Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           c6grid_30;
108     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128           one_half = _mm_set1_ps(0.5);
111     __m128           minus_one = _mm_set1_ps(-1.0);
112     __m128i          ewitab;
113     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128           dummy_mask,cutoff_mask;
116     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
117     __m128           one     = _mm_set1_ps(1.0);
118     __m128           two     = _mm_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_ps(fr->ic->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }  
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
184         
185         fix0             = _mm_setzero_ps();
186         fiy0             = _mm_setzero_ps();
187         fiz0             = _mm_setzero_ps();
188         fix1             = _mm_setzero_ps();
189         fiy1             = _mm_setzero_ps();
190         fiz1             = _mm_setzero_ps();
191         fix2             = _mm_setzero_ps();
192         fiy2             = _mm_setzero_ps();
193         fiz2             = _mm_setzero_ps();
194         fix3             = _mm_setzero_ps();
195         fiy3             = _mm_setzero_ps();
196         fiz3             = _mm_setzero_ps();
197
198         /* Reset potential sums */
199         velecsum         = _mm_setzero_ps();
200         vvdwsum          = _mm_setzero_ps();
201
202         /* Start inner kernel loop */
203         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
204         {
205
206             /* Get j neighbor index, and coordinate index */
207             jnrA             = jjnr[jidx];
208             jnrB             = jjnr[jidx+1];
209             jnrC             = jjnr[jidx+2];
210             jnrD             = jjnr[jidx+3];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215
216             /* load j atom coordinates */
217             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
218                                               x+j_coord_offsetC,x+j_coord_offsetD,
219                                               &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm_sub_ps(ix0,jx0);
223             dy00             = _mm_sub_ps(iy0,jy0);
224             dz00             = _mm_sub_ps(iz0,jz0);
225             dx10             = _mm_sub_ps(ix1,jx0);
226             dy10             = _mm_sub_ps(iy1,jy0);
227             dz10             = _mm_sub_ps(iz1,jz0);
228             dx20             = _mm_sub_ps(ix2,jx0);
229             dy20             = _mm_sub_ps(iy2,jy0);
230             dz20             = _mm_sub_ps(iz2,jz0);
231             dx30             = _mm_sub_ps(ix3,jx0);
232             dy30             = _mm_sub_ps(iy3,jy0);
233             dz30             = _mm_sub_ps(iz3,jz0);
234
235             /* Calculate squared distance and things based on it */
236             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
237             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
238             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
239             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
240
241             rinv00           = sse2_invsqrt_f(rsq00);
242             rinv10           = sse2_invsqrt_f(rsq10);
243             rinv20           = sse2_invsqrt_f(rsq20);
244             rinv30           = sse2_invsqrt_f(rsq30);
245
246             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
247             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
248             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
249             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
250
251             /* Load parameters for j particles */
252             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
253                                                               charge+jnrC+0,charge+jnrD+0);
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255             vdwjidx0B        = 2*vdwtype[jnrB+0];
256             vdwjidx0C        = 2*vdwtype[jnrC+0];
257             vdwjidx0D        = 2*vdwtype[jnrD+0];
258
259             fjx0             = _mm_setzero_ps();
260             fjy0             = _mm_setzero_ps();
261             fjz0             = _mm_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm_mul_ps(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
271                                          vdwparam+vdwioffset0+vdwjidx0B,
272                                          vdwparam+vdwioffset0+vdwjidx0C,
273                                          vdwparam+vdwioffset0+vdwjidx0D,
274                                          &c6_00,&c12_00);
275             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
276                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
277                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
279
280             /* Analytical LJ-PME */
281             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
282             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
283             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
284             exponent         = sse2_exp_f(ewcljrsq);
285             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
286             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
287             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
288             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
289             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
290             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
291             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
292             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_ps(fscal,dx00);
301             ty               = _mm_mul_ps(fscal,dy00);
302             tz               = _mm_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_ps(fix0,tx);
306             fiy0             = _mm_add_ps(fiy0,ty);
307             fiz0             = _mm_add_ps(fiz0,tz);
308
309             fjx0             = _mm_add_ps(fjx0,tx);
310             fjy0             = _mm_add_ps(fjy0,ty);
311             fjz0             = _mm_add_ps(fjz0,tz);
312             
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_ps(r10,ewtabscale);
326             ewitab           = _mm_cvttps_epi32(ewrt);
327             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
332             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
333             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
334             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
335             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
336             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
337             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx10);
346             ty               = _mm_mul_ps(fscal,dy10);
347             tz               = _mm_mul_ps(fscal,dz10);
348
349             /* Update vectorial force */
350             fix1             = _mm_add_ps(fix1,tx);
351             fiy1             = _mm_add_ps(fiy1,ty);
352             fiz1             = _mm_add_ps(fiz1,tz);
353
354             fjx0             = _mm_add_ps(fjx0,tx);
355             fjy0             = _mm_add_ps(fjy0,ty);
356             fjz0             = _mm_add_ps(fjz0,tz);
357             
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r20              = _mm_mul_ps(rsq20,rinv20);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq20             = _mm_mul_ps(iq2,jq0);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370             ewrt             = _mm_mul_ps(r20,ewtabscale);
371             ewitab           = _mm_cvttps_epi32(ewrt);
372             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
373             ewitab           = _mm_slli_epi32(ewitab,2);
374             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
375             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
376             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
377             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
378             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
379             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
380             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
381             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
382             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velecsum         = _mm_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm_mul_ps(fscal,dx20);
391             ty               = _mm_mul_ps(fscal,dy20);
392             tz               = _mm_mul_ps(fscal,dz20);
393
394             /* Update vectorial force */
395             fix2             = _mm_add_ps(fix2,tx);
396             fiy2             = _mm_add_ps(fiy2,ty);
397             fiz2             = _mm_add_ps(fiz2,tz);
398
399             fjx0             = _mm_add_ps(fjx0,tx);
400             fjy0             = _mm_add_ps(fjy0,ty);
401             fjz0             = _mm_add_ps(fjz0,tz);
402             
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r30              = _mm_mul_ps(rsq30,rinv30);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq30             = _mm_mul_ps(iq3,jq0);
411
412             /* EWALD ELECTROSTATICS */
413
414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
415             ewrt             = _mm_mul_ps(r30,ewtabscale);
416             ewitab           = _mm_cvttps_epi32(ewrt);
417             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
421             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
422             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
423             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
424             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
425             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
426             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
427             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velecsum         = _mm_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx30);
436             ty               = _mm_mul_ps(fscal,dy30);
437             tz               = _mm_mul_ps(fscal,dz30);
438
439             /* Update vectorial force */
440             fix3             = _mm_add_ps(fix3,tx);
441             fiy3             = _mm_add_ps(fiy3,ty);
442             fiz3             = _mm_add_ps(fiz3,tz);
443
444             fjx0             = _mm_add_ps(fjx0,tx);
445             fjy0             = _mm_add_ps(fjy0,ty);
446             fjz0             = _mm_add_ps(fjz0,tz);
447             
448             fjptrA             = f+j_coord_offsetA;
449             fjptrB             = f+j_coord_offsetB;
450             fjptrC             = f+j_coord_offsetC;
451             fjptrD             = f+j_coord_offsetD;
452
453             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
454
455             /* Inner loop uses 174 flops */
456         }
457
458         if(jidx<j_index_end)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrlistA         = jjnr[jidx];
463             jnrlistB         = jjnr[jidx+1];
464             jnrlistC         = jjnr[jidx+2];
465             jnrlistD         = jjnr[jidx+3];
466             /* Sign of each element will be negative for non-real atoms.
467              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
468              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
469              */
470             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
471             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
472             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
473             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
474             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477             j_coord_offsetC  = DIM*jnrC;
478             j_coord_offsetD  = DIM*jnrD;
479
480             /* load j atom coordinates */
481             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
482                                               x+j_coord_offsetC,x+j_coord_offsetD,
483                                               &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm_sub_ps(ix0,jx0);
487             dy00             = _mm_sub_ps(iy0,jy0);
488             dz00             = _mm_sub_ps(iz0,jz0);
489             dx10             = _mm_sub_ps(ix1,jx0);
490             dy10             = _mm_sub_ps(iy1,jy0);
491             dz10             = _mm_sub_ps(iz1,jz0);
492             dx20             = _mm_sub_ps(ix2,jx0);
493             dy20             = _mm_sub_ps(iy2,jy0);
494             dz20             = _mm_sub_ps(iz2,jz0);
495             dx30             = _mm_sub_ps(ix3,jx0);
496             dy30             = _mm_sub_ps(iy3,jy0);
497             dz30             = _mm_sub_ps(iz3,jz0);
498
499             /* Calculate squared distance and things based on it */
500             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
501             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
502             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
503             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
504
505             rinv00           = sse2_invsqrt_f(rsq00);
506             rinv10           = sse2_invsqrt_f(rsq10);
507             rinv20           = sse2_invsqrt_f(rsq20);
508             rinv30           = sse2_invsqrt_f(rsq30);
509
510             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
511             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
512             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
513             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
514
515             /* Load parameters for j particles */
516             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
517                                                               charge+jnrC+0,charge+jnrD+0);
518             vdwjidx0A        = 2*vdwtype[jnrA+0];
519             vdwjidx0B        = 2*vdwtype[jnrB+0];
520             vdwjidx0C        = 2*vdwtype[jnrC+0];
521             vdwjidx0D        = 2*vdwtype[jnrD+0];
522
523             fjx0             = _mm_setzero_ps();
524             fjy0             = _mm_setzero_ps();
525             fjz0             = _mm_setzero_ps();
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r00              = _mm_mul_ps(rsq00,rinv00);
532             r00              = _mm_andnot_ps(dummy_mask,r00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,
537                                          vdwparam+vdwioffset0+vdwjidx0C,
538                                          vdwparam+vdwioffset0+vdwjidx0D,
539                                          &c6_00,&c12_00);
540             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
541                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
542                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
544
545             /* Analytical LJ-PME */
546             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
547             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
548             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
549             exponent         = sse2_exp_f(ewcljrsq);
550             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
551             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
552             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
553             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
554             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
555             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
556             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
557             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
561             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
562
563             fscal            = fvdw;
564
565             fscal            = _mm_andnot_ps(dummy_mask,fscal);
566
567             /* Calculate temporary vectorial force */
568             tx               = _mm_mul_ps(fscal,dx00);
569             ty               = _mm_mul_ps(fscal,dy00);
570             tz               = _mm_mul_ps(fscal,dz00);
571
572             /* Update vectorial force */
573             fix0             = _mm_add_ps(fix0,tx);
574             fiy0             = _mm_add_ps(fiy0,ty);
575             fiz0             = _mm_add_ps(fiz0,tz);
576
577             fjx0             = _mm_add_ps(fjx0,tx);
578             fjy0             = _mm_add_ps(fjy0,ty);
579             fjz0             = _mm_add_ps(fjz0,tz);
580             
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             r10              = _mm_mul_ps(rsq10,rinv10);
586             r10              = _mm_andnot_ps(dummy_mask,r10);
587
588             /* Compute parameters for interactions between i and j atoms */
589             qq10             = _mm_mul_ps(iq1,jq0);
590
591             /* EWALD ELECTROSTATICS */
592
593             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
594             ewrt             = _mm_mul_ps(r10,ewtabscale);
595             ewitab           = _mm_cvttps_epi32(ewrt);
596             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
597             ewitab           = _mm_slli_epi32(ewitab,2);
598             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
599             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
600             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
601             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
602             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
603             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
604             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
605             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
606             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_ps(fscal,dx10);
618             ty               = _mm_mul_ps(fscal,dy10);
619             tz               = _mm_mul_ps(fscal,dz10);
620
621             /* Update vectorial force */
622             fix1             = _mm_add_ps(fix1,tx);
623             fiy1             = _mm_add_ps(fiy1,ty);
624             fiz1             = _mm_add_ps(fiz1,tz);
625
626             fjx0             = _mm_add_ps(fjx0,tx);
627             fjy0             = _mm_add_ps(fjy0,ty);
628             fjz0             = _mm_add_ps(fjz0,tz);
629             
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r20              = _mm_mul_ps(rsq20,rinv20);
635             r20              = _mm_andnot_ps(dummy_mask,r20);
636
637             /* Compute parameters for interactions between i and j atoms */
638             qq20             = _mm_mul_ps(iq2,jq0);
639
640             /* EWALD ELECTROSTATICS */
641
642             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
643             ewrt             = _mm_mul_ps(r20,ewtabscale);
644             ewitab           = _mm_cvttps_epi32(ewrt);
645             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
646             ewitab           = _mm_slli_epi32(ewitab,2);
647             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
648             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
649             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
650             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
651             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
652             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
653             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
654             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
655             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm_andnot_ps(dummy_mask,velec);
659             velecsum         = _mm_add_ps(velecsum,velec);
660
661             fscal            = felec;
662
663             fscal            = _mm_andnot_ps(dummy_mask,fscal);
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_ps(fscal,dx20);
667             ty               = _mm_mul_ps(fscal,dy20);
668             tz               = _mm_mul_ps(fscal,dz20);
669
670             /* Update vectorial force */
671             fix2             = _mm_add_ps(fix2,tx);
672             fiy2             = _mm_add_ps(fiy2,ty);
673             fiz2             = _mm_add_ps(fiz2,tz);
674
675             fjx0             = _mm_add_ps(fjx0,tx);
676             fjy0             = _mm_add_ps(fjy0,ty);
677             fjz0             = _mm_add_ps(fjz0,tz);
678             
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             r30              = _mm_mul_ps(rsq30,rinv30);
684             r30              = _mm_andnot_ps(dummy_mask,r30);
685
686             /* Compute parameters for interactions between i and j atoms */
687             qq30             = _mm_mul_ps(iq3,jq0);
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = _mm_mul_ps(r30,ewtabscale);
693             ewitab           = _mm_cvttps_epi32(ewrt);
694             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
695             ewitab           = _mm_slli_epi32(ewitab,2);
696             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
697             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
698             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
699             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
700             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
701             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
702             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
703             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
704             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
705
706             /* Update potential sum for this i atom from the interaction with this j atom. */
707             velec            = _mm_andnot_ps(dummy_mask,velec);
708             velecsum         = _mm_add_ps(velecsum,velec);
709
710             fscal            = felec;
711
712             fscal            = _mm_andnot_ps(dummy_mask,fscal);
713
714             /* Calculate temporary vectorial force */
715             tx               = _mm_mul_ps(fscal,dx30);
716             ty               = _mm_mul_ps(fscal,dy30);
717             tz               = _mm_mul_ps(fscal,dz30);
718
719             /* Update vectorial force */
720             fix3             = _mm_add_ps(fix3,tx);
721             fiy3             = _mm_add_ps(fiy3,ty);
722             fiz3             = _mm_add_ps(fiz3,tz);
723
724             fjx0             = _mm_add_ps(fjx0,tx);
725             fjy0             = _mm_add_ps(fjy0,ty);
726             fjz0             = _mm_add_ps(fjz0,tz);
727             
728             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
729             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
730             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
731             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
732
733             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
734
735             /* Inner loop uses 178 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         ggid                        = gid[iidx];
744         /* Update potential energies */
745         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
746         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
747
748         /* Increment number of inner iterations */
749         inneriter                  += j_index_end - j_index_start;
750
751         /* Outer loop uses 26 flops */
752     }
753
754     /* Increment number of outer iterations */
755     outeriter        += nri;
756
757     /* Update outer/inner flops */
758
759     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178);
760 }
761 /*
762  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_single
763  * Electrostatics interaction: Ewald
764  * VdW interaction:            LJEwald
765  * Geometry:                   Water4-Particle
766  * Calculate force/pot:        Force
767  */
768 void
769 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_single
770                     (t_nblist                    * gmx_restrict       nlist,
771                      rvec                        * gmx_restrict          xx,
772                      rvec                        * gmx_restrict          ff,
773                      struct t_forcerec           * gmx_restrict          fr,
774                      t_mdatoms                   * gmx_restrict     mdatoms,
775                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
776                      t_nrnb                      * gmx_restrict        nrnb)
777 {
778     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
779      * just 0 for non-waters.
780      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
781      * jnr indices corresponding to data put in the four positions in the SIMD register.
782      */
783     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
784     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
785     int              jnrA,jnrB,jnrC,jnrD;
786     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
787     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
788     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
789     real             rcutoff_scalar;
790     real             *shiftvec,*fshift,*x,*f;
791     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
792     real             scratch[4*DIM];
793     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
794     int              vdwioffset0;
795     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
796     int              vdwioffset1;
797     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
798     int              vdwioffset2;
799     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
800     int              vdwioffset3;
801     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
802     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
803     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
804     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
805     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
806     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
807     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
808     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
809     real             *charge;
810     int              nvdwtype;
811     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
812     int              *vdwtype;
813     real             *vdwparam;
814     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
815     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
816     __m128           c6grid_00;
817     __m128           c6grid_10;
818     __m128           c6grid_20;
819     __m128           c6grid_30;
820     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
821     real             *vdwgridparam;
822     __m128           one_half = _mm_set1_ps(0.5);
823     __m128           minus_one = _mm_set1_ps(-1.0);
824     __m128i          ewitab;
825     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
826     real             *ewtab;
827     __m128           dummy_mask,cutoff_mask;
828     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
829     __m128           one     = _mm_set1_ps(1.0);
830     __m128           two     = _mm_set1_ps(2.0);
831     x                = xx[0];
832     f                = ff[0];
833
834     nri              = nlist->nri;
835     iinr             = nlist->iinr;
836     jindex           = nlist->jindex;
837     jjnr             = nlist->jjnr;
838     shiftidx         = nlist->shift;
839     gid              = nlist->gid;
840     shiftvec         = fr->shift_vec[0];
841     fshift           = fr->fshift[0];
842     facel            = _mm_set1_ps(fr->ic->epsfac);
843     charge           = mdatoms->chargeA;
844     nvdwtype         = fr->ntype;
845     vdwparam         = fr->nbfp;
846     vdwtype          = mdatoms->typeA;
847     vdwgridparam     = fr->ljpme_c6grid;
848     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
849     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
850     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
851
852     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
853     ewtab            = fr->ic->tabq_coul_F;
854     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
855     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
856
857     /* Setup water-specific parameters */
858     inr              = nlist->iinr[0];
859     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
860     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
861     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
862     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
863
864     /* Avoid stupid compiler warnings */
865     jnrA = jnrB = jnrC = jnrD = 0;
866     j_coord_offsetA = 0;
867     j_coord_offsetB = 0;
868     j_coord_offsetC = 0;
869     j_coord_offsetD = 0;
870
871     outeriter        = 0;
872     inneriter        = 0;
873
874     for(iidx=0;iidx<4*DIM;iidx++)
875     {
876         scratch[iidx] = 0.0;
877     }  
878
879     /* Start outer loop over neighborlists */
880     for(iidx=0; iidx<nri; iidx++)
881     {
882         /* Load shift vector for this list */
883         i_shift_offset   = DIM*shiftidx[iidx];
884
885         /* Load limits for loop over neighbors */
886         j_index_start    = jindex[iidx];
887         j_index_end      = jindex[iidx+1];
888
889         /* Get outer coordinate index */
890         inr              = iinr[iidx];
891         i_coord_offset   = DIM*inr;
892
893         /* Load i particle coords and add shift vector */
894         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
895                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
896         
897         fix0             = _mm_setzero_ps();
898         fiy0             = _mm_setzero_ps();
899         fiz0             = _mm_setzero_ps();
900         fix1             = _mm_setzero_ps();
901         fiy1             = _mm_setzero_ps();
902         fiz1             = _mm_setzero_ps();
903         fix2             = _mm_setzero_ps();
904         fiy2             = _mm_setzero_ps();
905         fiz2             = _mm_setzero_ps();
906         fix3             = _mm_setzero_ps();
907         fiy3             = _mm_setzero_ps();
908         fiz3             = _mm_setzero_ps();
909
910         /* Start inner kernel loop */
911         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
912         {
913
914             /* Get j neighbor index, and coordinate index */
915             jnrA             = jjnr[jidx];
916             jnrB             = jjnr[jidx+1];
917             jnrC             = jjnr[jidx+2];
918             jnrD             = jjnr[jidx+3];
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923
924             /* load j atom coordinates */
925             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
926                                               x+j_coord_offsetC,x+j_coord_offsetD,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_ps(ix0,jx0);
931             dy00             = _mm_sub_ps(iy0,jy0);
932             dz00             = _mm_sub_ps(iz0,jz0);
933             dx10             = _mm_sub_ps(ix1,jx0);
934             dy10             = _mm_sub_ps(iy1,jy0);
935             dz10             = _mm_sub_ps(iz1,jz0);
936             dx20             = _mm_sub_ps(ix2,jx0);
937             dy20             = _mm_sub_ps(iy2,jy0);
938             dz20             = _mm_sub_ps(iz2,jz0);
939             dx30             = _mm_sub_ps(ix3,jx0);
940             dy30             = _mm_sub_ps(iy3,jy0);
941             dz30             = _mm_sub_ps(iz3,jz0);
942
943             /* Calculate squared distance and things based on it */
944             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
945             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
946             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
947             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
948
949             rinv00           = sse2_invsqrt_f(rsq00);
950             rinv10           = sse2_invsqrt_f(rsq10);
951             rinv20           = sse2_invsqrt_f(rsq20);
952             rinv30           = sse2_invsqrt_f(rsq30);
953
954             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
955             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
956             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
957             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                               charge+jnrC+0,charge+jnrD+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966
967             fjx0             = _mm_setzero_ps();
968             fjy0             = _mm_setzero_ps();
969             fjz0             = _mm_setzero_ps();
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             r00              = _mm_mul_ps(rsq00,rinv00);
976
977             /* Compute parameters for interactions between i and j atoms */
978             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
979                                          vdwparam+vdwioffset0+vdwjidx0B,
980                                          vdwparam+vdwioffset0+vdwjidx0C,
981                                          vdwparam+vdwioffset0+vdwjidx0D,
982                                          &c6_00,&c12_00);
983             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
984                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
985                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
986                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
987
988             /* Analytical LJ-PME */
989             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
990             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
991             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
992             exponent         = sse2_exp_f(ewcljrsq);
993             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
994             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
995             /* f6A = 6 * C6grid * (1 - poly) */
996             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
997             /* f6B = C6grid * exponent * beta^6 */
998             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
999             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1000             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1001
1002             fscal            = fvdw;
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_ps(fscal,dx00);
1006             ty               = _mm_mul_ps(fscal,dy00);
1007             tz               = _mm_mul_ps(fscal,dz00);
1008
1009             /* Update vectorial force */
1010             fix0             = _mm_add_ps(fix0,tx);
1011             fiy0             = _mm_add_ps(fiy0,ty);
1012             fiz0             = _mm_add_ps(fiz0,tz);
1013
1014             fjx0             = _mm_add_ps(fjx0,tx);
1015             fjy0             = _mm_add_ps(fjy0,ty);
1016             fjz0             = _mm_add_ps(fjz0,tz);
1017             
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             r10              = _mm_mul_ps(rsq10,rinv10);
1023
1024             /* Compute parameters for interactions between i and j atoms */
1025             qq10             = _mm_mul_ps(iq1,jq0);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = _mm_mul_ps(r10,ewtabscale);
1031             ewitab           = _mm_cvttps_epi32(ewrt);
1032             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1033             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1034                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1035                                          &ewtabF,&ewtabFn);
1036             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1037             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1038
1039             fscal            = felec;
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_ps(fscal,dx10);
1043             ty               = _mm_mul_ps(fscal,dy10);
1044             tz               = _mm_mul_ps(fscal,dz10);
1045
1046             /* Update vectorial force */
1047             fix1             = _mm_add_ps(fix1,tx);
1048             fiy1             = _mm_add_ps(fiy1,ty);
1049             fiz1             = _mm_add_ps(fiz1,tz);
1050
1051             fjx0             = _mm_add_ps(fjx0,tx);
1052             fjy0             = _mm_add_ps(fjy0,ty);
1053             fjz0             = _mm_add_ps(fjz0,tz);
1054             
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             r20              = _mm_mul_ps(rsq20,rinv20);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq20             = _mm_mul_ps(iq2,jq0);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_ps(r20,ewtabscale);
1068             ewitab           = _mm_cvttps_epi32(ewrt);
1069             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1070             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1071                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1072                                          &ewtabF,&ewtabFn);
1073             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1074             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1075
1076             fscal            = felec;
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm_mul_ps(fscal,dx20);
1080             ty               = _mm_mul_ps(fscal,dy20);
1081             tz               = _mm_mul_ps(fscal,dz20);
1082
1083             /* Update vectorial force */
1084             fix2             = _mm_add_ps(fix2,tx);
1085             fiy2             = _mm_add_ps(fiy2,ty);
1086             fiz2             = _mm_add_ps(fiz2,tz);
1087
1088             fjx0             = _mm_add_ps(fjx0,tx);
1089             fjy0             = _mm_add_ps(fjy0,ty);
1090             fjz0             = _mm_add_ps(fjz0,tz);
1091             
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             r30              = _mm_mul_ps(rsq30,rinv30);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq30             = _mm_mul_ps(iq3,jq0);
1100
1101             /* EWALD ELECTROSTATICS */
1102
1103             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1104             ewrt             = _mm_mul_ps(r30,ewtabscale);
1105             ewitab           = _mm_cvttps_epi32(ewrt);
1106             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1107             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1108                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1109                                          &ewtabF,&ewtabFn);
1110             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1111             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1112
1113             fscal            = felec;
1114
1115             /* Calculate temporary vectorial force */
1116             tx               = _mm_mul_ps(fscal,dx30);
1117             ty               = _mm_mul_ps(fscal,dy30);
1118             tz               = _mm_mul_ps(fscal,dz30);
1119
1120             /* Update vectorial force */
1121             fix3             = _mm_add_ps(fix3,tx);
1122             fiy3             = _mm_add_ps(fiy3,ty);
1123             fiz3             = _mm_add_ps(fiz3,tz);
1124
1125             fjx0             = _mm_add_ps(fjx0,tx);
1126             fjy0             = _mm_add_ps(fjy0,ty);
1127             fjz0             = _mm_add_ps(fjz0,tz);
1128             
1129             fjptrA             = f+j_coord_offsetA;
1130             fjptrB             = f+j_coord_offsetB;
1131             fjptrC             = f+j_coord_offsetC;
1132             fjptrD             = f+j_coord_offsetD;
1133
1134             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 154 flops */
1137         }
1138
1139         if(jidx<j_index_end)
1140         {
1141
1142             /* Get j neighbor index, and coordinate index */
1143             jnrlistA         = jjnr[jidx];
1144             jnrlistB         = jjnr[jidx+1];
1145             jnrlistC         = jjnr[jidx+2];
1146             jnrlistD         = jjnr[jidx+3];
1147             /* Sign of each element will be negative for non-real atoms.
1148              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1149              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1150              */
1151             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1152             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1153             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1154             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1155             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1156             j_coord_offsetA  = DIM*jnrA;
1157             j_coord_offsetB  = DIM*jnrB;
1158             j_coord_offsetC  = DIM*jnrC;
1159             j_coord_offsetD  = DIM*jnrD;
1160
1161             /* load j atom coordinates */
1162             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1163                                               x+j_coord_offsetC,x+j_coord_offsetD,
1164                                               &jx0,&jy0,&jz0);
1165
1166             /* Calculate displacement vector */
1167             dx00             = _mm_sub_ps(ix0,jx0);
1168             dy00             = _mm_sub_ps(iy0,jy0);
1169             dz00             = _mm_sub_ps(iz0,jz0);
1170             dx10             = _mm_sub_ps(ix1,jx0);
1171             dy10             = _mm_sub_ps(iy1,jy0);
1172             dz10             = _mm_sub_ps(iz1,jz0);
1173             dx20             = _mm_sub_ps(ix2,jx0);
1174             dy20             = _mm_sub_ps(iy2,jy0);
1175             dz20             = _mm_sub_ps(iz2,jz0);
1176             dx30             = _mm_sub_ps(ix3,jx0);
1177             dy30             = _mm_sub_ps(iy3,jy0);
1178             dz30             = _mm_sub_ps(iz3,jz0);
1179
1180             /* Calculate squared distance and things based on it */
1181             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1182             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1183             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1184             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1185
1186             rinv00           = sse2_invsqrt_f(rsq00);
1187             rinv10           = sse2_invsqrt_f(rsq10);
1188             rinv20           = sse2_invsqrt_f(rsq20);
1189             rinv30           = sse2_invsqrt_f(rsq30);
1190
1191             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1192             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1193             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1194             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1195
1196             /* Load parameters for j particles */
1197             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1198                                                               charge+jnrC+0,charge+jnrD+0);
1199             vdwjidx0A        = 2*vdwtype[jnrA+0];
1200             vdwjidx0B        = 2*vdwtype[jnrB+0];
1201             vdwjidx0C        = 2*vdwtype[jnrC+0];
1202             vdwjidx0D        = 2*vdwtype[jnrD+0];
1203
1204             fjx0             = _mm_setzero_ps();
1205             fjy0             = _mm_setzero_ps();
1206             fjz0             = _mm_setzero_ps();
1207
1208             /**************************
1209              * CALCULATE INTERACTIONS *
1210              **************************/
1211
1212             r00              = _mm_mul_ps(rsq00,rinv00);
1213             r00              = _mm_andnot_ps(dummy_mask,r00);
1214
1215             /* Compute parameters for interactions between i and j atoms */
1216             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1217                                          vdwparam+vdwioffset0+vdwjidx0B,
1218                                          vdwparam+vdwioffset0+vdwjidx0C,
1219                                          vdwparam+vdwioffset0+vdwjidx0D,
1220                                          &c6_00,&c12_00);
1221             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1222                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1223                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1224                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1225
1226             /* Analytical LJ-PME */
1227             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1228             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1229             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1230             exponent         = sse2_exp_f(ewcljrsq);
1231             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1232             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1233             /* f6A = 6 * C6grid * (1 - poly) */
1234             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1235             /* f6B = C6grid * exponent * beta^6 */
1236             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1237             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1238             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1239
1240             fscal            = fvdw;
1241
1242             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm_mul_ps(fscal,dx00);
1246             ty               = _mm_mul_ps(fscal,dy00);
1247             tz               = _mm_mul_ps(fscal,dz00);
1248
1249             /* Update vectorial force */
1250             fix0             = _mm_add_ps(fix0,tx);
1251             fiy0             = _mm_add_ps(fiy0,ty);
1252             fiz0             = _mm_add_ps(fiz0,tz);
1253
1254             fjx0             = _mm_add_ps(fjx0,tx);
1255             fjy0             = _mm_add_ps(fjy0,ty);
1256             fjz0             = _mm_add_ps(fjz0,tz);
1257             
1258             /**************************
1259              * CALCULATE INTERACTIONS *
1260              **************************/
1261
1262             r10              = _mm_mul_ps(rsq10,rinv10);
1263             r10              = _mm_andnot_ps(dummy_mask,r10);
1264
1265             /* Compute parameters for interactions between i and j atoms */
1266             qq10             = _mm_mul_ps(iq1,jq0);
1267
1268             /* EWALD ELECTROSTATICS */
1269
1270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1271             ewrt             = _mm_mul_ps(r10,ewtabscale);
1272             ewitab           = _mm_cvttps_epi32(ewrt);
1273             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1274             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1275                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1276                                          &ewtabF,&ewtabFn);
1277             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1278             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1279
1280             fscal            = felec;
1281
1282             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1283
1284             /* Calculate temporary vectorial force */
1285             tx               = _mm_mul_ps(fscal,dx10);
1286             ty               = _mm_mul_ps(fscal,dy10);
1287             tz               = _mm_mul_ps(fscal,dz10);
1288
1289             /* Update vectorial force */
1290             fix1             = _mm_add_ps(fix1,tx);
1291             fiy1             = _mm_add_ps(fiy1,ty);
1292             fiz1             = _mm_add_ps(fiz1,tz);
1293
1294             fjx0             = _mm_add_ps(fjx0,tx);
1295             fjy0             = _mm_add_ps(fjy0,ty);
1296             fjz0             = _mm_add_ps(fjz0,tz);
1297             
1298             /**************************
1299              * CALCULATE INTERACTIONS *
1300              **************************/
1301
1302             r20              = _mm_mul_ps(rsq20,rinv20);
1303             r20              = _mm_andnot_ps(dummy_mask,r20);
1304
1305             /* Compute parameters for interactions between i and j atoms */
1306             qq20             = _mm_mul_ps(iq2,jq0);
1307
1308             /* EWALD ELECTROSTATICS */
1309
1310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1311             ewrt             = _mm_mul_ps(r20,ewtabscale);
1312             ewitab           = _mm_cvttps_epi32(ewrt);
1313             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1314             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1315                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1316                                          &ewtabF,&ewtabFn);
1317             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1318             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1319
1320             fscal            = felec;
1321
1322             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1323
1324             /* Calculate temporary vectorial force */
1325             tx               = _mm_mul_ps(fscal,dx20);
1326             ty               = _mm_mul_ps(fscal,dy20);
1327             tz               = _mm_mul_ps(fscal,dz20);
1328
1329             /* Update vectorial force */
1330             fix2             = _mm_add_ps(fix2,tx);
1331             fiy2             = _mm_add_ps(fiy2,ty);
1332             fiz2             = _mm_add_ps(fiz2,tz);
1333
1334             fjx0             = _mm_add_ps(fjx0,tx);
1335             fjy0             = _mm_add_ps(fjy0,ty);
1336             fjz0             = _mm_add_ps(fjz0,tz);
1337             
1338             /**************************
1339              * CALCULATE INTERACTIONS *
1340              **************************/
1341
1342             r30              = _mm_mul_ps(rsq30,rinv30);
1343             r30              = _mm_andnot_ps(dummy_mask,r30);
1344
1345             /* Compute parameters for interactions between i and j atoms */
1346             qq30             = _mm_mul_ps(iq3,jq0);
1347
1348             /* EWALD ELECTROSTATICS */
1349
1350             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1351             ewrt             = _mm_mul_ps(r30,ewtabscale);
1352             ewitab           = _mm_cvttps_epi32(ewrt);
1353             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1354             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1355                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1356                                          &ewtabF,&ewtabFn);
1357             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1358             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1359
1360             fscal            = felec;
1361
1362             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1363
1364             /* Calculate temporary vectorial force */
1365             tx               = _mm_mul_ps(fscal,dx30);
1366             ty               = _mm_mul_ps(fscal,dy30);
1367             tz               = _mm_mul_ps(fscal,dz30);
1368
1369             /* Update vectorial force */
1370             fix3             = _mm_add_ps(fix3,tx);
1371             fiy3             = _mm_add_ps(fiy3,ty);
1372             fiz3             = _mm_add_ps(fiz3,tz);
1373
1374             fjx0             = _mm_add_ps(fjx0,tx);
1375             fjy0             = _mm_add_ps(fjy0,ty);
1376             fjz0             = _mm_add_ps(fjz0,tz);
1377             
1378             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1379             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1380             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1381             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1382
1383             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1384
1385             /* Inner loop uses 158 flops */
1386         }
1387
1388         /* End of innermost loop */
1389
1390         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1391                                               f+i_coord_offset,fshift+i_shift_offset);
1392
1393         /* Increment number of inner iterations */
1394         inneriter                  += j_index_end - j_index_start;
1395
1396         /* Outer loop uses 24 flops */
1397     }
1398
1399     /* Increment number of outer iterations */
1400     outeriter        += nri;
1401
1402     /* Update outer/inner flops */
1403
1404     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158);
1405 }