Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128           one_half = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
145     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
146     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     for(iidx=0;iidx<4*DIM;iidx++)
160     {
161         scratch[iidx] = 0.0;
162     }  
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
180                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
181         
182         fix0             = _mm_setzero_ps();
183         fiy0             = _mm_setzero_ps();
184         fiz0             = _mm_setzero_ps();
185         fix1             = _mm_setzero_ps();
186         fiy1             = _mm_setzero_ps();
187         fiz1             = _mm_setzero_ps();
188         fix2             = _mm_setzero_ps();
189         fiy2             = _mm_setzero_ps();
190         fiz2             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194         vvdwsum          = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               x+j_coord_offsetC,x+j_coord_offsetD,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_ps(ix0,jx0);
217             dy00             = _mm_sub_ps(iy0,jy0);
218             dz00             = _mm_sub_ps(iz0,jz0);
219             dx10             = _mm_sub_ps(ix1,jx0);
220             dy10             = _mm_sub_ps(iy1,jy0);
221             dz10             = _mm_sub_ps(iz1,jz0);
222             dx20             = _mm_sub_ps(ix2,jx0);
223             dy20             = _mm_sub_ps(iy2,jy0);
224             dz20             = _mm_sub_ps(iz2,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230
231             rinv00           = gmx_mm_invsqrt_ps(rsq00);
232             rinv10           = gmx_mm_invsqrt_ps(rsq10);
233             rinv20           = gmx_mm_invsqrt_ps(rsq20);
234
235             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
236             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
237             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                               charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm_setzero_ps();
248             fjy0             = _mm_setzero_ps();
249             fjz0             = _mm_setzero_ps();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm_mul_ps(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm_mul_ps(iq0,jq0);
259             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
260                                          vdwparam+vdwioffset0+vdwjidx0B,
261                                          vdwparam+vdwioffset0+vdwjidx0C,
262                                          vdwparam+vdwioffset0+vdwjidx0D,
263                                          &c6_00,&c12_00);
264             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
265                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
266                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
267                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
268
269             /* EWALD ELECTROSTATICS */
270
271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
272             ewrt             = _mm_mul_ps(r00,ewtabscale);
273             ewitab           = _mm_cvttps_epi32(ewrt);
274             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
275             ewitab           = _mm_slli_epi32(ewitab,2);
276             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
277             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
278             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
279             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
280             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
281             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
282             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
283             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
284             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
285
286             /* Analytical LJ-PME */
287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
289             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
290             exponent         = gmx_simd_exp_r(ewcljrsq);
291             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
292             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
293             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
294             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
295             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
296             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
297             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
298             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_ps(fscal,dx00);
308             ty               = _mm_mul_ps(fscal,dy00);
309             tz               = _mm_mul_ps(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm_add_ps(fix0,tx);
313             fiy0             = _mm_add_ps(fiy0,ty);
314             fiz0             = _mm_add_ps(fiz0,tz);
315
316             fjx0             = _mm_add_ps(fjx0,tx);
317             fjy0             = _mm_add_ps(fjy0,ty);
318             fjz0             = _mm_add_ps(fjz0,tz);
319             
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_ps(r10,ewtabscale);
333             ewitab           = _mm_cvttps_epi32(ewrt);
334             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
335             ewitab           = _mm_slli_epi32(ewitab,2);
336             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
337             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
338             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
339             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
340             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
341             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
342             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
343             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
344             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx10);
353             ty               = _mm_mul_ps(fscal,dy10);
354             tz               = _mm_mul_ps(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm_add_ps(fix1,tx);
358             fiy1             = _mm_add_ps(fiy1,ty);
359             fiz1             = _mm_add_ps(fiz1,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364             
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r20              = _mm_mul_ps(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_ps(iq2,jq0);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r20,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm_mul_ps(fscal,dx20);
398             ty               = _mm_mul_ps(fscal,dy20);
399             tz               = _mm_mul_ps(fscal,dz20);
400
401             /* Update vectorial force */
402             fix2             = _mm_add_ps(fix2,tx);
403             fiy2             = _mm_add_ps(fiy2,ty);
404             fiz2             = _mm_add_ps(fiz2,tz);
405
406             fjx0             = _mm_add_ps(fjx0,tx);
407             fjy0             = _mm_add_ps(fjy0,ty);
408             fjz0             = _mm_add_ps(fjz0,tz);
409             
410             fjptrA             = f+j_coord_offsetA;
411             fjptrB             = f+j_coord_offsetB;
412             fjptrC             = f+j_coord_offsetC;
413             fjptrD             = f+j_coord_offsetD;
414
415             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
416
417             /* Inner loop uses 151 flops */
418         }
419
420         if(jidx<j_index_end)
421         {
422
423             /* Get j neighbor index, and coordinate index */
424             jnrlistA         = jjnr[jidx];
425             jnrlistB         = jjnr[jidx+1];
426             jnrlistC         = jjnr[jidx+2];
427             jnrlistD         = jjnr[jidx+3];
428             /* Sign of each element will be negative for non-real atoms.
429              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
430              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
431              */
432             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
433             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
434             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
435             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
436             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
437             j_coord_offsetA  = DIM*jnrA;
438             j_coord_offsetB  = DIM*jnrB;
439             j_coord_offsetC  = DIM*jnrC;
440             j_coord_offsetD  = DIM*jnrD;
441
442             /* load j atom coordinates */
443             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444                                               x+j_coord_offsetC,x+j_coord_offsetD,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_ps(ix0,jx0);
449             dy00             = _mm_sub_ps(iy0,jy0);
450             dz00             = _mm_sub_ps(iz0,jz0);
451             dx10             = _mm_sub_ps(ix1,jx0);
452             dy10             = _mm_sub_ps(iy1,jy0);
453             dz10             = _mm_sub_ps(iz1,jz0);
454             dx20             = _mm_sub_ps(ix2,jx0);
455             dy20             = _mm_sub_ps(iy2,jy0);
456             dz20             = _mm_sub_ps(iz2,jz0);
457
458             /* Calculate squared distance and things based on it */
459             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
460             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
461             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
462
463             rinv00           = gmx_mm_invsqrt_ps(rsq00);
464             rinv10           = gmx_mm_invsqrt_ps(rsq10);
465             rinv20           = gmx_mm_invsqrt_ps(rsq20);
466
467             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
468             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
469             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
470
471             /* Load parameters for j particles */
472             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
473                                                               charge+jnrC+0,charge+jnrD+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475             vdwjidx0B        = 2*vdwtype[jnrB+0];
476             vdwjidx0C        = 2*vdwtype[jnrC+0];
477             vdwjidx0D        = 2*vdwtype[jnrD+0];
478
479             fjx0             = _mm_setzero_ps();
480             fjy0             = _mm_setzero_ps();
481             fjz0             = _mm_setzero_ps();
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r00              = _mm_mul_ps(rsq00,rinv00);
488             r00              = _mm_andnot_ps(dummy_mask,r00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq00             = _mm_mul_ps(iq0,jq0);
492             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
493                                          vdwparam+vdwioffset0+vdwjidx0B,
494                                          vdwparam+vdwioffset0+vdwjidx0C,
495                                          vdwparam+vdwioffset0+vdwjidx0D,
496                                          &c6_00,&c12_00);
497             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
498                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
499                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
500                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
505             ewrt             = _mm_mul_ps(r00,ewtabscale);
506             ewitab           = _mm_cvttps_epi32(ewrt);
507             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
508             ewitab           = _mm_slli_epi32(ewitab,2);
509             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
510             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
511             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
512             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
513             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
514             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
515             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
516             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
517             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
518
519             /* Analytical LJ-PME */
520             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
521             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
522             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
523             exponent         = gmx_simd_exp_r(ewcljrsq);
524             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
525             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
526             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
527             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
528             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
529             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
530             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
531             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velec            = _mm_andnot_ps(dummy_mask,velec);
535             velecsum         = _mm_add_ps(velecsum,velec);
536             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
537             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
538
539             fscal            = _mm_add_ps(felec,fvdw);
540
541             fscal            = _mm_andnot_ps(dummy_mask,fscal);
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm_mul_ps(fscal,dx00);
545             ty               = _mm_mul_ps(fscal,dy00);
546             tz               = _mm_mul_ps(fscal,dz00);
547
548             /* Update vectorial force */
549             fix0             = _mm_add_ps(fix0,tx);
550             fiy0             = _mm_add_ps(fiy0,ty);
551             fiz0             = _mm_add_ps(fiz0,tz);
552
553             fjx0             = _mm_add_ps(fjx0,tx);
554             fjy0             = _mm_add_ps(fjy0,ty);
555             fjz0             = _mm_add_ps(fjz0,tz);
556             
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r10              = _mm_mul_ps(rsq10,rinv10);
562             r10              = _mm_andnot_ps(dummy_mask,r10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm_mul_ps(iq1,jq0);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm_mul_ps(r10,ewtabscale);
571             ewitab           = _mm_cvttps_epi32(ewrt);
572             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
576             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
577             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
578             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
579             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
580             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
581             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
582             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_andnot_ps(dummy_mask,velec);
586             velecsum         = _mm_add_ps(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_andnot_ps(dummy_mask,fscal);
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm_mul_ps(fscal,dx10);
594             ty               = _mm_mul_ps(fscal,dy10);
595             tz               = _mm_mul_ps(fscal,dz10);
596
597             /* Update vectorial force */
598             fix1             = _mm_add_ps(fix1,tx);
599             fiy1             = _mm_add_ps(fiy1,ty);
600             fiz1             = _mm_add_ps(fiz1,tz);
601
602             fjx0             = _mm_add_ps(fjx0,tx);
603             fjy0             = _mm_add_ps(fjy0,ty);
604             fjz0             = _mm_add_ps(fjz0,tz);
605             
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             r20              = _mm_mul_ps(rsq20,rinv20);
611             r20              = _mm_andnot_ps(dummy_mask,r20);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq20             = _mm_mul_ps(iq2,jq0);
615
616             /* EWALD ELECTROSTATICS */
617
618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619             ewrt             = _mm_mul_ps(r20,ewtabscale);
620             ewitab           = _mm_cvttps_epi32(ewrt);
621             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
622             ewitab           = _mm_slli_epi32(ewitab,2);
623             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
624             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
625             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
626             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
627             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
628             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
629             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
630             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
631             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
632
633             /* Update potential sum for this i atom from the interaction with this j atom. */
634             velec            = _mm_andnot_ps(dummy_mask,velec);
635             velecsum         = _mm_add_ps(velecsum,velec);
636
637             fscal            = felec;
638
639             fscal            = _mm_andnot_ps(dummy_mask,fscal);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm_mul_ps(fscal,dx20);
643             ty               = _mm_mul_ps(fscal,dy20);
644             tz               = _mm_mul_ps(fscal,dz20);
645
646             /* Update vectorial force */
647             fix2             = _mm_add_ps(fix2,tx);
648             fiy2             = _mm_add_ps(fiy2,ty);
649             fiz2             = _mm_add_ps(fiz2,tz);
650
651             fjx0             = _mm_add_ps(fjx0,tx);
652             fjy0             = _mm_add_ps(fjy0,ty);
653             fjz0             = _mm_add_ps(fjz0,tz);
654             
655             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
656             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
657             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
658             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
659
660             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
661
662             /* Inner loop uses 154 flops */
663         }
664
665         /* End of innermost loop */
666
667         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
668                                               f+i_coord_offset,fshift+i_shift_offset);
669
670         ggid                        = gid[iidx];
671         /* Update potential energies */
672         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
673         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
674
675         /* Increment number of inner iterations */
676         inneriter                  += j_index_end - j_index_start;
677
678         /* Outer loop uses 20 flops */
679     }
680
681     /* Increment number of outer iterations */
682     outeriter        += nri;
683
684     /* Update outer/inner flops */
685
686     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
687 }
688 /*
689  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
690  * Electrostatics interaction: Ewald
691  * VdW interaction:            LJEwald
692  * Geometry:                   Water3-Particle
693  * Calculate force/pot:        Force
694  */
695 void
696 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_single
697                     (t_nblist                    * gmx_restrict       nlist,
698                      rvec                        * gmx_restrict          xx,
699                      rvec                        * gmx_restrict          ff,
700                      t_forcerec                  * gmx_restrict          fr,
701                      t_mdatoms                   * gmx_restrict     mdatoms,
702                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
703                      t_nrnb                      * gmx_restrict        nrnb)
704 {
705     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
706      * just 0 for non-waters.
707      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
708      * jnr indices corresponding to data put in the four positions in the SIMD register.
709      */
710     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
711     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
712     int              jnrA,jnrB,jnrC,jnrD;
713     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
714     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
715     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
716     real             rcutoff_scalar;
717     real             *shiftvec,*fshift,*x,*f;
718     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
719     real             scratch[4*DIM];
720     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
721     int              vdwioffset0;
722     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
723     int              vdwioffset1;
724     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
725     int              vdwioffset2;
726     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
727     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
728     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
729     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
730     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
731     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
732     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
733     real             *charge;
734     int              nvdwtype;
735     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
736     int              *vdwtype;
737     real             *vdwparam;
738     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
739     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
740     __m128           c6grid_00;
741     __m128           c6grid_10;
742     __m128           c6grid_20;
743     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
744     real             *vdwgridparam;
745     __m128           one_half = _mm_set1_ps(0.5);
746     __m128           minus_one = _mm_set1_ps(-1.0);
747     __m128i          ewitab;
748     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
749     real             *ewtab;
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     nvdwtype         = fr->ntype;
768     vdwparam         = fr->nbfp;
769     vdwtype          = mdatoms->typeA;
770     vdwgridparam     = fr->ljpme_c6grid;
771     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
772     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
773     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
774
775     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
776     ewtab            = fr->ic->tabq_coul_F;
777     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
778     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
779
780     /* Setup water-specific parameters */
781     inr              = nlist->iinr[0];
782     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
783     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
784     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
785     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
786
787     /* Avoid stupid compiler warnings */
788     jnrA = jnrB = jnrC = jnrD = 0;
789     j_coord_offsetA = 0;
790     j_coord_offsetB = 0;
791     j_coord_offsetC = 0;
792     j_coord_offsetD = 0;
793
794     outeriter        = 0;
795     inneriter        = 0;
796
797     for(iidx=0;iidx<4*DIM;iidx++)
798     {
799         scratch[iidx] = 0.0;
800     }  
801
802     /* Start outer loop over neighborlists */
803     for(iidx=0; iidx<nri; iidx++)
804     {
805         /* Load shift vector for this list */
806         i_shift_offset   = DIM*shiftidx[iidx];
807
808         /* Load limits for loop over neighbors */
809         j_index_start    = jindex[iidx];
810         j_index_end      = jindex[iidx+1];
811
812         /* Get outer coordinate index */
813         inr              = iinr[iidx];
814         i_coord_offset   = DIM*inr;
815
816         /* Load i particle coords and add shift vector */
817         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
818                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
819         
820         fix0             = _mm_setzero_ps();
821         fiy0             = _mm_setzero_ps();
822         fiz0             = _mm_setzero_ps();
823         fix1             = _mm_setzero_ps();
824         fiy1             = _mm_setzero_ps();
825         fiz1             = _mm_setzero_ps();
826         fix2             = _mm_setzero_ps();
827         fiy2             = _mm_setzero_ps();
828         fiz2             = _mm_setzero_ps();
829
830         /* Start inner kernel loop */
831         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
832         {
833
834             /* Get j neighbor index, and coordinate index */
835             jnrA             = jjnr[jidx];
836             jnrB             = jjnr[jidx+1];
837             jnrC             = jjnr[jidx+2];
838             jnrD             = jjnr[jidx+3];
839             j_coord_offsetA  = DIM*jnrA;
840             j_coord_offsetB  = DIM*jnrB;
841             j_coord_offsetC  = DIM*jnrC;
842             j_coord_offsetD  = DIM*jnrD;
843
844             /* load j atom coordinates */
845             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
846                                               x+j_coord_offsetC,x+j_coord_offsetD,
847                                               &jx0,&jy0,&jz0);
848
849             /* Calculate displacement vector */
850             dx00             = _mm_sub_ps(ix0,jx0);
851             dy00             = _mm_sub_ps(iy0,jy0);
852             dz00             = _mm_sub_ps(iz0,jz0);
853             dx10             = _mm_sub_ps(ix1,jx0);
854             dy10             = _mm_sub_ps(iy1,jy0);
855             dz10             = _mm_sub_ps(iz1,jz0);
856             dx20             = _mm_sub_ps(ix2,jx0);
857             dy20             = _mm_sub_ps(iy2,jy0);
858             dz20             = _mm_sub_ps(iz2,jz0);
859
860             /* Calculate squared distance and things based on it */
861             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
862             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
863             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
864
865             rinv00           = gmx_mm_invsqrt_ps(rsq00);
866             rinv10           = gmx_mm_invsqrt_ps(rsq10);
867             rinv20           = gmx_mm_invsqrt_ps(rsq20);
868
869             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
870             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
871             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
872
873             /* Load parameters for j particles */
874             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
875                                                               charge+jnrC+0,charge+jnrD+0);
876             vdwjidx0A        = 2*vdwtype[jnrA+0];
877             vdwjidx0B        = 2*vdwtype[jnrB+0];
878             vdwjidx0C        = 2*vdwtype[jnrC+0];
879             vdwjidx0D        = 2*vdwtype[jnrD+0];
880
881             fjx0             = _mm_setzero_ps();
882             fjy0             = _mm_setzero_ps();
883             fjz0             = _mm_setzero_ps();
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r00              = _mm_mul_ps(rsq00,rinv00);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq00             = _mm_mul_ps(iq0,jq0);
893             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
894                                          vdwparam+vdwioffset0+vdwjidx0B,
895                                          vdwparam+vdwioffset0+vdwjidx0C,
896                                          vdwparam+vdwioffset0+vdwjidx0D,
897                                          &c6_00,&c12_00);
898             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
899                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
900                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
901                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
902
903             /* EWALD ELECTROSTATICS */
904
905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906             ewrt             = _mm_mul_ps(r00,ewtabscale);
907             ewitab           = _mm_cvttps_epi32(ewrt);
908             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
909             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
910                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
911                                          &ewtabF,&ewtabFn);
912             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
913             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
914
915             /* Analytical LJ-PME */
916             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
917             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
918             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
919             exponent         = gmx_simd_exp_r(ewcljrsq);
920             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
921             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
922             /* f6A = 6 * C6grid * (1 - poly) */
923             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
924             /* f6B = C6grid * exponent * beta^6 */
925             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
926             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
927             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
928
929             fscal            = _mm_add_ps(felec,fvdw);
930
931             /* Calculate temporary vectorial force */
932             tx               = _mm_mul_ps(fscal,dx00);
933             ty               = _mm_mul_ps(fscal,dy00);
934             tz               = _mm_mul_ps(fscal,dz00);
935
936             /* Update vectorial force */
937             fix0             = _mm_add_ps(fix0,tx);
938             fiy0             = _mm_add_ps(fiy0,ty);
939             fiz0             = _mm_add_ps(fiz0,tz);
940
941             fjx0             = _mm_add_ps(fjx0,tx);
942             fjy0             = _mm_add_ps(fjy0,ty);
943             fjz0             = _mm_add_ps(fjz0,tz);
944             
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             r10              = _mm_mul_ps(rsq10,rinv10);
950
951             /* Compute parameters for interactions between i and j atoms */
952             qq10             = _mm_mul_ps(iq1,jq0);
953
954             /* EWALD ELECTROSTATICS */
955
956             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
957             ewrt             = _mm_mul_ps(r10,ewtabscale);
958             ewitab           = _mm_cvttps_epi32(ewrt);
959             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
960             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
961                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
962                                          &ewtabF,&ewtabFn);
963             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
964             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
965
966             fscal            = felec;
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_ps(fscal,dx10);
970             ty               = _mm_mul_ps(fscal,dy10);
971             tz               = _mm_mul_ps(fscal,dz10);
972
973             /* Update vectorial force */
974             fix1             = _mm_add_ps(fix1,tx);
975             fiy1             = _mm_add_ps(fiy1,ty);
976             fiz1             = _mm_add_ps(fiz1,tz);
977
978             fjx0             = _mm_add_ps(fjx0,tx);
979             fjy0             = _mm_add_ps(fjy0,ty);
980             fjz0             = _mm_add_ps(fjz0,tz);
981             
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             r20              = _mm_mul_ps(rsq20,rinv20);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq20             = _mm_mul_ps(iq2,jq0);
990
991             /* EWALD ELECTROSTATICS */
992
993             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994             ewrt             = _mm_mul_ps(r20,ewtabscale);
995             ewitab           = _mm_cvttps_epi32(ewrt);
996             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
997             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
998                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
999                                          &ewtabF,&ewtabFn);
1000             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1001             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1002
1003             fscal            = felec;
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_ps(fscal,dx20);
1007             ty               = _mm_mul_ps(fscal,dy20);
1008             tz               = _mm_mul_ps(fscal,dz20);
1009
1010             /* Update vectorial force */
1011             fix2             = _mm_add_ps(fix2,tx);
1012             fiy2             = _mm_add_ps(fiy2,ty);
1013             fiz2             = _mm_add_ps(fiz2,tz);
1014
1015             fjx0             = _mm_add_ps(fjx0,tx);
1016             fjy0             = _mm_add_ps(fjy0,ty);
1017             fjz0             = _mm_add_ps(fjz0,tz);
1018             
1019             fjptrA             = f+j_coord_offsetA;
1020             fjptrB             = f+j_coord_offsetB;
1021             fjptrC             = f+j_coord_offsetC;
1022             fjptrD             = f+j_coord_offsetD;
1023
1024             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1025
1026             /* Inner loop uses 131 flops */
1027         }
1028
1029         if(jidx<j_index_end)
1030         {
1031
1032             /* Get j neighbor index, and coordinate index */
1033             jnrlistA         = jjnr[jidx];
1034             jnrlistB         = jjnr[jidx+1];
1035             jnrlistC         = jjnr[jidx+2];
1036             jnrlistD         = jjnr[jidx+3];
1037             /* Sign of each element will be negative for non-real atoms.
1038              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1039              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1040              */
1041             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1042             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1043             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1044             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1045             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1046             j_coord_offsetA  = DIM*jnrA;
1047             j_coord_offsetB  = DIM*jnrB;
1048             j_coord_offsetC  = DIM*jnrC;
1049             j_coord_offsetD  = DIM*jnrD;
1050
1051             /* load j atom coordinates */
1052             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1053                                               x+j_coord_offsetC,x+j_coord_offsetD,
1054                                               &jx0,&jy0,&jz0);
1055
1056             /* Calculate displacement vector */
1057             dx00             = _mm_sub_ps(ix0,jx0);
1058             dy00             = _mm_sub_ps(iy0,jy0);
1059             dz00             = _mm_sub_ps(iz0,jz0);
1060             dx10             = _mm_sub_ps(ix1,jx0);
1061             dy10             = _mm_sub_ps(iy1,jy0);
1062             dz10             = _mm_sub_ps(iz1,jz0);
1063             dx20             = _mm_sub_ps(ix2,jx0);
1064             dy20             = _mm_sub_ps(iy2,jy0);
1065             dz20             = _mm_sub_ps(iz2,jz0);
1066
1067             /* Calculate squared distance and things based on it */
1068             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1069             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1070             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1071
1072             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1073             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1074             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1075
1076             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1077             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1078             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1079
1080             /* Load parameters for j particles */
1081             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1082                                                               charge+jnrC+0,charge+jnrD+0);
1083             vdwjidx0A        = 2*vdwtype[jnrA+0];
1084             vdwjidx0B        = 2*vdwtype[jnrB+0];
1085             vdwjidx0C        = 2*vdwtype[jnrC+0];
1086             vdwjidx0D        = 2*vdwtype[jnrD+0];
1087
1088             fjx0             = _mm_setzero_ps();
1089             fjy0             = _mm_setzero_ps();
1090             fjz0             = _mm_setzero_ps();
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             r00              = _mm_mul_ps(rsq00,rinv00);
1097             r00              = _mm_andnot_ps(dummy_mask,r00);
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq00             = _mm_mul_ps(iq0,jq0);
1101             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1102                                          vdwparam+vdwioffset0+vdwjidx0B,
1103                                          vdwparam+vdwioffset0+vdwjidx0C,
1104                                          vdwparam+vdwioffset0+vdwjidx0D,
1105                                          &c6_00,&c12_00);
1106             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1107                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1108                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1109                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _mm_mul_ps(r00,ewtabscale);
1115             ewitab           = _mm_cvttps_epi32(ewrt);
1116             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1117             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1118                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1119                                          &ewtabF,&ewtabFn);
1120             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1121             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1122
1123             /* Analytical LJ-PME */
1124             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1125             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1126             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1127             exponent         = gmx_simd_exp_r(ewcljrsq);
1128             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1129             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1130             /* f6A = 6 * C6grid * (1 - poly) */
1131             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1132             /* f6B = C6grid * exponent * beta^6 */
1133             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1134             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1135             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1136
1137             fscal            = _mm_add_ps(felec,fvdw);
1138
1139             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1140
1141             /* Calculate temporary vectorial force */
1142             tx               = _mm_mul_ps(fscal,dx00);
1143             ty               = _mm_mul_ps(fscal,dy00);
1144             tz               = _mm_mul_ps(fscal,dz00);
1145
1146             /* Update vectorial force */
1147             fix0             = _mm_add_ps(fix0,tx);
1148             fiy0             = _mm_add_ps(fiy0,ty);
1149             fiz0             = _mm_add_ps(fiz0,tz);
1150
1151             fjx0             = _mm_add_ps(fjx0,tx);
1152             fjy0             = _mm_add_ps(fjy0,ty);
1153             fjz0             = _mm_add_ps(fjz0,tz);
1154             
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             r10              = _mm_mul_ps(rsq10,rinv10);
1160             r10              = _mm_andnot_ps(dummy_mask,r10);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq10             = _mm_mul_ps(iq1,jq0);
1164
1165             /* EWALD ELECTROSTATICS */
1166
1167             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168             ewrt             = _mm_mul_ps(r10,ewtabscale);
1169             ewitab           = _mm_cvttps_epi32(ewrt);
1170             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1171             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1172                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1173                                          &ewtabF,&ewtabFn);
1174             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1175             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1176
1177             fscal            = felec;
1178
1179             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1180
1181             /* Calculate temporary vectorial force */
1182             tx               = _mm_mul_ps(fscal,dx10);
1183             ty               = _mm_mul_ps(fscal,dy10);
1184             tz               = _mm_mul_ps(fscal,dz10);
1185
1186             /* Update vectorial force */
1187             fix1             = _mm_add_ps(fix1,tx);
1188             fiy1             = _mm_add_ps(fiy1,ty);
1189             fiz1             = _mm_add_ps(fiz1,tz);
1190
1191             fjx0             = _mm_add_ps(fjx0,tx);
1192             fjy0             = _mm_add_ps(fjy0,ty);
1193             fjz0             = _mm_add_ps(fjz0,tz);
1194             
1195             /**************************
1196              * CALCULATE INTERACTIONS *
1197              **************************/
1198
1199             r20              = _mm_mul_ps(rsq20,rinv20);
1200             r20              = _mm_andnot_ps(dummy_mask,r20);
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq20             = _mm_mul_ps(iq2,jq0);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208             ewrt             = _mm_mul_ps(r20,ewtabscale);
1209             ewitab           = _mm_cvttps_epi32(ewrt);
1210             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1211             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1212                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1213                                          &ewtabF,&ewtabFn);
1214             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1215             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = _mm_mul_ps(fscal,dx20);
1223             ty               = _mm_mul_ps(fscal,dy20);
1224             tz               = _mm_mul_ps(fscal,dz20);
1225
1226             /* Update vectorial force */
1227             fix2             = _mm_add_ps(fix2,tx);
1228             fiy2             = _mm_add_ps(fiy2,ty);
1229             fiz2             = _mm_add_ps(fiz2,tz);
1230
1231             fjx0             = _mm_add_ps(fjx0,tx);
1232             fjy0             = _mm_add_ps(fjy0,ty);
1233             fjz0             = _mm_add_ps(fjz0,tz);
1234             
1235             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1236             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1237             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1238             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1239
1240             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1241
1242             /* Inner loop uses 134 flops */
1243         }
1244
1245         /* End of innermost loop */
1246
1247         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1248                                               f+i_coord_offset,fshift+i_shift_offset);
1249
1250         /* Increment number of inner iterations */
1251         inneriter                  += j_index_end - j_index_start;
1252
1253         /* Outer loop uses 18 flops */
1254     }
1255
1256     /* Increment number of outer iterations */
1257     outeriter        += nri;
1258
1259     /* Update outer/inner flops */
1260
1261     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1262 }