Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          ewitab;
103     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
134     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
135     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }  
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170         
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208             dx10             = _mm_sub_ps(ix1,jx0);
209             dy10             = _mm_sub_ps(iy1,jy0);
210             dz10             = _mm_sub_ps(iz1,jz0);
211             dx20             = _mm_sub_ps(ix2,jx0);
212             dy20             = _mm_sub_ps(iy2,jy0);
213             dz20             = _mm_sub_ps(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
219
220             rinv00           = gmx_mm_invsqrt_ps(rsq00);
221             rinv10           = gmx_mm_invsqrt_ps(rsq10);
222             rinv20           = gmx_mm_invsqrt_ps(rsq20);
223
224             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                               charge+jnrC+0,charge+jnrD+0);
231             vdwjidx0A        = 2*vdwtype[jnrA+0];
232             vdwjidx0B        = 2*vdwtype[jnrB+0];
233             vdwjidx0C        = 2*vdwtype[jnrC+0];
234             vdwjidx0D        = 2*vdwtype[jnrD+0];
235
236             fjx0             = _mm_setzero_ps();
237             fjy0             = _mm_setzero_ps();
238             fjz0             = _mm_setzero_ps();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_ps(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             qq00             = _mm_mul_ps(iq0,jq0);
248             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
249                                          vdwparam+vdwioffset0+vdwjidx0B,
250                                          vdwparam+vdwioffset0+vdwjidx0C,
251                                          vdwparam+vdwioffset0+vdwjidx0D,
252                                          &c6_00,&c12_00);
253
254             /* EWALD ELECTROSTATICS */
255
256             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
257             ewrt             = _mm_mul_ps(r00,ewtabscale);
258             ewitab           = _mm_cvttps_epi32(ewrt);
259             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
260             ewitab           = _mm_slli_epi32(ewitab,2);
261             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
262             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
263             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
264             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
265             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
266             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
267             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
268             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
269             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
270
271             /* LENNARD-JONES DISPERSION/REPULSION */
272
273             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
274             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
275             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
276             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
277             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm_add_ps(velecsum,velec);
281             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
282
283             fscal            = _mm_add_ps(felec,fvdw);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_ps(fscal,dx00);
287             ty               = _mm_mul_ps(fscal,dy00);
288             tz               = _mm_mul_ps(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_ps(fix0,tx);
292             fiy0             = _mm_add_ps(fiy0,ty);
293             fiz0             = _mm_add_ps(fiz0,tz);
294
295             fjx0             = _mm_add_ps(fjx0,tx);
296             fjy0             = _mm_add_ps(fjy0,ty);
297             fjz0             = _mm_add_ps(fjz0,tz);
298             
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm_mul_ps(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* EWALD ELECTROSTATICS */
309
310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
311             ewrt             = _mm_mul_ps(r10,ewtabscale);
312             ewitab           = _mm_cvttps_epi32(ewrt);
313             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
314             ewitab           = _mm_slli_epi32(ewitab,2);
315             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
316             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
317             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
318             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
319             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
320             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
321             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
322             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
323             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_ps(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx10);
332             ty               = _mm_mul_ps(fscal,dy10);
333             tz               = _mm_mul_ps(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_ps(fix1,tx);
337             fiy1             = _mm_add_ps(fiy1,ty);
338             fiz1             = _mm_add_ps(fiz1,tz);
339
340             fjx0             = _mm_add_ps(fjx0,tx);
341             fjy0             = _mm_add_ps(fjy0,ty);
342             fjz0             = _mm_add_ps(fjz0,tz);
343             
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_ps(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_ps(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_ps(r20,ewtabscale);
357             ewitab           = _mm_cvttps_epi32(ewrt);
358             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
362             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
363             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
364             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
365             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
366             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
367             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
368             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velecsum         = _mm_add_ps(velecsum,velec);
372
373             fscal            = felec;
374
375             /* Calculate temporary vectorial force */
376             tx               = _mm_mul_ps(fscal,dx20);
377             ty               = _mm_mul_ps(fscal,dy20);
378             tz               = _mm_mul_ps(fscal,dz20);
379
380             /* Update vectorial force */
381             fix2             = _mm_add_ps(fix2,tx);
382             fiy2             = _mm_add_ps(fiy2,ty);
383             fiz2             = _mm_add_ps(fiz2,tz);
384
385             fjx0             = _mm_add_ps(fjx0,tx);
386             fjy0             = _mm_add_ps(fjy0,ty);
387             fjz0             = _mm_add_ps(fjz0,tz);
388             
389             fjptrA             = f+j_coord_offsetA;
390             fjptrB             = f+j_coord_offsetB;
391             fjptrC             = f+j_coord_offsetC;
392             fjptrD             = f+j_coord_offsetD;
393
394             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 135 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             /* Get j neighbor index, and coordinate index */
403             jnrlistA         = jjnr[jidx];
404             jnrlistB         = jjnr[jidx+1];
405             jnrlistC         = jjnr[jidx+2];
406             jnrlistD         = jjnr[jidx+3];
407             /* Sign of each element will be negative for non-real atoms.
408              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
409              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
410              */
411             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
412             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
413             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
414             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
415             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
416             j_coord_offsetA  = DIM*jnrA;
417             j_coord_offsetB  = DIM*jnrB;
418             j_coord_offsetC  = DIM*jnrC;
419             j_coord_offsetD  = DIM*jnrD;
420
421             /* load j atom coordinates */
422             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
423                                               x+j_coord_offsetC,x+j_coord_offsetD,
424                                               &jx0,&jy0,&jz0);
425
426             /* Calculate displacement vector */
427             dx00             = _mm_sub_ps(ix0,jx0);
428             dy00             = _mm_sub_ps(iy0,jy0);
429             dz00             = _mm_sub_ps(iz0,jz0);
430             dx10             = _mm_sub_ps(ix1,jx0);
431             dy10             = _mm_sub_ps(iy1,jy0);
432             dz10             = _mm_sub_ps(iz1,jz0);
433             dx20             = _mm_sub_ps(ix2,jx0);
434             dy20             = _mm_sub_ps(iy2,jy0);
435             dz20             = _mm_sub_ps(iz2,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
441
442             rinv00           = gmx_mm_invsqrt_ps(rsq00);
443             rinv10           = gmx_mm_invsqrt_ps(rsq10);
444             rinv20           = gmx_mm_invsqrt_ps(rsq20);
445
446             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
447             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
448             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
452                                                               charge+jnrC+0,charge+jnrD+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454             vdwjidx0B        = 2*vdwtype[jnrB+0];
455             vdwjidx0C        = 2*vdwtype[jnrC+0];
456             vdwjidx0D        = 2*vdwtype[jnrD+0];
457
458             fjx0             = _mm_setzero_ps();
459             fjy0             = _mm_setzero_ps();
460             fjz0             = _mm_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r00              = _mm_mul_ps(rsq00,rinv00);
467             r00              = _mm_andnot_ps(dummy_mask,r00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_ps(iq0,jq0);
471             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
472                                          vdwparam+vdwioffset0+vdwjidx0B,
473                                          vdwparam+vdwioffset0+vdwjidx0C,
474                                          vdwparam+vdwioffset0+vdwjidx0D,
475                                          &c6_00,&c12_00);
476
477             /* EWALD ELECTROSTATICS */
478
479             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
480             ewrt             = _mm_mul_ps(r00,ewtabscale);
481             ewitab           = _mm_cvttps_epi32(ewrt);
482             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
483             ewitab           = _mm_slli_epi32(ewitab,2);
484             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
485             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
486             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
487             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
488             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
489             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
490             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
491             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
492             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
493
494             /* LENNARD-JONES DISPERSION/REPULSION */
495
496             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
497             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
498             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
499             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
500             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_andnot_ps(dummy_mask,velec);
504             velecsum         = _mm_add_ps(velecsum,velec);
505             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
506             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
507
508             fscal            = _mm_add_ps(felec,fvdw);
509
510             fscal            = _mm_andnot_ps(dummy_mask,fscal);
511
512             /* Calculate temporary vectorial force */
513             tx               = _mm_mul_ps(fscal,dx00);
514             ty               = _mm_mul_ps(fscal,dy00);
515             tz               = _mm_mul_ps(fscal,dz00);
516
517             /* Update vectorial force */
518             fix0             = _mm_add_ps(fix0,tx);
519             fiy0             = _mm_add_ps(fiy0,ty);
520             fiz0             = _mm_add_ps(fiz0,tz);
521
522             fjx0             = _mm_add_ps(fjx0,tx);
523             fjy0             = _mm_add_ps(fjy0,ty);
524             fjz0             = _mm_add_ps(fjz0,tz);
525             
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r10              = _mm_mul_ps(rsq10,rinv10);
531             r10              = _mm_andnot_ps(dummy_mask,r10);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq10             = _mm_mul_ps(iq1,jq0);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _mm_mul_ps(r10,ewtabscale);
540             ewitab           = _mm_cvttps_epi32(ewrt);
541             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
542             ewitab           = _mm_slli_epi32(ewitab,2);
543             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
544             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
545             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
546             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
547             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
548             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
549             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
550             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
551             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx10);
563             ty               = _mm_mul_ps(fscal,dy10);
564             tz               = _mm_mul_ps(fscal,dz10);
565
566             /* Update vectorial force */
567             fix1             = _mm_add_ps(fix1,tx);
568             fiy1             = _mm_add_ps(fiy1,ty);
569             fiz1             = _mm_add_ps(fiz1,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574             
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r20              = _mm_mul_ps(rsq20,rinv20);
580             r20              = _mm_andnot_ps(dummy_mask,r20);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq20             = _mm_mul_ps(iq2,jq0);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm_mul_ps(r20,ewtabscale);
589             ewitab           = _mm_cvttps_epi32(ewrt);
590             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
591             ewitab           = _mm_slli_epi32(ewitab,2);
592             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
593             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
594             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
595             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
596             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
597             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
598             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
599             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
600             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm_andnot_ps(dummy_mask,velec);
604             velecsum         = _mm_add_ps(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm_andnot_ps(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm_mul_ps(fscal,dx20);
612             ty               = _mm_mul_ps(fscal,dy20);
613             tz               = _mm_mul_ps(fscal,dz20);
614
615             /* Update vectorial force */
616             fix2             = _mm_add_ps(fix2,tx);
617             fiy2             = _mm_add_ps(fiy2,ty);
618             fiz2             = _mm_add_ps(fiz2,tz);
619
620             fjx0             = _mm_add_ps(fjx0,tx);
621             fjy0             = _mm_add_ps(fjy0,ty);
622             fjz0             = _mm_add_ps(fjz0,tz);
623             
624             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
625             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
626             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
627             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
628
629             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
630
631             /* Inner loop uses 138 flops */
632         }
633
634         /* End of innermost loop */
635
636         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
637                                               f+i_coord_offset,fshift+i_shift_offset);
638
639         ggid                        = gid[iidx];
640         /* Update potential energies */
641         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
642         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
643
644         /* Increment number of inner iterations */
645         inneriter                  += j_index_end - j_index_start;
646
647         /* Outer loop uses 20 flops */
648     }
649
650     /* Increment number of outer iterations */
651     outeriter        += nri;
652
653     /* Update outer/inner flops */
654
655     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*138);
656 }
657 /*
658  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
659  * Electrostatics interaction: Ewald
660  * VdW interaction:            LennardJones
661  * Geometry:                   Water3-Particle
662  * Calculate force/pot:        Force
663  */
664 void
665 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_sse2_single
666                     (t_nblist                    * gmx_restrict       nlist,
667                      rvec                        * gmx_restrict          xx,
668                      rvec                        * gmx_restrict          ff,
669                      t_forcerec                  * gmx_restrict          fr,
670                      t_mdatoms                   * gmx_restrict     mdatoms,
671                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
672                      t_nrnb                      * gmx_restrict        nrnb)
673 {
674     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
675      * just 0 for non-waters.
676      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
677      * jnr indices corresponding to data put in the four positions in the SIMD register.
678      */
679     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
680     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
681     int              jnrA,jnrB,jnrC,jnrD;
682     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
683     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
684     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
685     real             rcutoff_scalar;
686     real             *shiftvec,*fshift,*x,*f;
687     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
688     real             scratch[4*DIM];
689     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
690     int              vdwioffset0;
691     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
692     int              vdwioffset1;
693     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694     int              vdwioffset2;
695     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
697     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
698     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
699     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
700     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
701     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
702     real             *charge;
703     int              nvdwtype;
704     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
705     int              *vdwtype;
706     real             *vdwparam;
707     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
708     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
709     __m128i          ewitab;
710     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
711     real             *ewtab;
712     __m128           dummy_mask,cutoff_mask;
713     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
714     __m128           one     = _mm_set1_ps(1.0);
715     __m128           two     = _mm_set1_ps(2.0);
716     x                = xx[0];
717     f                = ff[0];
718
719     nri              = nlist->nri;
720     iinr             = nlist->iinr;
721     jindex           = nlist->jindex;
722     jjnr             = nlist->jjnr;
723     shiftidx         = nlist->shift;
724     gid              = nlist->gid;
725     shiftvec         = fr->shift_vec[0];
726     fshift           = fr->fshift[0];
727     facel            = _mm_set1_ps(fr->epsfac);
728     charge           = mdatoms->chargeA;
729     nvdwtype         = fr->ntype;
730     vdwparam         = fr->nbfp;
731     vdwtype          = mdatoms->typeA;
732
733     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
734     ewtab            = fr->ic->tabq_coul_F;
735     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
736     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
737
738     /* Setup water-specific parameters */
739     inr              = nlist->iinr[0];
740     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
741     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
742     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
743     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
744
745     /* Avoid stupid compiler warnings */
746     jnrA = jnrB = jnrC = jnrD = 0;
747     j_coord_offsetA = 0;
748     j_coord_offsetB = 0;
749     j_coord_offsetC = 0;
750     j_coord_offsetD = 0;
751
752     outeriter        = 0;
753     inneriter        = 0;
754
755     for(iidx=0;iidx<4*DIM;iidx++)
756     {
757         scratch[iidx] = 0.0;
758     }  
759
760     /* Start outer loop over neighborlists */
761     for(iidx=0; iidx<nri; iidx++)
762     {
763         /* Load shift vector for this list */
764         i_shift_offset   = DIM*shiftidx[iidx];
765
766         /* Load limits for loop over neighbors */
767         j_index_start    = jindex[iidx];
768         j_index_end      = jindex[iidx+1];
769
770         /* Get outer coordinate index */
771         inr              = iinr[iidx];
772         i_coord_offset   = DIM*inr;
773
774         /* Load i particle coords and add shift vector */
775         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
776                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
777         
778         fix0             = _mm_setzero_ps();
779         fiy0             = _mm_setzero_ps();
780         fiz0             = _mm_setzero_ps();
781         fix1             = _mm_setzero_ps();
782         fiy1             = _mm_setzero_ps();
783         fiz1             = _mm_setzero_ps();
784         fix2             = _mm_setzero_ps();
785         fiy2             = _mm_setzero_ps();
786         fiz2             = _mm_setzero_ps();
787
788         /* Start inner kernel loop */
789         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
790         {
791
792             /* Get j neighbor index, and coordinate index */
793             jnrA             = jjnr[jidx];
794             jnrB             = jjnr[jidx+1];
795             jnrC             = jjnr[jidx+2];
796             jnrD             = jjnr[jidx+3];
797             j_coord_offsetA  = DIM*jnrA;
798             j_coord_offsetB  = DIM*jnrB;
799             j_coord_offsetC  = DIM*jnrC;
800             j_coord_offsetD  = DIM*jnrD;
801
802             /* load j atom coordinates */
803             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
804                                               x+j_coord_offsetC,x+j_coord_offsetD,
805                                               &jx0,&jy0,&jz0);
806
807             /* Calculate displacement vector */
808             dx00             = _mm_sub_ps(ix0,jx0);
809             dy00             = _mm_sub_ps(iy0,jy0);
810             dz00             = _mm_sub_ps(iz0,jz0);
811             dx10             = _mm_sub_ps(ix1,jx0);
812             dy10             = _mm_sub_ps(iy1,jy0);
813             dz10             = _mm_sub_ps(iz1,jz0);
814             dx20             = _mm_sub_ps(ix2,jx0);
815             dy20             = _mm_sub_ps(iy2,jy0);
816             dz20             = _mm_sub_ps(iz2,jz0);
817
818             /* Calculate squared distance and things based on it */
819             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
820             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
821             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
822
823             rinv00           = gmx_mm_invsqrt_ps(rsq00);
824             rinv10           = gmx_mm_invsqrt_ps(rsq10);
825             rinv20           = gmx_mm_invsqrt_ps(rsq20);
826
827             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
828             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
829             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
830
831             /* Load parameters for j particles */
832             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
833                                                               charge+jnrC+0,charge+jnrD+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836             vdwjidx0C        = 2*vdwtype[jnrC+0];
837             vdwjidx0D        = 2*vdwtype[jnrD+0];
838
839             fjx0             = _mm_setzero_ps();
840             fjy0             = _mm_setzero_ps();
841             fjz0             = _mm_setzero_ps();
842
843             /**************************
844              * CALCULATE INTERACTIONS *
845              **************************/
846
847             r00              = _mm_mul_ps(rsq00,rinv00);
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq00             = _mm_mul_ps(iq0,jq0);
851             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
852                                          vdwparam+vdwioffset0+vdwjidx0B,
853                                          vdwparam+vdwioffset0+vdwjidx0C,
854                                          vdwparam+vdwioffset0+vdwjidx0D,
855                                          &c6_00,&c12_00);
856
857             /* EWALD ELECTROSTATICS */
858
859             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
860             ewrt             = _mm_mul_ps(r00,ewtabscale);
861             ewitab           = _mm_cvttps_epi32(ewrt);
862             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
863             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
864                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
865                                          &ewtabF,&ewtabFn);
866             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
867             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
868
869             /* LENNARD-JONES DISPERSION/REPULSION */
870
871             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
872             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
873
874             fscal            = _mm_add_ps(felec,fvdw);
875
876             /* Calculate temporary vectorial force */
877             tx               = _mm_mul_ps(fscal,dx00);
878             ty               = _mm_mul_ps(fscal,dy00);
879             tz               = _mm_mul_ps(fscal,dz00);
880
881             /* Update vectorial force */
882             fix0             = _mm_add_ps(fix0,tx);
883             fiy0             = _mm_add_ps(fiy0,ty);
884             fiz0             = _mm_add_ps(fiz0,tz);
885
886             fjx0             = _mm_add_ps(fjx0,tx);
887             fjy0             = _mm_add_ps(fjy0,ty);
888             fjz0             = _mm_add_ps(fjz0,tz);
889             
890             /**************************
891              * CALCULATE INTERACTIONS *
892              **************************/
893
894             r10              = _mm_mul_ps(rsq10,rinv10);
895
896             /* Compute parameters for interactions between i and j atoms */
897             qq10             = _mm_mul_ps(iq1,jq0);
898
899             /* EWALD ELECTROSTATICS */
900
901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902             ewrt             = _mm_mul_ps(r10,ewtabscale);
903             ewitab           = _mm_cvttps_epi32(ewrt);
904             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
905             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
906                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
907                                          &ewtabF,&ewtabFn);
908             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
909             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
910
911             fscal            = felec;
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx10);
915             ty               = _mm_mul_ps(fscal,dy10);
916             tz               = _mm_mul_ps(fscal,dz10);
917
918             /* Update vectorial force */
919             fix1             = _mm_add_ps(fix1,tx);
920             fiy1             = _mm_add_ps(fiy1,ty);
921             fiz1             = _mm_add_ps(fiz1,tz);
922
923             fjx0             = _mm_add_ps(fjx0,tx);
924             fjy0             = _mm_add_ps(fjy0,ty);
925             fjz0             = _mm_add_ps(fjz0,tz);
926             
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r20              = _mm_mul_ps(rsq20,rinv20);
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq20             = _mm_mul_ps(iq2,jq0);
935
936             /* EWALD ELECTROSTATICS */
937
938             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
939             ewrt             = _mm_mul_ps(r20,ewtabscale);
940             ewitab           = _mm_cvttps_epi32(ewrt);
941             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
942             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
943                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
944                                          &ewtabF,&ewtabFn);
945             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
946             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
947
948             fscal            = felec;
949
950             /* Calculate temporary vectorial force */
951             tx               = _mm_mul_ps(fscal,dx20);
952             ty               = _mm_mul_ps(fscal,dy20);
953             tz               = _mm_mul_ps(fscal,dz20);
954
955             /* Update vectorial force */
956             fix2             = _mm_add_ps(fix2,tx);
957             fiy2             = _mm_add_ps(fiy2,ty);
958             fiz2             = _mm_add_ps(fiz2,tz);
959
960             fjx0             = _mm_add_ps(fjx0,tx);
961             fjy0             = _mm_add_ps(fjy0,ty);
962             fjz0             = _mm_add_ps(fjz0,tz);
963             
964             fjptrA             = f+j_coord_offsetA;
965             fjptrB             = f+j_coord_offsetB;
966             fjptrC             = f+j_coord_offsetC;
967             fjptrD             = f+j_coord_offsetD;
968
969             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
970
971             /* Inner loop uses 115 flops */
972         }
973
974         if(jidx<j_index_end)
975         {
976
977             /* Get j neighbor index, and coordinate index */
978             jnrlistA         = jjnr[jidx];
979             jnrlistB         = jjnr[jidx+1];
980             jnrlistC         = jjnr[jidx+2];
981             jnrlistD         = jjnr[jidx+3];
982             /* Sign of each element will be negative for non-real atoms.
983              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
984              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
985              */
986             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
987             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
988             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
989             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
990             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
991             j_coord_offsetA  = DIM*jnrA;
992             j_coord_offsetB  = DIM*jnrB;
993             j_coord_offsetC  = DIM*jnrC;
994             j_coord_offsetD  = DIM*jnrD;
995
996             /* load j atom coordinates */
997             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
998                                               x+j_coord_offsetC,x+j_coord_offsetD,
999                                               &jx0,&jy0,&jz0);
1000
1001             /* Calculate displacement vector */
1002             dx00             = _mm_sub_ps(ix0,jx0);
1003             dy00             = _mm_sub_ps(iy0,jy0);
1004             dz00             = _mm_sub_ps(iz0,jz0);
1005             dx10             = _mm_sub_ps(ix1,jx0);
1006             dy10             = _mm_sub_ps(iy1,jy0);
1007             dz10             = _mm_sub_ps(iz1,jz0);
1008             dx20             = _mm_sub_ps(ix2,jx0);
1009             dy20             = _mm_sub_ps(iy2,jy0);
1010             dz20             = _mm_sub_ps(iz2,jz0);
1011
1012             /* Calculate squared distance and things based on it */
1013             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1014             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1015             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1016
1017             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1018             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1019             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1020
1021             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1022             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1023             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1024
1025             /* Load parameters for j particles */
1026             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1027                                                               charge+jnrC+0,charge+jnrD+0);
1028             vdwjidx0A        = 2*vdwtype[jnrA+0];
1029             vdwjidx0B        = 2*vdwtype[jnrB+0];
1030             vdwjidx0C        = 2*vdwtype[jnrC+0];
1031             vdwjidx0D        = 2*vdwtype[jnrD+0];
1032
1033             fjx0             = _mm_setzero_ps();
1034             fjy0             = _mm_setzero_ps();
1035             fjz0             = _mm_setzero_ps();
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r00              = _mm_mul_ps(rsq00,rinv00);
1042             r00              = _mm_andnot_ps(dummy_mask,r00);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq00             = _mm_mul_ps(iq0,jq0);
1046             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1047                                          vdwparam+vdwioffset0+vdwjidx0B,
1048                                          vdwparam+vdwioffset0+vdwjidx0C,
1049                                          vdwparam+vdwioffset0+vdwjidx0D,
1050                                          &c6_00,&c12_00);
1051
1052             /* EWALD ELECTROSTATICS */
1053
1054             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1055             ewrt             = _mm_mul_ps(r00,ewtabscale);
1056             ewitab           = _mm_cvttps_epi32(ewrt);
1057             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1058             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1059                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1060                                          &ewtabF,&ewtabFn);
1061             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1062             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1063
1064             /* LENNARD-JONES DISPERSION/REPULSION */
1065
1066             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1067             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1068
1069             fscal            = _mm_add_ps(felec,fvdw);
1070
1071             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1072
1073             /* Calculate temporary vectorial force */
1074             tx               = _mm_mul_ps(fscal,dx00);
1075             ty               = _mm_mul_ps(fscal,dy00);
1076             tz               = _mm_mul_ps(fscal,dz00);
1077
1078             /* Update vectorial force */
1079             fix0             = _mm_add_ps(fix0,tx);
1080             fiy0             = _mm_add_ps(fiy0,ty);
1081             fiz0             = _mm_add_ps(fiz0,tz);
1082
1083             fjx0             = _mm_add_ps(fjx0,tx);
1084             fjy0             = _mm_add_ps(fjy0,ty);
1085             fjz0             = _mm_add_ps(fjz0,tz);
1086             
1087             /**************************
1088              * CALCULATE INTERACTIONS *
1089              **************************/
1090
1091             r10              = _mm_mul_ps(rsq10,rinv10);
1092             r10              = _mm_andnot_ps(dummy_mask,r10);
1093
1094             /* Compute parameters for interactions between i and j atoms */
1095             qq10             = _mm_mul_ps(iq1,jq0);
1096
1097             /* EWALD ELECTROSTATICS */
1098
1099             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1100             ewrt             = _mm_mul_ps(r10,ewtabscale);
1101             ewitab           = _mm_cvttps_epi32(ewrt);
1102             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1103             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1104                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1105                                          &ewtabF,&ewtabFn);
1106             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1107             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx10);
1115             ty               = _mm_mul_ps(fscal,dy10);
1116             tz               = _mm_mul_ps(fscal,dz10);
1117
1118             /* Update vectorial force */
1119             fix1             = _mm_add_ps(fix1,tx);
1120             fiy1             = _mm_add_ps(fiy1,ty);
1121             fiz1             = _mm_add_ps(fiz1,tz);
1122
1123             fjx0             = _mm_add_ps(fjx0,tx);
1124             fjy0             = _mm_add_ps(fjy0,ty);
1125             fjz0             = _mm_add_ps(fjz0,tz);
1126             
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             r20              = _mm_mul_ps(rsq20,rinv20);
1132             r20              = _mm_andnot_ps(dummy_mask,r20);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq20             = _mm_mul_ps(iq2,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_ps(r20,ewtabscale);
1141             ewitab           = _mm_cvttps_epi32(ewrt);
1142             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1143             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1144                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1145                                          &ewtabF,&ewtabFn);
1146             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1147             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm_mul_ps(fscal,dx20);
1155             ty               = _mm_mul_ps(fscal,dy20);
1156             tz               = _mm_mul_ps(fscal,dz20);
1157
1158             /* Update vectorial force */
1159             fix2             = _mm_add_ps(fix2,tx);
1160             fiy2             = _mm_add_ps(fiy2,ty);
1161             fiz2             = _mm_add_ps(fiz2,tz);
1162
1163             fjx0             = _mm_add_ps(fjx0,tx);
1164             fjy0             = _mm_add_ps(fjy0,ty);
1165             fjz0             = _mm_add_ps(fjz0,tz);
1166             
1167             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1168             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1169             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1170             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1171
1172             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1173
1174             /* Inner loop uses 118 flops */
1175         }
1176
1177         /* End of innermost loop */
1178
1179         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1180                                               f+i_coord_offset,fshift+i_shift_offset);
1181
1182         /* Increment number of inner iterations */
1183         inneriter                  += j_index_end - j_index_start;
1184
1185         /* Outer loop uses 18 flops */
1186     }
1187
1188     /* Increment number of outer iterations */
1189     outeriter        += nri;
1190
1191     /* Update outer/inner flops */
1192
1193     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1194 }