Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           c6grid_00;
102     __m128           c6grid_10;
103     __m128           c6grid_20;
104     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128           one_half = _mm_set1_ps(0.5);
107     __m128           minus_one = _mm_set1_ps(-1.0);
108     __m128i          ewitab;
109     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->ic->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
144     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
145     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }  
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
180         
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229
230             rinv00           = sse2_invsqrt_f(rsq00);
231             rinv10           = sse2_invsqrt_f(rsq10);
232             rinv20           = sse2_invsqrt_f(rsq20);
233
234             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm_setzero_ps();
247             fjy0             = _mm_setzero_ps();
248             fjz0             = _mm_setzero_ps();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_ps(iq0,jq0);
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
264                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
265                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
267
268             /* EWALD ELECTROSTATICS */
269
270             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
271             ewrt             = _mm_mul_ps(r00,ewtabscale);
272             ewitab           = _mm_cvttps_epi32(ewrt);
273             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
274             ewitab           = _mm_slli_epi32(ewitab,2);
275             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
276             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
277             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
278             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
279             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
280             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
281             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
282             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
283             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
284
285             /* Analytical LJ-PME */
286             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
287             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
288             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
289             exponent         = sse2_exp_f(ewcljrsq);
290             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
291             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
292             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
293             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
294             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
295             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
296             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
297             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
302
303             fscal            = _mm_add_ps(felec,fvdw);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm_mul_ps(fscal,dx00);
307             ty               = _mm_mul_ps(fscal,dy00);
308             tz               = _mm_mul_ps(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm_add_ps(fix0,tx);
312             fiy0             = _mm_add_ps(fiy0,ty);
313             fiz0             = _mm_add_ps(fiz0,tz);
314
315             fjx0             = _mm_add_ps(fjx0,tx);
316             fjy0             = _mm_add_ps(fjy0,ty);
317             fjz0             = _mm_add_ps(fjz0,tz);
318             
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r10              = _mm_mul_ps(rsq10,rinv10);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq10             = _mm_mul_ps(iq1,jq0);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _mm_mul_ps(r10,ewtabscale);
332             ewitab           = _mm_cvttps_epi32(ewrt);
333             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
334             ewitab           = _mm_slli_epi32(ewitab,2);
335             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
336             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
337             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
338             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
339             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
340             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
341             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
342             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
343             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _mm_add_ps(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_ps(fscal,dx10);
352             ty               = _mm_mul_ps(fscal,dy10);
353             tz               = _mm_mul_ps(fscal,dz10);
354
355             /* Update vectorial force */
356             fix1             = _mm_add_ps(fix1,tx);
357             fiy1             = _mm_add_ps(fiy1,ty);
358             fiz1             = _mm_add_ps(fiz1,tz);
359
360             fjx0             = _mm_add_ps(fjx0,tx);
361             fjy0             = _mm_add_ps(fjy0,ty);
362             fjz0             = _mm_add_ps(fjz0,tz);
363             
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_ps(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_ps(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_ps(r20,ewtabscale);
377             ewitab           = _mm_cvttps_epi32(ewrt);
378             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
384             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
386             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
387             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
388             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx20);
397             ty               = _mm_mul_ps(fscal,dy20);
398             tz               = _mm_mul_ps(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm_add_ps(fix2,tx);
402             fiy2             = _mm_add_ps(fiy2,ty);
403             fiz2             = _mm_add_ps(fiz2,tz);
404
405             fjx0             = _mm_add_ps(fjx0,tx);
406             fjy0             = _mm_add_ps(fjy0,ty);
407             fjz0             = _mm_add_ps(fjz0,tz);
408             
409             fjptrA             = f+j_coord_offsetA;
410             fjptrB             = f+j_coord_offsetB;
411             fjptrC             = f+j_coord_offsetC;
412             fjptrD             = f+j_coord_offsetD;
413
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
415
416             /* Inner loop uses 151 flops */
417         }
418
419         if(jidx<j_index_end)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrlistA         = jjnr[jidx];
424             jnrlistB         = jjnr[jidx+1];
425             jnrlistC         = jjnr[jidx+2];
426             jnrlistD         = jjnr[jidx+3];
427             /* Sign of each element will be negative for non-real atoms.
428              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
429              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
430              */
431             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
432             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
433             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
434             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
435             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                               x+j_coord_offsetC,x+j_coord_offsetD,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_ps(ix0,jx0);
448             dy00             = _mm_sub_ps(iy0,jy0);
449             dz00             = _mm_sub_ps(iz0,jz0);
450             dx10             = _mm_sub_ps(ix1,jx0);
451             dy10             = _mm_sub_ps(iy1,jy0);
452             dz10             = _mm_sub_ps(iz1,jz0);
453             dx20             = _mm_sub_ps(ix2,jx0);
454             dy20             = _mm_sub_ps(iy2,jy0);
455             dz20             = _mm_sub_ps(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461
462             rinv00           = sse2_invsqrt_f(rsq00);
463             rinv10           = sse2_invsqrt_f(rsq10);
464             rinv20           = sse2_invsqrt_f(rsq20);
465
466             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
467             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
468             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
472                                                               charge+jnrC+0,charge+jnrD+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474             vdwjidx0B        = 2*vdwtype[jnrB+0];
475             vdwjidx0C        = 2*vdwtype[jnrC+0];
476             vdwjidx0D        = 2*vdwtype[jnrD+0];
477
478             fjx0             = _mm_setzero_ps();
479             fjy0             = _mm_setzero_ps();
480             fjz0             = _mm_setzero_ps();
481
482             /**************************
483              * CALCULATE INTERACTIONS *
484              **************************/
485
486             r00              = _mm_mul_ps(rsq00,rinv00);
487             r00              = _mm_andnot_ps(dummy_mask,r00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             qq00             = _mm_mul_ps(iq0,jq0);
491             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
492                                          vdwparam+vdwioffset0+vdwjidx0B,
493                                          vdwparam+vdwioffset0+vdwjidx0C,
494                                          vdwparam+vdwioffset0+vdwjidx0D,
495                                          &c6_00,&c12_00);
496             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
497                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
498                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
499                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = _mm_mul_ps(r00,ewtabscale);
505             ewitab           = _mm_cvttps_epi32(ewrt);
506             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
507             ewitab           = _mm_slli_epi32(ewitab,2);
508             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
509             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
510             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
511             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
512             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
513             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
514             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
515             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
516             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
517
518             /* Analytical LJ-PME */
519             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
520             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
521             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
522             exponent         = sse2_exp_f(ewcljrsq);
523             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
524             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
525             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
526             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
527             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
528             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
529             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
530             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm_andnot_ps(dummy_mask,velec);
534             velecsum         = _mm_add_ps(velecsum,velec);
535             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
536             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
537
538             fscal            = _mm_add_ps(felec,fvdw);
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx00);
544             ty               = _mm_mul_ps(fscal,dy00);
545             tz               = _mm_mul_ps(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_ps(fix0,tx);
549             fiy0             = _mm_add_ps(fiy0,ty);
550             fiz0             = _mm_add_ps(fiz0,tz);
551
552             fjx0             = _mm_add_ps(fjx0,tx);
553             fjy0             = _mm_add_ps(fjy0,ty);
554             fjz0             = _mm_add_ps(fjz0,tz);
555             
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r10              = _mm_mul_ps(rsq10,rinv10);
561             r10              = _mm_andnot_ps(dummy_mask,r10);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq10             = _mm_mul_ps(iq1,jq0);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _mm_mul_ps(r10,ewtabscale);
570             ewitab           = _mm_cvttps_epi32(ewrt);
571             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
572             ewitab           = _mm_slli_epi32(ewitab,2);
573             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
574             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
575             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
576             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
577             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
578             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
579             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
580             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
581             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm_mul_ps(fscal,dx10);
593             ty               = _mm_mul_ps(fscal,dy10);
594             tz               = _mm_mul_ps(fscal,dz10);
595
596             /* Update vectorial force */
597             fix1             = _mm_add_ps(fix1,tx);
598             fiy1             = _mm_add_ps(fiy1,ty);
599             fiz1             = _mm_add_ps(fiz1,tz);
600
601             fjx0             = _mm_add_ps(fjx0,tx);
602             fjy0             = _mm_add_ps(fjy0,ty);
603             fjz0             = _mm_add_ps(fjz0,tz);
604             
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             r20              = _mm_mul_ps(rsq20,rinv20);
610             r20              = _mm_andnot_ps(dummy_mask,r20);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq20             = _mm_mul_ps(iq2,jq0);
614
615             /* EWALD ELECTROSTATICS */
616
617             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
618             ewrt             = _mm_mul_ps(r20,ewtabscale);
619             ewitab           = _mm_cvttps_epi32(ewrt);
620             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
621             ewitab           = _mm_slli_epi32(ewitab,2);
622             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
623             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
624             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
625             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
626             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
627             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
628             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
629             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
630             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_andnot_ps(dummy_mask,velec);
634             velecsum         = _mm_add_ps(velecsum,velec);
635
636             fscal            = felec;
637
638             fscal            = _mm_andnot_ps(dummy_mask,fscal);
639
640             /* Calculate temporary vectorial force */
641             tx               = _mm_mul_ps(fscal,dx20);
642             ty               = _mm_mul_ps(fscal,dy20);
643             tz               = _mm_mul_ps(fscal,dz20);
644
645             /* Update vectorial force */
646             fix2             = _mm_add_ps(fix2,tx);
647             fiy2             = _mm_add_ps(fiy2,ty);
648             fiz2             = _mm_add_ps(fiz2,tz);
649
650             fjx0             = _mm_add_ps(fjx0,tx);
651             fjy0             = _mm_add_ps(fjy0,ty);
652             fjz0             = _mm_add_ps(fjz0,tz);
653             
654             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
655             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
656             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
657             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
658
659             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
660
661             /* Inner loop uses 154 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
667                                               f+i_coord_offset,fshift+i_shift_offset);
668
669         ggid                        = gid[iidx];
670         /* Update potential energies */
671         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
672         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
673
674         /* Increment number of inner iterations */
675         inneriter                  += j_index_end - j_index_start;
676
677         /* Outer loop uses 20 flops */
678     }
679
680     /* Increment number of outer iterations */
681     outeriter        += nri;
682
683     /* Update outer/inner flops */
684
685     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
686 }
687 /*
688  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
689  * Electrostatics interaction: Ewald
690  * VdW interaction:            LJEwald
691  * Geometry:                   Water3-Particle
692  * Calculate force/pot:        Force
693  */
694 void
695 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
696                     (t_nblist                    * gmx_restrict       nlist,
697                      rvec                        * gmx_restrict          xx,
698                      rvec                        * gmx_restrict          ff,
699                      struct t_forcerec           * gmx_restrict          fr,
700                      t_mdatoms                   * gmx_restrict     mdatoms,
701                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
702                      t_nrnb                      * gmx_restrict        nrnb)
703 {
704     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
705      * just 0 for non-waters.
706      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
707      * jnr indices corresponding to data put in the four positions in the SIMD register.
708      */
709     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
710     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
711     int              jnrA,jnrB,jnrC,jnrD;
712     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
713     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
714     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
715     real             rcutoff_scalar;
716     real             *shiftvec,*fshift,*x,*f;
717     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
718     real             scratch[4*DIM];
719     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
720     int              vdwioffset0;
721     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
722     int              vdwioffset1;
723     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
724     int              vdwioffset2;
725     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
726     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
727     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
728     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
729     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
730     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
731     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
732     real             *charge;
733     int              nvdwtype;
734     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
735     int              *vdwtype;
736     real             *vdwparam;
737     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
738     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
739     __m128           c6grid_00;
740     __m128           c6grid_10;
741     __m128           c6grid_20;
742     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
743     real             *vdwgridparam;
744     __m128           one_half = _mm_set1_ps(0.5);
745     __m128           minus_one = _mm_set1_ps(-1.0);
746     __m128i          ewitab;
747     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
748     real             *ewtab;
749     __m128           dummy_mask,cutoff_mask;
750     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
751     __m128           one     = _mm_set1_ps(1.0);
752     __m128           two     = _mm_set1_ps(2.0);
753     x                = xx[0];
754     f                = ff[0];
755
756     nri              = nlist->nri;
757     iinr             = nlist->iinr;
758     jindex           = nlist->jindex;
759     jjnr             = nlist->jjnr;
760     shiftidx         = nlist->shift;
761     gid              = nlist->gid;
762     shiftvec         = fr->shift_vec[0];
763     fshift           = fr->fshift[0];
764     facel            = _mm_set1_ps(fr->ic->epsfac);
765     charge           = mdatoms->chargeA;
766     nvdwtype         = fr->ntype;
767     vdwparam         = fr->nbfp;
768     vdwtype          = mdatoms->typeA;
769     vdwgridparam     = fr->ljpme_c6grid;
770     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
771     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
772     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
773
774     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
775     ewtab            = fr->ic->tabq_coul_F;
776     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
777     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
778
779     /* Setup water-specific parameters */
780     inr              = nlist->iinr[0];
781     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
782     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
783     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
784     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
785
786     /* Avoid stupid compiler warnings */
787     jnrA = jnrB = jnrC = jnrD = 0;
788     j_coord_offsetA = 0;
789     j_coord_offsetB = 0;
790     j_coord_offsetC = 0;
791     j_coord_offsetD = 0;
792
793     outeriter        = 0;
794     inneriter        = 0;
795
796     for(iidx=0;iidx<4*DIM;iidx++)
797     {
798         scratch[iidx] = 0.0;
799     }  
800
801     /* Start outer loop over neighborlists */
802     for(iidx=0; iidx<nri; iidx++)
803     {
804         /* Load shift vector for this list */
805         i_shift_offset   = DIM*shiftidx[iidx];
806
807         /* Load limits for loop over neighbors */
808         j_index_start    = jindex[iidx];
809         j_index_end      = jindex[iidx+1];
810
811         /* Get outer coordinate index */
812         inr              = iinr[iidx];
813         i_coord_offset   = DIM*inr;
814
815         /* Load i particle coords and add shift vector */
816         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
817                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
818         
819         fix0             = _mm_setzero_ps();
820         fiy0             = _mm_setzero_ps();
821         fiz0             = _mm_setzero_ps();
822         fix1             = _mm_setzero_ps();
823         fiy1             = _mm_setzero_ps();
824         fiz1             = _mm_setzero_ps();
825         fix2             = _mm_setzero_ps();
826         fiy2             = _mm_setzero_ps();
827         fiz2             = _mm_setzero_ps();
828
829         /* Start inner kernel loop */
830         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
831         {
832
833             /* Get j neighbor index, and coordinate index */
834             jnrA             = jjnr[jidx];
835             jnrB             = jjnr[jidx+1];
836             jnrC             = jjnr[jidx+2];
837             jnrD             = jjnr[jidx+3];
838             j_coord_offsetA  = DIM*jnrA;
839             j_coord_offsetB  = DIM*jnrB;
840             j_coord_offsetC  = DIM*jnrC;
841             j_coord_offsetD  = DIM*jnrD;
842
843             /* load j atom coordinates */
844             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
845                                               x+j_coord_offsetC,x+j_coord_offsetD,
846                                               &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx00             = _mm_sub_ps(ix0,jx0);
850             dy00             = _mm_sub_ps(iy0,jy0);
851             dz00             = _mm_sub_ps(iz0,jz0);
852             dx10             = _mm_sub_ps(ix1,jx0);
853             dy10             = _mm_sub_ps(iy1,jy0);
854             dz10             = _mm_sub_ps(iz1,jz0);
855             dx20             = _mm_sub_ps(ix2,jx0);
856             dy20             = _mm_sub_ps(iy2,jy0);
857             dz20             = _mm_sub_ps(iz2,jz0);
858
859             /* Calculate squared distance and things based on it */
860             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
861             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
862             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
863
864             rinv00           = sse2_invsqrt_f(rsq00);
865             rinv10           = sse2_invsqrt_f(rsq10);
866             rinv20           = sse2_invsqrt_f(rsq20);
867
868             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
869             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
870             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
871
872             /* Load parameters for j particles */
873             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
874                                                               charge+jnrC+0,charge+jnrD+0);
875             vdwjidx0A        = 2*vdwtype[jnrA+0];
876             vdwjidx0B        = 2*vdwtype[jnrB+0];
877             vdwjidx0C        = 2*vdwtype[jnrC+0];
878             vdwjidx0D        = 2*vdwtype[jnrD+0];
879
880             fjx0             = _mm_setzero_ps();
881             fjy0             = _mm_setzero_ps();
882             fjz0             = _mm_setzero_ps();
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             r00              = _mm_mul_ps(rsq00,rinv00);
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq00             = _mm_mul_ps(iq0,jq0);
892             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
893                                          vdwparam+vdwioffset0+vdwjidx0B,
894                                          vdwparam+vdwioffset0+vdwjidx0C,
895                                          vdwparam+vdwioffset0+vdwjidx0D,
896                                          &c6_00,&c12_00);
897             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
898                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
899                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
900                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
901
902             /* EWALD ELECTROSTATICS */
903
904             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
905             ewrt             = _mm_mul_ps(r00,ewtabscale);
906             ewitab           = _mm_cvttps_epi32(ewrt);
907             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
908             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
909                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
910                                          &ewtabF,&ewtabFn);
911             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
912             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
913
914             /* Analytical LJ-PME */
915             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
916             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
917             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
918             exponent         = sse2_exp_f(ewcljrsq);
919             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
920             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
921             /* f6A = 6 * C6grid * (1 - poly) */
922             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
923             /* f6B = C6grid * exponent * beta^6 */
924             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
925             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
926             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
927
928             fscal            = _mm_add_ps(felec,fvdw);
929
930             /* Calculate temporary vectorial force */
931             tx               = _mm_mul_ps(fscal,dx00);
932             ty               = _mm_mul_ps(fscal,dy00);
933             tz               = _mm_mul_ps(fscal,dz00);
934
935             /* Update vectorial force */
936             fix0             = _mm_add_ps(fix0,tx);
937             fiy0             = _mm_add_ps(fiy0,ty);
938             fiz0             = _mm_add_ps(fiz0,tz);
939
940             fjx0             = _mm_add_ps(fjx0,tx);
941             fjy0             = _mm_add_ps(fjy0,ty);
942             fjz0             = _mm_add_ps(fjz0,tz);
943             
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _mm_mul_ps(rsq10,rinv10);
949
950             /* Compute parameters for interactions between i and j atoms */
951             qq10             = _mm_mul_ps(iq1,jq0);
952
953             /* EWALD ELECTROSTATICS */
954
955             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956             ewrt             = _mm_mul_ps(r10,ewtabscale);
957             ewitab           = _mm_cvttps_epi32(ewrt);
958             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
959             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
960                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
961                                          &ewtabF,&ewtabFn);
962             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
963             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
964
965             fscal            = felec;
966
967             /* Calculate temporary vectorial force */
968             tx               = _mm_mul_ps(fscal,dx10);
969             ty               = _mm_mul_ps(fscal,dy10);
970             tz               = _mm_mul_ps(fscal,dz10);
971
972             /* Update vectorial force */
973             fix1             = _mm_add_ps(fix1,tx);
974             fiy1             = _mm_add_ps(fiy1,ty);
975             fiz1             = _mm_add_ps(fiz1,tz);
976
977             fjx0             = _mm_add_ps(fjx0,tx);
978             fjy0             = _mm_add_ps(fjy0,ty);
979             fjz0             = _mm_add_ps(fjz0,tz);
980             
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             r20              = _mm_mul_ps(rsq20,rinv20);
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq20             = _mm_mul_ps(iq2,jq0);
989
990             /* EWALD ELECTROSTATICS */
991
992             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
993             ewrt             = _mm_mul_ps(r20,ewtabscale);
994             ewitab           = _mm_cvttps_epi32(ewrt);
995             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
996             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
997                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
998                                          &ewtabF,&ewtabFn);
999             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1000             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1001
1002             fscal            = felec;
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_ps(fscal,dx20);
1006             ty               = _mm_mul_ps(fscal,dy20);
1007             tz               = _mm_mul_ps(fscal,dz20);
1008
1009             /* Update vectorial force */
1010             fix2             = _mm_add_ps(fix2,tx);
1011             fiy2             = _mm_add_ps(fiy2,ty);
1012             fiz2             = _mm_add_ps(fiz2,tz);
1013
1014             fjx0             = _mm_add_ps(fjx0,tx);
1015             fjy0             = _mm_add_ps(fjy0,ty);
1016             fjz0             = _mm_add_ps(fjz0,tz);
1017             
1018             fjptrA             = f+j_coord_offsetA;
1019             fjptrB             = f+j_coord_offsetB;
1020             fjptrC             = f+j_coord_offsetC;
1021             fjptrD             = f+j_coord_offsetD;
1022
1023             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1024
1025             /* Inner loop uses 131 flops */
1026         }
1027
1028         if(jidx<j_index_end)
1029         {
1030
1031             /* Get j neighbor index, and coordinate index */
1032             jnrlistA         = jjnr[jidx];
1033             jnrlistB         = jjnr[jidx+1];
1034             jnrlistC         = jjnr[jidx+2];
1035             jnrlistD         = jjnr[jidx+3];
1036             /* Sign of each element will be negative for non-real atoms.
1037              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1038              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1039              */
1040             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1041             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1042             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1043             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1044             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1045             j_coord_offsetA  = DIM*jnrA;
1046             j_coord_offsetB  = DIM*jnrB;
1047             j_coord_offsetC  = DIM*jnrC;
1048             j_coord_offsetD  = DIM*jnrD;
1049
1050             /* load j atom coordinates */
1051             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1052                                               x+j_coord_offsetC,x+j_coord_offsetD,
1053                                               &jx0,&jy0,&jz0);
1054
1055             /* Calculate displacement vector */
1056             dx00             = _mm_sub_ps(ix0,jx0);
1057             dy00             = _mm_sub_ps(iy0,jy0);
1058             dz00             = _mm_sub_ps(iz0,jz0);
1059             dx10             = _mm_sub_ps(ix1,jx0);
1060             dy10             = _mm_sub_ps(iy1,jy0);
1061             dz10             = _mm_sub_ps(iz1,jz0);
1062             dx20             = _mm_sub_ps(ix2,jx0);
1063             dy20             = _mm_sub_ps(iy2,jy0);
1064             dz20             = _mm_sub_ps(iz2,jz0);
1065
1066             /* Calculate squared distance and things based on it */
1067             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1068             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1069             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1070
1071             rinv00           = sse2_invsqrt_f(rsq00);
1072             rinv10           = sse2_invsqrt_f(rsq10);
1073             rinv20           = sse2_invsqrt_f(rsq20);
1074
1075             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1076             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1077             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1078
1079             /* Load parameters for j particles */
1080             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1081                                                               charge+jnrC+0,charge+jnrD+0);
1082             vdwjidx0A        = 2*vdwtype[jnrA+0];
1083             vdwjidx0B        = 2*vdwtype[jnrB+0];
1084             vdwjidx0C        = 2*vdwtype[jnrC+0];
1085             vdwjidx0D        = 2*vdwtype[jnrD+0];
1086
1087             fjx0             = _mm_setzero_ps();
1088             fjy0             = _mm_setzero_ps();
1089             fjz0             = _mm_setzero_ps();
1090
1091             /**************************
1092              * CALCULATE INTERACTIONS *
1093              **************************/
1094
1095             r00              = _mm_mul_ps(rsq00,rinv00);
1096             r00              = _mm_andnot_ps(dummy_mask,r00);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq00             = _mm_mul_ps(iq0,jq0);
1100             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1101                                          vdwparam+vdwioffset0+vdwjidx0B,
1102                                          vdwparam+vdwioffset0+vdwjidx0C,
1103                                          vdwparam+vdwioffset0+vdwjidx0D,
1104                                          &c6_00,&c12_00);
1105             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1106                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1107                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1108                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1109
1110             /* EWALD ELECTROSTATICS */
1111
1112             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1113             ewrt             = _mm_mul_ps(r00,ewtabscale);
1114             ewitab           = _mm_cvttps_epi32(ewrt);
1115             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1116             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1117                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1118                                          &ewtabF,&ewtabFn);
1119             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1120             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1121
1122             /* Analytical LJ-PME */
1123             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1124             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1125             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1126             exponent         = sse2_exp_f(ewcljrsq);
1127             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1128             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1129             /* f6A = 6 * C6grid * (1 - poly) */
1130             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1131             /* f6B = C6grid * exponent * beta^6 */
1132             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1133             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1134             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1135
1136             fscal            = _mm_add_ps(felec,fvdw);
1137
1138             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm_mul_ps(fscal,dx00);
1142             ty               = _mm_mul_ps(fscal,dy00);
1143             tz               = _mm_mul_ps(fscal,dz00);
1144
1145             /* Update vectorial force */
1146             fix0             = _mm_add_ps(fix0,tx);
1147             fiy0             = _mm_add_ps(fiy0,ty);
1148             fiz0             = _mm_add_ps(fiz0,tz);
1149
1150             fjx0             = _mm_add_ps(fjx0,tx);
1151             fjy0             = _mm_add_ps(fjy0,ty);
1152             fjz0             = _mm_add_ps(fjz0,tz);
1153             
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r10              = _mm_mul_ps(rsq10,rinv10);
1159             r10              = _mm_andnot_ps(dummy_mask,r10);
1160
1161             /* Compute parameters for interactions between i and j atoms */
1162             qq10             = _mm_mul_ps(iq1,jq0);
1163
1164             /* EWALD ELECTROSTATICS */
1165
1166             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1167             ewrt             = _mm_mul_ps(r10,ewtabscale);
1168             ewitab           = _mm_cvttps_epi32(ewrt);
1169             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1170             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1171                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1172                                          &ewtabF,&ewtabFn);
1173             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1174             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1179
1180             /* Calculate temporary vectorial force */
1181             tx               = _mm_mul_ps(fscal,dx10);
1182             ty               = _mm_mul_ps(fscal,dy10);
1183             tz               = _mm_mul_ps(fscal,dz10);
1184
1185             /* Update vectorial force */
1186             fix1             = _mm_add_ps(fix1,tx);
1187             fiy1             = _mm_add_ps(fiy1,ty);
1188             fiz1             = _mm_add_ps(fiz1,tz);
1189
1190             fjx0             = _mm_add_ps(fjx0,tx);
1191             fjy0             = _mm_add_ps(fjy0,ty);
1192             fjz0             = _mm_add_ps(fjz0,tz);
1193             
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             r20              = _mm_mul_ps(rsq20,rinv20);
1199             r20              = _mm_andnot_ps(dummy_mask,r20);
1200
1201             /* Compute parameters for interactions between i and j atoms */
1202             qq20             = _mm_mul_ps(iq2,jq0);
1203
1204             /* EWALD ELECTROSTATICS */
1205
1206             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1207             ewrt             = _mm_mul_ps(r20,ewtabscale);
1208             ewitab           = _mm_cvttps_epi32(ewrt);
1209             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1210             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1211                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1212                                          &ewtabF,&ewtabFn);
1213             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1214             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1215
1216             fscal            = felec;
1217
1218             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1219
1220             /* Calculate temporary vectorial force */
1221             tx               = _mm_mul_ps(fscal,dx20);
1222             ty               = _mm_mul_ps(fscal,dy20);
1223             tz               = _mm_mul_ps(fscal,dz20);
1224
1225             /* Update vectorial force */
1226             fix2             = _mm_add_ps(fix2,tx);
1227             fiy2             = _mm_add_ps(fiy2,ty);
1228             fiz2             = _mm_add_ps(fiz2,tz);
1229
1230             fjx0             = _mm_add_ps(fjx0,tx);
1231             fjy0             = _mm_add_ps(fjy0,ty);
1232             fjz0             = _mm_add_ps(fjz0,tz);
1233             
1234             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1235             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1236             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1237             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1238
1239             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1240
1241             /* Inner loop uses 134 flops */
1242         }
1243
1244         /* End of innermost loop */
1245
1246         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1247                                               f+i_coord_offset,fshift+i_shift_offset);
1248
1249         /* Increment number of inner iterations */
1250         inneriter                  += j_index_end - j_index_start;
1251
1252         /* Outer loop uses 18 flops */
1253     }
1254
1255     /* Increment number of outer iterations */
1256     outeriter        += nri;
1257
1258     /* Update outer/inner flops */
1259
1260     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1261 }