewrt);
1141             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1142             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1143                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1144                                          &ewtabF,&ewtabFn);
1145             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1146             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1151
1152             /* Calculate temporary vectorial force */
1153             tx               = _mm_mul_ps(fscal,dx20);
1154             ty               = _mm_mul_ps(fscal,dy20);
1155             tz               = _mm_mul_ps(fscal,dz20);
1156
1157             /* Update vectorial force */
1158             fix2             = _mm_add_ps(fix2,tx);
1159             fiy2             = _mm_add_ps(fiy2,ty);
1160             fiz2             = _mm_add_ps(fiz2,tz);
1161
1162             fjx0             = _mm_add_ps(fjx0,tx);
1163             fjy0             = _mm_add_ps(fjy0,ty);
1164             fjz0             = _mm_add_ps(fjz0,tz);
1165             
1166             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1167             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1168             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1169             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1170
1171             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1172
1173             /* Inner loop uses 118 flops */
1174         }
1175
1176         /* End of innermost loop */
1177
1178         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1179                                               f+i_coord_offset,fshift+i_shift_offset);
1180
1181         /* Increment number of inner iterations */
1182         inneriter                  += j_index_end - j_index_start;
1183
1184         /* Outer loop uses 18 flops */
1185     }
1186
1187     /* Increment number of outer iterations */
1188     outeriter        += nri;
1189
1190     /* Update outer/inner flops */
1191
1192     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1193 }