Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           c6grid_00;
108     __m128           c6grid_10;
109     __m128           c6grid_20;
110     __m128           c6grid_30;
111     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112     real             *vdwgridparam;
113     __m128           one_half = _mm_set1_ps(0.5);
114     __m128           minus_one = _mm_set1_ps(-1.0);
115     __m128i          ewitab;
116     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128           dummy_mask,cutoff_mask;
119     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
120     __m128           one     = _mm_set1_ps(1.0);
121     __m128           two     = _mm_set1_ps(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_ps(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138     vdwgridparam     = fr->ljpme_c6grid;
139     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
140     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
141     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
142
143     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     /* Avoid stupid compiler warnings */
156     jnrA = jnrB = jnrC = jnrD = 0;
157     j_coord_offsetA = 0;
158     j_coord_offsetB = 0;
159     j_coord_offsetC = 0;
160     j_coord_offsetD = 0;
161
162     outeriter        = 0;
163     inneriter        = 0;
164
165     for(iidx=0;iidx<4*DIM;iidx++)
166     {
167         scratch[iidx] = 0.0;
168     }  
169
170     /* Start outer loop over neighborlists */
171     for(iidx=0; iidx<nri; iidx++)
172     {
173         /* Load shift vector for this list */
174         i_shift_offset   = DIM*shiftidx[iidx];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
186                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
187         
188         fix0             = _mm_setzero_ps();
189         fiy0             = _mm_setzero_ps();
190         fiz0             = _mm_setzero_ps();
191         fix1             = _mm_setzero_ps();
192         fiy1             = _mm_setzero_ps();
193         fiz1             = _mm_setzero_ps();
194         fix2             = _mm_setzero_ps();
195         fiy2             = _mm_setzero_ps();
196         fiz2             = _mm_setzero_ps();
197         fix3             = _mm_setzero_ps();
198         fiy3             = _mm_setzero_ps();
199         fiz3             = _mm_setzero_ps();
200
201         /* Reset potential sums */
202         velecsum         = _mm_setzero_ps();
203         vvdwsum          = _mm_setzero_ps();
204
205         /* Start inner kernel loop */
206         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
207         {
208
209             /* Get j neighbor index, and coordinate index */
210             jnrA             = jjnr[jidx];
211             jnrB             = jjnr[jidx+1];
212             jnrC             = jjnr[jidx+2];
213             jnrD             = jjnr[jidx+3];
214             j_coord_offsetA  = DIM*jnrA;
215             j_coord_offsetB  = DIM*jnrB;
216             j_coord_offsetC  = DIM*jnrC;
217             j_coord_offsetD  = DIM*jnrD;
218
219             /* load j atom coordinates */
220             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               x+j_coord_offsetC,x+j_coord_offsetD,
222                                               &jx0,&jy0,&jz0);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_ps(ix0,jx0);
226             dy00             = _mm_sub_ps(iy0,jy0);
227             dz00             = _mm_sub_ps(iz0,jz0);
228             dx10             = _mm_sub_ps(ix1,jx0);
229             dy10             = _mm_sub_ps(iy1,jy0);
230             dz10             = _mm_sub_ps(iz1,jz0);
231             dx20             = _mm_sub_ps(ix2,jx0);
232             dy20             = _mm_sub_ps(iy2,jy0);
233             dz20             = _mm_sub_ps(iz2,jz0);
234             dx30             = _mm_sub_ps(ix3,jx0);
235             dy30             = _mm_sub_ps(iy3,jy0);
236             dz30             = _mm_sub_ps(iz3,jz0);
237
238             /* Calculate squared distance and things based on it */
239             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
240             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
241             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
242             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
243
244             rinv00           = gmx_mm_invsqrt_ps(rsq00);
245             rinv10           = gmx_mm_invsqrt_ps(rsq10);
246             rinv20           = gmx_mm_invsqrt_ps(rsq20);
247             rinv30           = gmx_mm_invsqrt_ps(rsq30);
248
249             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
250             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
251             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
252             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
253
254             /* Load parameters for j particles */
255             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
256                                                               charge+jnrC+0,charge+jnrD+0);
257             vdwjidx0A        = 2*vdwtype[jnrA+0];
258             vdwjidx0B        = 2*vdwtype[jnrB+0];
259             vdwjidx0C        = 2*vdwtype[jnrC+0];
260             vdwjidx0D        = 2*vdwtype[jnrD+0];
261
262             fjx0             = _mm_setzero_ps();
263             fjy0             = _mm_setzero_ps();
264             fjz0             = _mm_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             r00              = _mm_mul_ps(rsq00,rinv00);
271
272             /* Compute parameters for interactions between i and j atoms */
273             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
274                                          vdwparam+vdwioffset0+vdwjidx0B,
275                                          vdwparam+vdwioffset0+vdwjidx0C,
276                                          vdwparam+vdwioffset0+vdwjidx0D,
277                                          &c6_00,&c12_00);
278             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
281                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
282
283             /* Analytical LJ-PME */
284             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
285             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
286             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
287             exponent         = gmx_simd_exp_r(ewcljrsq);
288             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
289             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
290             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
291             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
292             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
293             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
294             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
295             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
299
300             fscal            = fvdw;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_ps(fscal,dx00);
304             ty               = _mm_mul_ps(fscal,dy00);
305             tz               = _mm_mul_ps(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm_add_ps(fix0,tx);
309             fiy0             = _mm_add_ps(fiy0,ty);
310             fiz0             = _mm_add_ps(fiz0,tz);
311
312             fjx0             = _mm_add_ps(fjx0,tx);
313             fjy0             = _mm_add_ps(fjy0,ty);
314             fjz0             = _mm_add_ps(fjz0,tz);
315             
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r10              = _mm_mul_ps(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* EWALD ELECTROSTATICS */
326
327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
328             ewrt             = _mm_mul_ps(r10,ewtabscale);
329             ewitab           = _mm_cvttps_epi32(ewrt);
330             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
334             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
335             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
336             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
337             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
338             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
339             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
340             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_ps(fscal,dx10);
349             ty               = _mm_mul_ps(fscal,dy10);
350             tz               = _mm_mul_ps(fscal,dz10);
351
352             /* Update vectorial force */
353             fix1             = _mm_add_ps(fix1,tx);
354             fiy1             = _mm_add_ps(fiy1,ty);
355             fiz1             = _mm_add_ps(fiz1,tz);
356
357             fjx0             = _mm_add_ps(fjx0,tx);
358             fjy0             = _mm_add_ps(fjy0,ty);
359             fjz0             = _mm_add_ps(fjz0,tz);
360             
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r20              = _mm_mul_ps(rsq20,rinv20);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq20             = _mm_mul_ps(iq2,jq0);
369
370             /* EWALD ELECTROSTATICS */
371
372             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373             ewrt             = _mm_mul_ps(r20,ewtabscale);
374             ewitab           = _mm_cvttps_epi32(ewrt);
375             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
376             ewitab           = _mm_slli_epi32(ewitab,2);
377             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
378             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
379             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
380             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
381             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
382             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
383             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
384             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
385             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_ps(fscal,dx20);
394             ty               = _mm_mul_ps(fscal,dy20);
395             tz               = _mm_mul_ps(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm_add_ps(fix2,tx);
399             fiy2             = _mm_add_ps(fiy2,ty);
400             fiz2             = _mm_add_ps(fiz2,tz);
401
402             fjx0             = _mm_add_ps(fjx0,tx);
403             fjy0             = _mm_add_ps(fjy0,ty);
404             fjz0             = _mm_add_ps(fjz0,tz);
405             
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r30              = _mm_mul_ps(rsq30,rinv30);
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq30             = _mm_mul_ps(iq3,jq0);
414
415             /* EWALD ELECTROSTATICS */
416
417             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
418             ewrt             = _mm_mul_ps(r30,ewtabscale);
419             ewitab           = _mm_cvttps_epi32(ewrt);
420             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
421             ewitab           = _mm_slli_epi32(ewitab,2);
422             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
423             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
424             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
425             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
426             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
427             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
428             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
429             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
430             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
431
432             /* Update potential sum for this i atom from the interaction with this j atom. */
433             velecsum         = _mm_add_ps(velecsum,velec);
434
435             fscal            = felec;
436
437             /* Calculate temporary vectorial force */
438             tx               = _mm_mul_ps(fscal,dx30);
439             ty               = _mm_mul_ps(fscal,dy30);
440             tz               = _mm_mul_ps(fscal,dz30);
441
442             /* Update vectorial force */
443             fix3             = _mm_add_ps(fix3,tx);
444             fiy3             = _mm_add_ps(fiy3,ty);
445             fiz3             = _mm_add_ps(fiz3,tz);
446
447             fjx0             = _mm_add_ps(fjx0,tx);
448             fjy0             = _mm_add_ps(fjy0,ty);
449             fjz0             = _mm_add_ps(fjz0,tz);
450             
451             fjptrA             = f+j_coord_offsetA;
452             fjptrB             = f+j_coord_offsetB;
453             fjptrC             = f+j_coord_offsetC;
454             fjptrD             = f+j_coord_offsetD;
455
456             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
457
458             /* Inner loop uses 174 flops */
459         }
460
461         if(jidx<j_index_end)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrlistA         = jjnr[jidx];
466             jnrlistB         = jjnr[jidx+1];
467             jnrlistC         = jjnr[jidx+2];
468             jnrlistD         = jjnr[jidx+3];
469             /* Sign of each element will be negative for non-real atoms.
470              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
471              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
472              */
473             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
474             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
475             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
476             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
477             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480             j_coord_offsetC  = DIM*jnrC;
481             j_coord_offsetD  = DIM*jnrD;
482
483             /* load j atom coordinates */
484             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
485                                               x+j_coord_offsetC,x+j_coord_offsetD,
486                                               &jx0,&jy0,&jz0);
487
488             /* Calculate displacement vector */
489             dx00             = _mm_sub_ps(ix0,jx0);
490             dy00             = _mm_sub_ps(iy0,jy0);
491             dz00             = _mm_sub_ps(iz0,jz0);
492             dx10             = _mm_sub_ps(ix1,jx0);
493             dy10             = _mm_sub_ps(iy1,jy0);
494             dz10             = _mm_sub_ps(iz1,jz0);
495             dx20             = _mm_sub_ps(ix2,jx0);
496             dy20             = _mm_sub_ps(iy2,jy0);
497             dz20             = _mm_sub_ps(iz2,jz0);
498             dx30             = _mm_sub_ps(ix3,jx0);
499             dy30             = _mm_sub_ps(iy3,jy0);
500             dz30             = _mm_sub_ps(iz3,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
504             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
505             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
506             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
507
508             rinv00           = gmx_mm_invsqrt_ps(rsq00);
509             rinv10           = gmx_mm_invsqrt_ps(rsq10);
510             rinv20           = gmx_mm_invsqrt_ps(rsq20);
511             rinv30           = gmx_mm_invsqrt_ps(rsq30);
512
513             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
514             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
515             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
516             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
517
518             /* Load parameters for j particles */
519             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
520                                                               charge+jnrC+0,charge+jnrD+0);
521             vdwjidx0A        = 2*vdwtype[jnrA+0];
522             vdwjidx0B        = 2*vdwtype[jnrB+0];
523             vdwjidx0C        = 2*vdwtype[jnrC+0];
524             vdwjidx0D        = 2*vdwtype[jnrD+0];
525
526             fjx0             = _mm_setzero_ps();
527             fjy0             = _mm_setzero_ps();
528             fjz0             = _mm_setzero_ps();
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm_mul_ps(rsq00,rinv00);
535             r00              = _mm_andnot_ps(dummy_mask,r00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,
540                                          vdwparam+vdwioffset0+vdwjidx0C,
541                                          vdwparam+vdwioffset0+vdwjidx0D,
542                                          &c6_00,&c12_00);
543             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
547
548             /* Analytical LJ-PME */
549             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
550             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
551             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
552             exponent         = gmx_simd_exp_r(ewcljrsq);
553             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
554             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
555             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
556             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
557             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
558             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
559             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
560             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
564             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
565
566             fscal            = fvdw;
567
568             fscal            = _mm_andnot_ps(dummy_mask,fscal);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_ps(fscal,dx00);
572             ty               = _mm_mul_ps(fscal,dy00);
573             tz               = _mm_mul_ps(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_ps(fix0,tx);
577             fiy0             = _mm_add_ps(fiy0,ty);
578             fiz0             = _mm_add_ps(fiz0,tz);
579
580             fjx0             = _mm_add_ps(fjx0,tx);
581             fjy0             = _mm_add_ps(fjy0,ty);
582             fjz0             = _mm_add_ps(fjz0,tz);
583             
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             r10              = _mm_mul_ps(rsq10,rinv10);
589             r10              = _mm_andnot_ps(dummy_mask,r10);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq10             = _mm_mul_ps(iq1,jq0);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_ps(r10,ewtabscale);
598             ewitab           = _mm_cvttps_epi32(ewrt);
599             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
605             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
607             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
608             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
609             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_ps(fscal,dx10);
621             ty               = _mm_mul_ps(fscal,dy10);
622             tz               = _mm_mul_ps(fscal,dz10);
623
624             /* Update vectorial force */
625             fix1             = _mm_add_ps(fix1,tx);
626             fiy1             = _mm_add_ps(fiy1,ty);
627             fiz1             = _mm_add_ps(fiz1,tz);
628
629             fjx0             = _mm_add_ps(fjx0,tx);
630             fjy0             = _mm_add_ps(fjy0,ty);
631             fjz0             = _mm_add_ps(fjz0,tz);
632             
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r20              = _mm_mul_ps(rsq20,rinv20);
638             r20              = _mm_andnot_ps(dummy_mask,r20);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq20             = _mm_mul_ps(iq2,jq0);
642
643             /* EWALD ELECTROSTATICS */
644
645             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
646             ewrt             = _mm_mul_ps(r20,ewtabscale);
647             ewitab           = _mm_cvttps_epi32(ewrt);
648             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
649             ewitab           = _mm_slli_epi32(ewitab,2);
650             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
651             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
652             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
653             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
654             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
655             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
656             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
657             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
658             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
659
660             /* Update potential sum for this i atom from the interaction with this j atom. */
661             velec            = _mm_andnot_ps(dummy_mask,velec);
662             velecsum         = _mm_add_ps(velecsum,velec);
663
664             fscal            = felec;
665
666             fscal            = _mm_andnot_ps(dummy_mask,fscal);
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_ps(fscal,dx20);
670             ty               = _mm_mul_ps(fscal,dy20);
671             tz               = _mm_mul_ps(fscal,dz20);
672
673             /* Update vectorial force */
674             fix2             = _mm_add_ps(fix2,tx);
675             fiy2             = _mm_add_ps(fiy2,ty);
676             fiz2             = _mm_add_ps(fiz2,tz);
677
678             fjx0             = _mm_add_ps(fjx0,tx);
679             fjy0             = _mm_add_ps(fjy0,ty);
680             fjz0             = _mm_add_ps(fjz0,tz);
681             
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             r30              = _mm_mul_ps(rsq30,rinv30);
687             r30              = _mm_andnot_ps(dummy_mask,r30);
688
689             /* Compute parameters for interactions between i and j atoms */
690             qq30             = _mm_mul_ps(iq3,jq0);
691
692             /* EWALD ELECTROSTATICS */
693
694             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
695             ewrt             = _mm_mul_ps(r30,ewtabscale);
696             ewitab           = _mm_cvttps_epi32(ewrt);
697             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
698             ewitab           = _mm_slli_epi32(ewitab,2);
699             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
700             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
701             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
702             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
703             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
704             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
705             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
706             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
707             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
708
709             /* Update potential sum for this i atom from the interaction with this j atom. */
710             velec            = _mm_andnot_ps(dummy_mask,velec);
711             velecsum         = _mm_add_ps(velecsum,velec);
712
713             fscal            = felec;
714
715             fscal            = _mm_andnot_ps(dummy_mask,fscal);
716
717             /* Calculate temporary vectorial force */
718             tx               = _mm_mul_ps(fscal,dx30);
719             ty               = _mm_mul_ps(fscal,dy30);
720             tz               = _mm_mul_ps(fscal,dz30);
721
722             /* Update vectorial force */
723             fix3             = _mm_add_ps(fix3,tx);
724             fiy3             = _mm_add_ps(fiy3,ty);
725             fiz3             = _mm_add_ps(fiz3,tz);
726
727             fjx0             = _mm_add_ps(fjx0,tx);
728             fjy0             = _mm_add_ps(fjy0,ty);
729             fjz0             = _mm_add_ps(fjz0,tz);
730             
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735
736             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
737
738             /* Inner loop uses 178 flops */
739         }
740
741         /* End of innermost loop */
742
743         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
744                                               f+i_coord_offset,fshift+i_shift_offset);
745
746         ggid                        = gid[iidx];
747         /* Update potential energies */
748         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
749         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
750
751         /* Increment number of inner iterations */
752         inneriter                  += j_index_end - j_index_start;
753
754         /* Outer loop uses 26 flops */
755     }
756
757     /* Increment number of outer iterations */
758     outeriter        += nri;
759
760     /* Update outer/inner flops */
761
762     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*178);
763 }
764 /*
765  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_single
766  * Electrostatics interaction: Ewald
767  * VdW interaction:            LJEwald
768  * Geometry:                   Water4-Particle
769  * Calculate force/pot:        Force
770  */
771 void
772 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_single
773                     (t_nblist                    * gmx_restrict       nlist,
774                      rvec                        * gmx_restrict          xx,
775                      rvec                        * gmx_restrict          ff,
776                      t_forcerec                  * gmx_restrict          fr,
777                      t_mdatoms                   * gmx_restrict     mdatoms,
778                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
779                      t_nrnb                      * gmx_restrict        nrnb)
780 {
781     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
782      * just 0 for non-waters.
783      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
784      * jnr indices corresponding to data put in the four positions in the SIMD register.
785      */
786     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
787     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
788     int              jnrA,jnrB,jnrC,jnrD;
789     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
792     real             rcutoff_scalar;
793     real             *shiftvec,*fshift,*x,*f;
794     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
795     real             scratch[4*DIM];
796     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
797     int              vdwioffset0;
798     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
799     int              vdwioffset1;
800     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
801     int              vdwioffset2;
802     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
803     int              vdwioffset3;
804     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
805     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
806     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
807     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
808     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
809     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
810     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
811     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
812     real             *charge;
813     int              nvdwtype;
814     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
815     int              *vdwtype;
816     real             *vdwparam;
817     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
818     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
819     __m128           c6grid_00;
820     __m128           c6grid_10;
821     __m128           c6grid_20;
822     __m128           c6grid_30;
823     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
824     real             *vdwgridparam;
825     __m128           one_half = _mm_set1_ps(0.5);
826     __m128           minus_one = _mm_set1_ps(-1.0);
827     __m128i          ewitab;
828     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
829     real             *ewtab;
830     __m128           dummy_mask,cutoff_mask;
831     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
832     __m128           one     = _mm_set1_ps(1.0);
833     __m128           two     = _mm_set1_ps(2.0);
834     x                = xx[0];
835     f                = ff[0];
836
837     nri              = nlist->nri;
838     iinr             = nlist->iinr;
839     jindex           = nlist->jindex;
840     jjnr             = nlist->jjnr;
841     shiftidx         = nlist->shift;
842     gid              = nlist->gid;
843     shiftvec         = fr->shift_vec[0];
844     fshift           = fr->fshift[0];
845     facel            = _mm_set1_ps(fr->epsfac);
846     charge           = mdatoms->chargeA;
847     nvdwtype         = fr->ntype;
848     vdwparam         = fr->nbfp;
849     vdwtype          = mdatoms->typeA;
850     vdwgridparam     = fr->ljpme_c6grid;
851     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
852     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
853     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
854
855     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
856     ewtab            = fr->ic->tabq_coul_F;
857     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
858     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
859
860     /* Setup water-specific parameters */
861     inr              = nlist->iinr[0];
862     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
863     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
864     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
865     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }  
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899         
900         fix0             = _mm_setzero_ps();
901         fiy0             = _mm_setzero_ps();
902         fiz0             = _mm_setzero_ps();
903         fix1             = _mm_setzero_ps();
904         fiy1             = _mm_setzero_ps();
905         fiz1             = _mm_setzero_ps();
906         fix2             = _mm_setzero_ps();
907         fiy2             = _mm_setzero_ps();
908         fiz2             = _mm_setzero_ps();
909         fix3             = _mm_setzero_ps();
910         fiy3             = _mm_setzero_ps();
911         fiz3             = _mm_setzero_ps();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             jnrC             = jjnr[jidx+2];
921             jnrD             = jjnr[jidx+3];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
929                                               x+j_coord_offsetC,x+j_coord_offsetD,
930                                               &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm_sub_ps(ix0,jx0);
934             dy00             = _mm_sub_ps(iy0,jy0);
935             dz00             = _mm_sub_ps(iz0,jz0);
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942             dx30             = _mm_sub_ps(ix3,jx0);
943             dy30             = _mm_sub_ps(iy3,jy0);
944             dz30             = _mm_sub_ps(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
950             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
951
952             rinv00           = gmx_mm_invsqrt_ps(rsq00);
953             rinv10           = gmx_mm_invsqrt_ps(rsq10);
954             rinv20           = gmx_mm_invsqrt_ps(rsq20);
955             rinv30           = gmx_mm_invsqrt_ps(rsq30);
956
957             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
958             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
959             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
960             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
961
962             /* Load parameters for j particles */
963             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
964                                                               charge+jnrC+0,charge+jnrD+0);
965             vdwjidx0A        = 2*vdwtype[jnrA+0];
966             vdwjidx0B        = 2*vdwtype[jnrB+0];
967             vdwjidx0C        = 2*vdwtype[jnrC+0];
968             vdwjidx0D        = 2*vdwtype[jnrD+0];
969
970             fjx0             = _mm_setzero_ps();
971             fjy0             = _mm_setzero_ps();
972             fjz0             = _mm_setzero_ps();
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             r00              = _mm_mul_ps(rsq00,rinv00);
979
980             /* Compute parameters for interactions between i and j atoms */
981             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
982                                          vdwparam+vdwioffset0+vdwjidx0B,
983                                          vdwparam+vdwioffset0+vdwjidx0C,
984                                          vdwparam+vdwioffset0+vdwjidx0D,
985                                          &c6_00,&c12_00);
986             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
987                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
988                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
989                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
990
991             /* Analytical LJ-PME */
992             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
993             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
994             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
995             exponent         = gmx_simd_exp_r(ewcljrsq);
996             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
997             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
998             /* f6A = 6 * C6grid * (1 - poly) */
999             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1000             /* f6B = C6grid * exponent * beta^6 */
1001             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1002             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1003             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1004
1005             fscal            = fvdw;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_ps(fscal,dx00);
1009             ty               = _mm_mul_ps(fscal,dy00);
1010             tz               = _mm_mul_ps(fscal,dz00);
1011
1012             /* Update vectorial force */
1013             fix0             = _mm_add_ps(fix0,tx);
1014             fiy0             = _mm_add_ps(fiy0,ty);
1015             fiz0             = _mm_add_ps(fiz0,tz);
1016
1017             fjx0             = _mm_add_ps(fjx0,tx);
1018             fjy0             = _mm_add_ps(fjy0,ty);
1019             fjz0             = _mm_add_ps(fjz0,tz);
1020             
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r10              = _mm_mul_ps(rsq10,rinv10);
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             qq10             = _mm_mul_ps(iq1,jq0);
1029
1030             /* EWALD ELECTROSTATICS */
1031
1032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1033             ewrt             = _mm_mul_ps(r10,ewtabscale);
1034             ewitab           = _mm_cvttps_epi32(ewrt);
1035             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1036             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1037                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1038                                          &ewtabF,&ewtabFn);
1039             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1040             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1041
1042             fscal            = felec;
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_ps(fscal,dx10);
1046             ty               = _mm_mul_ps(fscal,dy10);
1047             tz               = _mm_mul_ps(fscal,dz10);
1048
1049             /* Update vectorial force */
1050             fix1             = _mm_add_ps(fix1,tx);
1051             fiy1             = _mm_add_ps(fiy1,ty);
1052             fiz1             = _mm_add_ps(fiz1,tz);
1053
1054             fjx0             = _mm_add_ps(fjx0,tx);
1055             fjy0             = _mm_add_ps(fjy0,ty);
1056             fjz0             = _mm_add_ps(fjz0,tz);
1057             
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             r20              = _mm_mul_ps(rsq20,rinv20);
1063
1064             /* Compute parameters for interactions between i and j atoms */
1065             qq20             = _mm_mul_ps(iq2,jq0);
1066
1067             /* EWALD ELECTROSTATICS */
1068
1069             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1070             ewrt             = _mm_mul_ps(r20,ewtabscale);
1071             ewitab           = _mm_cvttps_epi32(ewrt);
1072             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1073             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1074                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1075                                          &ewtabF,&ewtabFn);
1076             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1077             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1078
1079             fscal            = felec;
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx20);
1083             ty               = _mm_mul_ps(fscal,dy20);
1084             tz               = _mm_mul_ps(fscal,dz20);
1085
1086             /* Update vectorial force */
1087             fix2             = _mm_add_ps(fix2,tx);
1088             fiy2             = _mm_add_ps(fiy2,ty);
1089             fiz2             = _mm_add_ps(fiz2,tz);
1090
1091             fjx0             = _mm_add_ps(fjx0,tx);
1092             fjy0             = _mm_add_ps(fjy0,ty);
1093             fjz0             = _mm_add_ps(fjz0,tz);
1094             
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r30              = _mm_mul_ps(rsq30,rinv30);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq30             = _mm_mul_ps(iq3,jq0);
1103
1104             /* EWALD ELECTROSTATICS */
1105
1106             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1107             ewrt             = _mm_mul_ps(r30,ewtabscale);
1108             ewitab           = _mm_cvttps_epi32(ewrt);
1109             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1110             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1111                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1112                                          &ewtabF,&ewtabFn);
1113             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1114             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1115
1116             fscal            = felec;
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm_mul_ps(fscal,dx30);
1120             ty               = _mm_mul_ps(fscal,dy30);
1121             tz               = _mm_mul_ps(fscal,dz30);
1122
1123             /* Update vectorial force */
1124             fix3             = _mm_add_ps(fix3,tx);
1125             fiy3             = _mm_add_ps(fiy3,ty);
1126             fiz3             = _mm_add_ps(fiz3,tz);
1127
1128             fjx0             = _mm_add_ps(fjx0,tx);
1129             fjy0             = _mm_add_ps(fjy0,ty);
1130             fjz0             = _mm_add_ps(fjz0,tz);
1131             
1132             fjptrA             = f+j_coord_offsetA;
1133             fjptrB             = f+j_coord_offsetB;
1134             fjptrC             = f+j_coord_offsetC;
1135             fjptrD             = f+j_coord_offsetD;
1136
1137             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1138
1139             /* Inner loop uses 154 flops */
1140         }
1141
1142         if(jidx<j_index_end)
1143         {
1144
1145             /* Get j neighbor index, and coordinate index */
1146             jnrlistA         = jjnr[jidx];
1147             jnrlistB         = jjnr[jidx+1];
1148             jnrlistC         = jjnr[jidx+2];
1149             jnrlistD         = jjnr[jidx+3];
1150             /* Sign of each element will be negative for non-real atoms.
1151              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1152              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1153              */
1154             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1155             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1156             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1157             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1158             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1159             j_coord_offsetA  = DIM*jnrA;
1160             j_coord_offsetB  = DIM*jnrB;
1161             j_coord_offsetC  = DIM*jnrC;
1162             j_coord_offsetD  = DIM*jnrD;
1163
1164             /* load j atom coordinates */
1165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1166                                               x+j_coord_offsetC,x+j_coord_offsetD,
1167                                               &jx0,&jy0,&jz0);
1168
1169             /* Calculate displacement vector */
1170             dx00             = _mm_sub_ps(ix0,jx0);
1171             dy00             = _mm_sub_ps(iy0,jy0);
1172             dz00             = _mm_sub_ps(iz0,jz0);
1173             dx10             = _mm_sub_ps(ix1,jx0);
1174             dy10             = _mm_sub_ps(iy1,jy0);
1175             dz10             = _mm_sub_ps(iz1,jz0);
1176             dx20             = _mm_sub_ps(ix2,jx0);
1177             dy20             = _mm_sub_ps(iy2,jy0);
1178             dz20             = _mm_sub_ps(iz2,jz0);
1179             dx30             = _mm_sub_ps(ix3,jx0);
1180             dy30             = _mm_sub_ps(iy3,jy0);
1181             dz30             = _mm_sub_ps(iz3,jz0);
1182
1183             /* Calculate squared distance and things based on it */
1184             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1185             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1186             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1187             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1188
1189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1190             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1191             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1192             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1193
1194             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1195             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1196             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1197             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1198
1199             /* Load parameters for j particles */
1200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1201                                                               charge+jnrC+0,charge+jnrD+0);
1202             vdwjidx0A        = 2*vdwtype[jnrA+0];
1203             vdwjidx0B        = 2*vdwtype[jnrB+0];
1204             vdwjidx0C        = 2*vdwtype[jnrC+0];
1205             vdwjidx0D        = 2*vdwtype[jnrD+0];
1206
1207             fjx0             = _mm_setzero_ps();
1208             fjy0             = _mm_setzero_ps();
1209             fjz0             = _mm_setzero_ps();
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             r00              = _mm_mul_ps(rsq00,rinv00);
1216             r00              = _mm_andnot_ps(dummy_mask,r00);
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1220                                          vdwparam+vdwioffset0+vdwjidx0B,
1221                                          vdwparam+vdwioffset0+vdwjidx0C,
1222                                          vdwparam+vdwioffset0+vdwjidx0D,
1223                                          &c6_00,&c12_00);
1224             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1225                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1226                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1227                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1228
1229             /* Analytical LJ-PME */
1230             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1231             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1232             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1233             exponent         = gmx_simd_exp_r(ewcljrsq);
1234             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1235             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1236             /* f6A = 6 * C6grid * (1 - poly) */
1237             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1238             /* f6B = C6grid * exponent * beta^6 */
1239             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1240             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1241             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1242
1243             fscal            = fvdw;
1244
1245             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1246
1247             /* Calculate temporary vectorial force */
1248             tx               = _mm_mul_ps(fscal,dx00);
1249             ty               = _mm_mul_ps(fscal,dy00);
1250             tz               = _mm_mul_ps(fscal,dz00);
1251
1252             /* Update vectorial force */
1253             fix0             = _mm_add_ps(fix0,tx);
1254             fiy0             = _mm_add_ps(fiy0,ty);
1255             fiz0             = _mm_add_ps(fiz0,tz);
1256
1257             fjx0             = _mm_add_ps(fjx0,tx);
1258             fjy0             = _mm_add_ps(fjy0,ty);
1259             fjz0             = _mm_add_ps(fjz0,tz);
1260             
1261             /**************************
1262              * CALCULATE INTERACTIONS *
1263              **************************/
1264
1265             r10              = _mm_mul_ps(rsq10,rinv10);
1266             r10              = _mm_andnot_ps(dummy_mask,r10);
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq10             = _mm_mul_ps(iq1,jq0);
1270
1271             /* EWALD ELECTROSTATICS */
1272
1273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1274             ewrt             = _mm_mul_ps(r10,ewtabscale);
1275             ewitab           = _mm_cvttps_epi32(ewrt);
1276             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1277             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1278                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1279                                          &ewtabF,&ewtabFn);
1280             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1281             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1282
1283             fscal            = felec;
1284
1285             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1286
1287             /* Calculate temporary vectorial force */
1288             tx               = _mm_mul_ps(fscal,dx10);
1289             ty               = _mm_mul_ps(fscal,dy10);
1290             tz               = _mm_mul_ps(fscal,dz10);
1291
1292             /* Update vectorial force */
1293             fix1             = _mm_add_ps(fix1,tx);
1294             fiy1             = _mm_add_ps(fiy1,ty);
1295             fiz1             = _mm_add_ps(fiz1,tz);
1296
1297             fjx0             = _mm_add_ps(fjx0,tx);
1298             fjy0             = _mm_add_ps(fjy0,ty);
1299             fjz0             = _mm_add_ps(fjz0,tz);
1300             
1301             /**************************
1302              * CALCULATE INTERACTIONS *
1303              **************************/
1304
1305             r20              = _mm_mul_ps(rsq20,rinv20);
1306             r20              = _mm_andnot_ps(dummy_mask,r20);
1307
1308             /* Compute parameters for interactions between i and j atoms */
1309             qq20             = _mm_mul_ps(iq2,jq0);
1310
1311             /* EWALD ELECTROSTATICS */
1312
1313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1314             ewrt             = _mm_mul_ps(r20,ewtabscale);
1315             ewitab           = _mm_cvttps_epi32(ewrt);
1316             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1317             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1318                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1319                                          &ewtabF,&ewtabFn);
1320             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1321             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1322
1323             fscal            = felec;
1324
1325             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1326
1327             /* Calculate temporary vectorial force */
1328             tx               = _mm_mul_ps(fscal,dx20);
1329             ty               = _mm_mul_ps(fscal,dy20);
1330             tz               = _mm_mul_ps(fscal,dz20);
1331
1332             /* Update vectorial force */
1333             fix2             = _mm_add_ps(fix2,tx);
1334             fiy2             = _mm_add_ps(fiy2,ty);
1335             fiz2             = _mm_add_ps(fiz2,tz);
1336
1337             fjx0             = _mm_add_ps(fjx0,tx);
1338             fjy0             = _mm_add_ps(fjy0,ty);
1339             fjz0             = _mm_add_ps(fjz0,tz);
1340             
1341             /**************************
1342              * CALCULATE INTERACTIONS *
1343              **************************/
1344
1345             r30              = _mm_mul_ps(rsq30,rinv30);
1346             r30              = _mm_andnot_ps(dummy_mask,r30);
1347
1348             /* Compute parameters for interactions between i and j atoms */
1349             qq30             = _mm_mul_ps(iq3,jq0);
1350
1351             /* EWALD ELECTROSTATICS */
1352
1353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1354             ewrt             = _mm_mul_ps(r30,ewtabscale);
1355             ewitab           = _mm_cvttps_epi32(ewrt);
1356             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1357             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1358                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1359                                          &ewtabF,&ewtabFn);
1360             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1361             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1362
1363             fscal            = felec;
1364
1365             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1366
1367             /* Calculate temporary vectorial force */
1368             tx               = _mm_mul_ps(fscal,dx30);
1369             ty               = _mm_mul_ps(fscal,dy30);
1370             tz               = _mm_mul_ps(fscal,dz30);
1371
1372             /* Update vectorial force */
1373             fix3             = _mm_add_ps(fix3,tx);
1374             fiy3             = _mm_add_ps(fiy3,ty);
1375             fiz3             = _mm_add_ps(fiz3,tz);
1376
1377             fjx0             = _mm_add_ps(fjx0,tx);
1378             fjy0             = _mm_add_ps(fjy0,ty);
1379             fjz0             = _mm_add_ps(fjz0,tz);
1380             
1381             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1382             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1383             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1384             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1385
1386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1387
1388             /* Inner loop uses 158 flops */
1389         }
1390
1391         /* End of innermost loop */
1392
1393         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1394                                               f+i_coord_offset,fshift+i_shift_offset);
1395
1396         /* Increment number of inner iterations */
1397         inneriter                  += j_index_end - j_index_start;
1398
1399         /* Outer loop uses 24 flops */
1400     }
1401
1402     /* Increment number of outer iterations */
1403     outeriter        += nri;
1404
1405     /* Update outer/inner flops */
1406
1407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*158);
1408 }