d11e30e64c6704b9fc91e3296fecba047dde975c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     real             *vdwgridparam;
109     __m128           one_half = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128           dummy_mask,cutoff_mask;
115     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116     __m128           one     = _mm_set1_ps(1.0);
117     __m128           two     = _mm_set1_ps(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm_set1_ps(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134     vdwgridparam     = fr->ljpme_c6grid;
135     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
136     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
137     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }  
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183         
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233             rinv00           = gmx_mm_invsqrt_ps(rsq00);
234             rinv10           = gmx_mm_invsqrt_ps(rsq10);
235             rinv20           = gmx_mm_invsqrt_ps(rsq20);
236
237             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r00              = _mm_mul_ps(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_ps(iq0,jq0);
261             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
262                                          vdwparam+vdwioffset0+vdwjidx0B,
263                                          vdwparam+vdwioffset0+vdwjidx0C,
264                                          vdwparam+vdwioffset0+vdwjidx0D,
265                                          &c6_00,&c12_00);
266             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
268                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
269                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
270
271             /* EWALD ELECTROSTATICS */
272
273             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
274             ewrt             = _mm_mul_ps(r00,ewtabscale);
275             ewitab           = _mm_cvttps_epi32(ewrt);
276             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
277             ewitab           = _mm_slli_epi32(ewitab,2);
278             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
279             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
280             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
281             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
282             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
283             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
284             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
285             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
286             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
287
288             /* Analytical LJ-PME */
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
291             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
292             exponent         = gmx_simd_exp_r(ewcljrsq);
293             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
294             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
295             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
296             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
297             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
298             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
299             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
300             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_ps(velecsum,velec);
304             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
305
306             fscal            = _mm_add_ps(felec,fvdw);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm_mul_ps(fscal,dx00);
310             ty               = _mm_mul_ps(fscal,dy00);
311             tz               = _mm_mul_ps(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm_add_ps(fix0,tx);
315             fiy0             = _mm_add_ps(fiy0,ty);
316             fiz0             = _mm_add_ps(fiz0,tz);
317
318             fjx0             = _mm_add_ps(fjx0,tx);
319             fjy0             = _mm_add_ps(fjy0,ty);
320             fjz0             = _mm_add_ps(fjz0,tz);
321             
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r10              = _mm_mul_ps(rsq10,rinv10);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm_mul_ps(iq1,jq0);
330
331             /* EWALD ELECTROSTATICS */
332
333             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
334             ewrt             = _mm_mul_ps(r10,ewtabscale);
335             ewitab           = _mm_cvttps_epi32(ewrt);
336             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
337             ewitab           = _mm_slli_epi32(ewitab,2);
338             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
339             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
340             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
341             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
342             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
343             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
344             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
345             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
346             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_ps(fscal,dx10);
355             ty               = _mm_mul_ps(fscal,dy10);
356             tz               = _mm_mul_ps(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm_add_ps(fix1,tx);
360             fiy1             = _mm_add_ps(fiy1,ty);
361             fiz1             = _mm_add_ps(fiz1,tz);
362
363             fjx0             = _mm_add_ps(fjx0,tx);
364             fjy0             = _mm_add_ps(fjy0,ty);
365             fjz0             = _mm_add_ps(fjz0,tz);
366             
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r20              = _mm_mul_ps(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_ps(iq2,jq0);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_ps(r20,ewtabscale);
380             ewitab           = _mm_cvttps_epi32(ewrt);
381             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
390             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
391             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm_add_ps(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx20);
400             ty               = _mm_mul_ps(fscal,dy20);
401             tz               = _mm_mul_ps(fscal,dz20);
402
403             /* Update vectorial force */
404             fix2             = _mm_add_ps(fix2,tx);
405             fiy2             = _mm_add_ps(fiy2,ty);
406             fiz2             = _mm_add_ps(fiz2,tz);
407
408             fjx0             = _mm_add_ps(fjx0,tx);
409             fjy0             = _mm_add_ps(fjy0,ty);
410             fjz0             = _mm_add_ps(fjz0,tz);
411             
412             fjptrA             = f+j_coord_offsetA;
413             fjptrB             = f+j_coord_offsetB;
414             fjptrC             = f+j_coord_offsetC;
415             fjptrD             = f+j_coord_offsetD;
416
417             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
418
419             /* Inner loop uses 151 flops */
420         }
421
422         if(jidx<j_index_end)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             /* Sign of each element will be negative for non-real atoms.
431              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
433              */
434             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
436             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
437             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
438             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
439             j_coord_offsetA  = DIM*jnrA;
440             j_coord_offsetB  = DIM*jnrB;
441             j_coord_offsetC  = DIM*jnrC;
442             j_coord_offsetD  = DIM*jnrD;
443
444             /* load j atom coordinates */
445             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
446                                               x+j_coord_offsetC,x+j_coord_offsetD,
447                                               &jx0,&jy0,&jz0);
448
449             /* Calculate displacement vector */
450             dx00             = _mm_sub_ps(ix0,jx0);
451             dy00             = _mm_sub_ps(iy0,jy0);
452             dz00             = _mm_sub_ps(iz0,jz0);
453             dx10             = _mm_sub_ps(ix1,jx0);
454             dy10             = _mm_sub_ps(iy1,jy0);
455             dz10             = _mm_sub_ps(iz1,jz0);
456             dx20             = _mm_sub_ps(ix2,jx0);
457             dy20             = _mm_sub_ps(iy2,jy0);
458             dz20             = _mm_sub_ps(iz2,jz0);
459
460             /* Calculate squared distance and things based on it */
461             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
462             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
463             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
464
465             rinv00           = gmx_mm_invsqrt_ps(rsq00);
466             rinv10           = gmx_mm_invsqrt_ps(rsq10);
467             rinv20           = gmx_mm_invsqrt_ps(rsq20);
468
469             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
470             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
471             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
472
473             /* Load parameters for j particles */
474             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
475                                                               charge+jnrC+0,charge+jnrD+0);
476             vdwjidx0A        = 2*vdwtype[jnrA+0];
477             vdwjidx0B        = 2*vdwtype[jnrB+0];
478             vdwjidx0C        = 2*vdwtype[jnrC+0];
479             vdwjidx0D        = 2*vdwtype[jnrD+0];
480
481             fjx0             = _mm_setzero_ps();
482             fjy0             = _mm_setzero_ps();
483             fjz0             = _mm_setzero_ps();
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             r00              = _mm_mul_ps(rsq00,rinv00);
490             r00              = _mm_andnot_ps(dummy_mask,r00);
491
492             /* Compute parameters for interactions between i and j atoms */
493             qq00             = _mm_mul_ps(iq0,jq0);
494             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
495                                          vdwparam+vdwioffset0+vdwjidx0B,
496                                          vdwparam+vdwioffset0+vdwjidx0C,
497                                          vdwparam+vdwioffset0+vdwjidx0D,
498                                          &c6_00,&c12_00);
499             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
500                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
501                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
502                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = _mm_mul_ps(r00,ewtabscale);
508             ewitab           = _mm_cvttps_epi32(ewrt);
509             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
510             ewitab           = _mm_slli_epi32(ewitab,2);
511             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
512             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
513             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
514             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
515             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
516             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
517             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
518             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
519             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
520
521             /* Analytical LJ-PME */
522             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
523             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
524             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
525             exponent         = gmx_simd_exp_r(ewcljrsq);
526             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
527             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
528             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
529             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
530             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
531             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
532             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
533             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
539             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
540
541             fscal            = _mm_add_ps(felec,fvdw);
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm_mul_ps(fscal,dx00);
547             ty               = _mm_mul_ps(fscal,dy00);
548             tz               = _mm_mul_ps(fscal,dz00);
549
550             /* Update vectorial force */
551             fix0             = _mm_add_ps(fix0,tx);
552             fiy0             = _mm_add_ps(fiy0,ty);
553             fiz0             = _mm_add_ps(fiz0,tz);
554
555             fjx0             = _mm_add_ps(fjx0,tx);
556             fjy0             = _mm_add_ps(fjy0,ty);
557             fjz0             = _mm_add_ps(fjz0,tz);
558             
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r10              = _mm_mul_ps(rsq10,rinv10);
564             r10              = _mm_andnot_ps(dummy_mask,r10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_ps(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_ps(r10,ewtabscale);
573             ewitab           = _mm_cvttps_epi32(ewrt);
574             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
578             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
579             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
580             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
581             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
582             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
583             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
584             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx10);
596             ty               = _mm_mul_ps(fscal,dy10);
597             tz               = _mm_mul_ps(fscal,dz10);
598
599             /* Update vectorial force */
600             fix1             = _mm_add_ps(fix1,tx);
601             fiy1             = _mm_add_ps(fiy1,ty);
602             fiz1             = _mm_add_ps(fiz1,tz);
603
604             fjx0             = _mm_add_ps(fjx0,tx);
605             fjy0             = _mm_add_ps(fjy0,ty);
606             fjz0             = _mm_add_ps(fjz0,tz);
607             
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r20              = _mm_mul_ps(rsq20,rinv20);
613             r20              = _mm_andnot_ps(dummy_mask,r20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_ps(iq2,jq0);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621             ewrt             = _mm_mul_ps(r20,ewtabscale);
622             ewitab           = _mm_cvttps_epi32(ewrt);
623             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
624             ewitab           = _mm_slli_epi32(ewitab,2);
625             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
626             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
627             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
628             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
629             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
630             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
631             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
632             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
633             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
634
635             /* Update potential sum for this i atom from the interaction with this j atom. */
636             velec            = _mm_andnot_ps(dummy_mask,velec);
637             velecsum         = _mm_add_ps(velecsum,velec);
638
639             fscal            = felec;
640
641             fscal            = _mm_andnot_ps(dummy_mask,fscal);
642
643             /* Calculate temporary vectorial force */
644             tx               = _mm_mul_ps(fscal,dx20);
645             ty               = _mm_mul_ps(fscal,dy20);
646             tz               = _mm_mul_ps(fscal,dz20);
647
648             /* Update vectorial force */
649             fix2             = _mm_add_ps(fix2,tx);
650             fiy2             = _mm_add_ps(fiy2,ty);
651             fiz2             = _mm_add_ps(fiz2,tz);
652
653             fjx0             = _mm_add_ps(fjx0,tx);
654             fjy0             = _mm_add_ps(fjy0,ty);
655             fjz0             = _mm_add_ps(fjz0,tz);
656             
657             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
658             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
659             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
660             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
661
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
663
664             /* Inner loop uses 154 flops */
665         }
666
667         /* End of innermost loop */
668
669         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
670                                               f+i_coord_offset,fshift+i_shift_offset);
671
672         ggid                        = gid[iidx];
673         /* Update potential energies */
674         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
675         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
676
677         /* Increment number of inner iterations */
678         inneriter                  += j_index_end - j_index_start;
679
680         /* Outer loop uses 20 flops */
681     }
682
683     /* Increment number of outer iterations */
684     outeriter        += nri;
685
686     /* Update outer/inner flops */
687
688     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
689 }
690 /*
691  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
692  * Electrostatics interaction: Ewald
693  * VdW interaction:            LJEwald
694  * Geometry:                   Water3-Particle
695  * Calculate force/pot:        Force
696  */
697 void
698 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
699                     (t_nblist                    * gmx_restrict       nlist,
700                      rvec                        * gmx_restrict          xx,
701                      rvec                        * gmx_restrict          ff,
702                      t_forcerec                  * gmx_restrict          fr,
703                      t_mdatoms                   * gmx_restrict     mdatoms,
704                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
705                      t_nrnb                      * gmx_restrict        nrnb)
706 {
707     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
708      * just 0 for non-waters.
709      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
710      * jnr indices corresponding to data put in the four positions in the SIMD register.
711      */
712     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
713     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
714     int              jnrA,jnrB,jnrC,jnrD;
715     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
716     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
717     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
718     real             rcutoff_scalar;
719     real             *shiftvec,*fshift,*x,*f;
720     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
721     real             scratch[4*DIM];
722     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
723     int              vdwioffset0;
724     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
725     int              vdwioffset1;
726     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
727     int              vdwioffset2;
728     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
729     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
730     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
731     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
732     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
733     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
734     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
735     real             *charge;
736     int              nvdwtype;
737     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
738     int              *vdwtype;
739     real             *vdwparam;
740     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
741     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
742     __m128           c6grid_00;
743     __m128           c6grid_10;
744     __m128           c6grid_20;
745     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
746     real             *vdwgridparam;
747     __m128           one_half = _mm_set1_ps(0.5);
748     __m128           minus_one = _mm_set1_ps(-1.0);
749     __m128i          ewitab;
750     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
751     real             *ewtab;
752     __m128           dummy_mask,cutoff_mask;
753     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
754     __m128           one     = _mm_set1_ps(1.0);
755     __m128           two     = _mm_set1_ps(2.0);
756     x                = xx[0];
757     f                = ff[0];
758
759     nri              = nlist->nri;
760     iinr             = nlist->iinr;
761     jindex           = nlist->jindex;
762     jjnr             = nlist->jjnr;
763     shiftidx         = nlist->shift;
764     gid              = nlist->gid;
765     shiftvec         = fr->shift_vec[0];
766     fshift           = fr->fshift[0];
767     facel            = _mm_set1_ps(fr->epsfac);
768     charge           = mdatoms->chargeA;
769     nvdwtype         = fr->ntype;
770     vdwparam         = fr->nbfp;
771     vdwtype          = mdatoms->typeA;
772     vdwgridparam     = fr->ljpme_c6grid;
773     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
774     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
775     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
776
777     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
778     ewtab            = fr->ic->tabq_coul_F;
779     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
780     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
781
782     /* Setup water-specific parameters */
783     inr              = nlist->iinr[0];
784     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
785     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
786     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
787     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }  
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
821         
822         fix0             = _mm_setzero_ps();
823         fiy0             = _mm_setzero_ps();
824         fiz0             = _mm_setzero_ps();
825         fix1             = _mm_setzero_ps();
826         fiy1             = _mm_setzero_ps();
827         fiz1             = _mm_setzero_ps();
828         fix2             = _mm_setzero_ps();
829         fiy2             = _mm_setzero_ps();
830         fiz2             = _mm_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               x+j_coord_offsetC,x+j_coord_offsetD,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_ps(ix0,jx0);
853             dy00             = _mm_sub_ps(iy0,jy0);
854             dz00             = _mm_sub_ps(iz0,jz0);
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866
867             rinv00           = gmx_mm_invsqrt_ps(rsq00);
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870
871             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
877                                                               charge+jnrC+0,charge+jnrD+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880             vdwjidx0C        = 2*vdwtype[jnrC+0];
881             vdwjidx0D        = 2*vdwtype[jnrD+0];
882
883             fjx0             = _mm_setzero_ps();
884             fjy0             = _mm_setzero_ps();
885             fjz0             = _mm_setzero_ps();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r00              = _mm_mul_ps(rsq00,rinv00);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq00             = _mm_mul_ps(iq0,jq0);
895             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
896                                          vdwparam+vdwioffset0+vdwjidx0B,
897                                          vdwparam+vdwioffset0+vdwjidx0C,
898                                          vdwparam+vdwioffset0+vdwjidx0D,
899                                          &c6_00,&c12_00);
900             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
901                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
902                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
903                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
904
905             /* EWALD ELECTROSTATICS */
906
907             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
908             ewrt             = _mm_mul_ps(r00,ewtabscale);
909             ewitab           = _mm_cvttps_epi32(ewrt);
910             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
911             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
912                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
913                                          &ewtabF,&ewtabFn);
914             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
915             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
916
917             /* Analytical LJ-PME */
918             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
919             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
920             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
921             exponent         = gmx_simd_exp_r(ewcljrsq);
922             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
923             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
924             /* f6A = 6 * C6grid * (1 - poly) */
925             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
926             /* f6B = C6grid * exponent * beta^6 */
927             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
928             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
929             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
930
931             fscal            = _mm_add_ps(felec,fvdw);
932
933             /* Calculate temporary vectorial force */
934             tx               = _mm_mul_ps(fscal,dx00);
935             ty               = _mm_mul_ps(fscal,dy00);
936             tz               = _mm_mul_ps(fscal,dz00);
937
938             /* Update vectorial force */
939             fix0             = _mm_add_ps(fix0,tx);
940             fiy0             = _mm_add_ps(fiy0,ty);
941             fiz0             = _mm_add_ps(fiz0,tz);
942
943             fjx0             = _mm_add_ps(fjx0,tx);
944             fjy0             = _mm_add_ps(fjy0,ty);
945             fjz0             = _mm_add_ps(fjz0,tz);
946             
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r10              = _mm_mul_ps(rsq10,rinv10);
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm_mul_ps(iq1,jq0);
955
956             /* EWALD ELECTROSTATICS */
957
958             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959             ewrt             = _mm_mul_ps(r10,ewtabscale);
960             ewitab           = _mm_cvttps_epi32(ewrt);
961             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
962             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
963                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
964                                          &ewtabF,&ewtabFn);
965             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
966             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
967
968             fscal            = felec;
969
970             /* Calculate temporary vectorial force */
971             tx               = _mm_mul_ps(fscal,dx10);
972             ty               = _mm_mul_ps(fscal,dy10);
973             tz               = _mm_mul_ps(fscal,dz10);
974
975             /* Update vectorial force */
976             fix1             = _mm_add_ps(fix1,tx);
977             fiy1             = _mm_add_ps(fiy1,ty);
978             fiz1             = _mm_add_ps(fiz1,tz);
979
980             fjx0             = _mm_add_ps(fjx0,tx);
981             fjy0             = _mm_add_ps(fjy0,ty);
982             fjz0             = _mm_add_ps(fjz0,tz);
983             
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r20              = _mm_mul_ps(rsq20,rinv20);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq20             = _mm_mul_ps(iq2,jq0);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm_mul_ps(r20,ewtabscale);
997             ewitab           = _mm_cvttps_epi32(ewrt);
998             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
999             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1000                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1001                                          &ewtabF,&ewtabFn);
1002             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1003             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1004
1005             fscal            = felec;
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_ps(fscal,dx20);
1009             ty               = _mm_mul_ps(fscal,dy20);
1010             tz               = _mm_mul_ps(fscal,dz20);
1011
1012             /* Update vectorial force */
1013             fix2             = _mm_add_ps(fix2,tx);
1014             fiy2             = _mm_add_ps(fiy2,ty);
1015             fiz2             = _mm_add_ps(fiz2,tz);
1016
1017             fjx0             = _mm_add_ps(fjx0,tx);
1018             fjy0             = _mm_add_ps(fjy0,ty);
1019             fjz0             = _mm_add_ps(fjz0,tz);
1020             
1021             fjptrA             = f+j_coord_offsetA;
1022             fjptrB             = f+j_coord_offsetB;
1023             fjptrC             = f+j_coord_offsetC;
1024             fjptrD             = f+j_coord_offsetD;
1025
1026             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1027
1028             /* Inner loop uses 131 flops */
1029         }
1030
1031         if(jidx<j_index_end)
1032         {
1033
1034             /* Get j neighbor index, and coordinate index */
1035             jnrlistA         = jjnr[jidx];
1036             jnrlistB         = jjnr[jidx+1];
1037             jnrlistC         = jjnr[jidx+2];
1038             jnrlistD         = jjnr[jidx+3];
1039             /* Sign of each element will be negative for non-real atoms.
1040              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1041              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1042              */
1043             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1044             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1045             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1046             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1047             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1048             j_coord_offsetA  = DIM*jnrA;
1049             j_coord_offsetB  = DIM*jnrB;
1050             j_coord_offsetC  = DIM*jnrC;
1051             j_coord_offsetD  = DIM*jnrD;
1052
1053             /* load j atom coordinates */
1054             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1055                                               x+j_coord_offsetC,x+j_coord_offsetD,
1056                                               &jx0,&jy0,&jz0);
1057
1058             /* Calculate displacement vector */
1059             dx00             = _mm_sub_ps(ix0,jx0);
1060             dy00             = _mm_sub_ps(iy0,jy0);
1061             dz00             = _mm_sub_ps(iz0,jz0);
1062             dx10             = _mm_sub_ps(ix1,jx0);
1063             dy10             = _mm_sub_ps(iy1,jy0);
1064             dz10             = _mm_sub_ps(iz1,jz0);
1065             dx20             = _mm_sub_ps(ix2,jx0);
1066             dy20             = _mm_sub_ps(iy2,jy0);
1067             dz20             = _mm_sub_ps(iz2,jz0);
1068
1069             /* Calculate squared distance and things based on it */
1070             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1071             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1072             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1073
1074             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1075             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1076             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1077
1078             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1079             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1080             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1081
1082             /* Load parameters for j particles */
1083             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1084                                                               charge+jnrC+0,charge+jnrD+0);
1085             vdwjidx0A        = 2*vdwtype[jnrA+0];
1086             vdwjidx0B        = 2*vdwtype[jnrB+0];
1087             vdwjidx0C        = 2*vdwtype[jnrC+0];
1088             vdwjidx0D        = 2*vdwtype[jnrD+0];
1089
1090             fjx0             = _mm_setzero_ps();
1091             fjy0             = _mm_setzero_ps();
1092             fjz0             = _mm_setzero_ps();
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r00              = _mm_mul_ps(rsq00,rinv00);
1099             r00              = _mm_andnot_ps(dummy_mask,r00);
1100
1101             /* Compute parameters for interactions between i and j atoms */
1102             qq00             = _mm_mul_ps(iq0,jq0);
1103             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1104                                          vdwparam+vdwioffset0+vdwjidx0B,
1105                                          vdwparam+vdwioffset0+vdwjidx0C,
1106                                          vdwparam+vdwioffset0+vdwjidx0D,
1107                                          &c6_00,&c12_00);
1108             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1109                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1110                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1111                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm_mul_ps(r00,ewtabscale);
1117             ewitab           = _mm_cvttps_epi32(ewrt);
1118             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1119             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1120                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1121                                          &ewtabF,&ewtabFn);
1122             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1123             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1124
1125             /* Analytical LJ-PME */
1126             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1127             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1128             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1129             exponent         = gmx_simd_exp_r(ewcljrsq);
1130             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1131             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1132             /* f6A = 6 * C6grid * (1 - poly) */
1133             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1134             /* f6B = C6grid * exponent * beta^6 */
1135             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1136             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1137             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1138
1139             fscal            = _mm_add_ps(felec,fvdw);
1140
1141             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1142
1143             /* Calculate temporary vectorial force */
1144             tx               = _mm_mul_ps(fscal,dx00);
1145             ty               = _mm_mul_ps(fscal,dy00);
1146             tz               = _mm_mul_ps(fscal,dz00);
1147
1148             /* Update vectorial force */
1149             fix0             = _mm_add_ps(fix0,tx);
1150             fiy0             = _mm_add_ps(fiy0,ty);
1151             fiz0             = _mm_add_ps(fiz0,tz);
1152
1153             fjx0             = _mm_add_ps(fjx0,tx);
1154             fjy0             = _mm_add_ps(fjy0,ty);
1155             fjz0             = _mm_add_ps(fjz0,tz);
1156             
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             r10              = _mm_mul_ps(rsq10,rinv10);
1162             r10              = _mm_andnot_ps(dummy_mask,r10);
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm_mul_ps(iq1,jq0);
1166
1167             /* EWALD ELECTROSTATICS */
1168
1169             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170             ewrt             = _mm_mul_ps(r10,ewtabscale);
1171             ewitab           = _mm_cvttps_epi32(ewrt);
1172             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1173             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1174                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1175                                          &ewtabF,&ewtabFn);
1176             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1177             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1178
1179             fscal            = felec;
1180
1181             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = _mm_mul_ps(fscal,dx10);
1185             ty               = _mm_mul_ps(fscal,dy10);
1186             tz               = _mm_mul_ps(fscal,dz10);
1187
1188             /* Update vectorial force */
1189             fix1             = _mm_add_ps(fix1,tx);
1190             fiy1             = _mm_add_ps(fiy1,ty);
1191             fiz1             = _mm_add_ps(fiz1,tz);
1192
1193             fjx0             = _mm_add_ps(fjx0,tx);
1194             fjy0             = _mm_add_ps(fjy0,ty);
1195             fjz0             = _mm_add_ps(fjz0,tz);
1196             
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             r20              = _mm_mul_ps(rsq20,rinv20);
1202             r20              = _mm_andnot_ps(dummy_mask,r20);
1203
1204             /* Compute parameters for interactions between i and j atoms */
1205             qq20             = _mm_mul_ps(iq2,jq0);
1206
1207             /* EWALD ELECTROSTATICS */
1208
1209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1210             ewrt             = _mm_mul_ps(r20,ewtabscale);
1211             ewitab           = _mm_cvttps_epi32(ewrt);
1212             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1213             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1214                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1215                                          &ewtabF,&ewtabFn);
1216             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1217             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm_mul_ps(fscal,dx20);
1225             ty               = _mm_mul_ps(fscal,dy20);
1226             tz               = _mm_mul_ps(fscal,dz20);
1227
1228             /* Update vectorial force */
1229             fix2             = _mm_add_ps(fix2,tx);
1230             fiy2             = _mm_add_ps(fiy2,ty);
1231             fiz2             = _mm_add_ps(fiz2,tz);
1232
1233             fjx0             = _mm_add_ps(fjx0,tx);
1234             fjy0             = _mm_add_ps(fjy0,ty);
1235             fjz0             = _mm_add_ps(fjz0,tz);
1236             
1237             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1238             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1239             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1240             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1241
1242             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1243
1244             /* Inner loop uses 134 flops */
1245         }
1246
1247         /* End of innermost loop */
1248
1249         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1250                                               f+i_coord_offset,fshift+i_shift_offset);
1251
1252         /* Increment number of inner iterations */
1253         inneriter                  += j_index_end - j_index_start;
1254
1255         /* Outer loop uses 18 flops */
1256     }
1257
1258     /* Increment number of outer iterations */
1259     outeriter        += nri;
1260
1261     /* Update outer/inner flops */
1262
1263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1264 }