Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           c6grid_00;
96     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128           one_half = _mm_set1_ps(0.5);
99     __m128           minus_one = _mm_set1_ps(-1.0);
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }  
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164         
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
171         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_ps();
175         vvdwsum          = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = sse2_invsqrt_f(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211             vdwjidx0A        = 2*vdwtype[jnrA+0];
212             vdwjidx0B        = 2*vdwtype[jnrB+0];
213             vdwjidx0C        = 2*vdwtype[jnrC+0];
214             vdwjidx0D        = 2*vdwtype[jnrD+0];
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             r00              = _mm_mul_ps(rsq00,rinv00);
221
222             /* Compute parameters for interactions between i and j atoms */
223             qq00             = _mm_mul_ps(iq0,jq0);
224             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
225                                          vdwparam+vdwioffset0+vdwjidx0B,
226                                          vdwparam+vdwioffset0+vdwjidx0C,
227                                          vdwparam+vdwioffset0+vdwjidx0D,
228                                          &c6_00,&c12_00);
229             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
230                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
231                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
232                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
233
234             /* EWALD ELECTROSTATICS */
235
236             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
237             ewrt             = _mm_mul_ps(r00,ewtabscale);
238             ewitab           = _mm_cvttps_epi32(ewrt);
239             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
240             ewitab           = _mm_slli_epi32(ewitab,2);
241             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
242             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
243             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
244             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
245             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
246             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
247             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
248             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
249             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
250
251             /* Analytical LJ-PME */
252             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
253             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
254             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
255             exponent         = sse2_exp_f(ewcljrsq);
256             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
257             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
258             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
259             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
260             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
262             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
263             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
264
265             /* Update potential sum for this i atom from the interaction with this j atom. */
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
268
269             fscal            = _mm_add_ps(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm_mul_ps(fscal,dx00);
273             ty               = _mm_mul_ps(fscal,dy00);
274             tz               = _mm_mul_ps(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm_add_ps(fix0,tx);
278             fiy0             = _mm_add_ps(fiy0,ty);
279             fiz0             = _mm_add_ps(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286             
287             /* Inner loop uses 69 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
301              */
302             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
304             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
305             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
306             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
307             j_coord_offsetA  = DIM*jnrA;
308             j_coord_offsetB  = DIM*jnrB;
309             j_coord_offsetC  = DIM*jnrC;
310             j_coord_offsetD  = DIM*jnrD;
311
312             /* load j atom coordinates */
313             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
314                                               x+j_coord_offsetC,x+j_coord_offsetD,
315                                               &jx0,&jy0,&jz0);
316
317             /* Calculate displacement vector */
318             dx00             = _mm_sub_ps(ix0,jx0);
319             dy00             = _mm_sub_ps(iy0,jy0);
320             dz00             = _mm_sub_ps(iz0,jz0);
321
322             /* Calculate squared distance and things based on it */
323             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
324
325             rinv00           = sse2_invsqrt_f(rsq00);
326
327             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
328
329             /* Load parameters for j particles */
330             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
331                                                               charge+jnrC+0,charge+jnrD+0);
332             vdwjidx0A        = 2*vdwtype[jnrA+0];
333             vdwjidx0B        = 2*vdwtype[jnrB+0];
334             vdwjidx0C        = 2*vdwtype[jnrC+0];
335             vdwjidx0D        = 2*vdwtype[jnrD+0];
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             r00              = _mm_mul_ps(rsq00,rinv00);
342             r00              = _mm_andnot_ps(dummy_mask,r00);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq00             = _mm_mul_ps(iq0,jq0);
346             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
347                                          vdwparam+vdwioffset0+vdwjidx0B,
348                                          vdwparam+vdwioffset0+vdwjidx0C,
349                                          vdwparam+vdwioffset0+vdwjidx0D,
350                                          &c6_00,&c12_00);
351             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
352                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
353                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
354                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359             ewrt             = _mm_mul_ps(r00,ewtabscale);
360             ewitab           = _mm_cvttps_epi32(ewrt);
361             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
362             ewitab           = _mm_slli_epi32(ewitab,2);
363             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
364             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
365             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
366             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
367             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
368             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
369             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
370             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
371             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
372
373             /* Analytical LJ-PME */
374             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
375             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
376             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
377             exponent         = sse2_exp_f(ewcljrsq);
378             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
379             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
380             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
381             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
382             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
383             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
384             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
385             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm_andnot_ps(dummy_mask,velec);
389             velecsum         = _mm_add_ps(velecsum,velec);
390             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
391             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
392
393             fscal            = _mm_add_ps(felec,fvdw);
394
395             fscal            = _mm_andnot_ps(dummy_mask,fscal);
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_ps(fscal,dx00);
399             ty               = _mm_mul_ps(fscal,dy00);
400             tz               = _mm_mul_ps(fscal,dz00);
401
402             /* Update vectorial force */
403             fix0             = _mm_add_ps(fix0,tx);
404             fiy0             = _mm_add_ps(fiy0,ty);
405             fiz0             = _mm_add_ps(fiz0,tz);
406
407             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
408             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
409             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
410             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
411             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
412             
413             /* Inner loop uses 70 flops */
414         }
415
416         /* End of innermost loop */
417
418         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
419                                               f+i_coord_offset,fshift+i_shift_offset);
420
421         ggid                        = gid[iidx];
422         /* Update potential energies */
423         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
424         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
425
426         /* Increment number of inner iterations */
427         inneriter                  += j_index_end - j_index_start;
428
429         /* Outer loop uses 9 flops */
430     }
431
432     /* Increment number of outer iterations */
433     outeriter        += nri;
434
435     /* Update outer/inner flops */
436
437     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
438 }
439 /*
440  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
441  * Electrostatics interaction: Ewald
442  * VdW interaction:            LJEwald
443  * Geometry:                   Particle-Particle
444  * Calculate force/pot:        Force
445  */
446 void
447 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
448                     (t_nblist                    * gmx_restrict       nlist,
449                      rvec                        * gmx_restrict          xx,
450                      rvec                        * gmx_restrict          ff,
451                      struct t_forcerec           * gmx_restrict          fr,
452                      t_mdatoms                   * gmx_restrict     mdatoms,
453                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
454                      t_nrnb                      * gmx_restrict        nrnb)
455 {
456     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
457      * just 0 for non-waters.
458      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
459      * jnr indices corresponding to data put in the four positions in the SIMD register.
460      */
461     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
462     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
463     int              jnrA,jnrB,jnrC,jnrD;
464     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
465     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
466     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
467     real             rcutoff_scalar;
468     real             *shiftvec,*fshift,*x,*f;
469     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
470     real             scratch[4*DIM];
471     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
472     int              vdwioffset0;
473     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
474     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
475     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
476     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
477     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
478     real             *charge;
479     int              nvdwtype;
480     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
481     int              *vdwtype;
482     real             *vdwparam;
483     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
484     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
485     __m128           c6grid_00;
486     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
487     real             *vdwgridparam;
488     __m128           one_half = _mm_set1_ps(0.5);
489     __m128           minus_one = _mm_set1_ps(-1.0);
490     __m128i          ewitab;
491     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
492     real             *ewtab;
493     __m128           dummy_mask,cutoff_mask;
494     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
495     __m128           one     = _mm_set1_ps(1.0);
496     __m128           two     = _mm_set1_ps(2.0);
497     x                = xx[0];
498     f                = ff[0];
499
500     nri              = nlist->nri;
501     iinr             = nlist->iinr;
502     jindex           = nlist->jindex;
503     jjnr             = nlist->jjnr;
504     shiftidx         = nlist->shift;
505     gid              = nlist->gid;
506     shiftvec         = fr->shift_vec[0];
507     fshift           = fr->fshift[0];
508     facel            = _mm_set1_ps(fr->ic->epsfac);
509     charge           = mdatoms->chargeA;
510     nvdwtype         = fr->ntype;
511     vdwparam         = fr->nbfp;
512     vdwtype          = mdatoms->typeA;
513     vdwgridparam     = fr->ljpme_c6grid;
514     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
515     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
516     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
517
518     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
519     ewtab            = fr->ic->tabq_coul_F;
520     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
521     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
522
523     /* Avoid stupid compiler warnings */
524     jnrA = jnrB = jnrC = jnrD = 0;
525     j_coord_offsetA = 0;
526     j_coord_offsetB = 0;
527     j_coord_offsetC = 0;
528     j_coord_offsetD = 0;
529
530     outeriter        = 0;
531     inneriter        = 0;
532
533     for(iidx=0;iidx<4*DIM;iidx++)
534     {
535         scratch[iidx] = 0.0;
536     }  
537
538     /* Start outer loop over neighborlists */
539     for(iidx=0; iidx<nri; iidx++)
540     {
541         /* Load shift vector for this list */
542         i_shift_offset   = DIM*shiftidx[iidx];
543
544         /* Load limits for loop over neighbors */
545         j_index_start    = jindex[iidx];
546         j_index_end      = jindex[iidx+1];
547
548         /* Get outer coordinate index */
549         inr              = iinr[iidx];
550         i_coord_offset   = DIM*inr;
551
552         /* Load i particle coords and add shift vector */
553         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
554         
555         fix0             = _mm_setzero_ps();
556         fiy0             = _mm_setzero_ps();
557         fiz0             = _mm_setzero_ps();
558
559         /* Load parameters for i particles */
560         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
561         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
562
563         /* Start inner kernel loop */
564         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
565         {
566
567             /* Get j neighbor index, and coordinate index */
568             jnrA             = jjnr[jidx];
569             jnrB             = jjnr[jidx+1];
570             jnrC             = jjnr[jidx+2];
571             jnrD             = jjnr[jidx+3];
572             j_coord_offsetA  = DIM*jnrA;
573             j_coord_offsetB  = DIM*jnrB;
574             j_coord_offsetC  = DIM*jnrC;
575             j_coord_offsetD  = DIM*jnrD;
576
577             /* load j atom coordinates */
578             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
579                                               x+j_coord_offsetC,x+j_coord_offsetD,
580                                               &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _mm_sub_ps(ix0,jx0);
584             dy00             = _mm_sub_ps(iy0,jy0);
585             dz00             = _mm_sub_ps(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
589
590             rinv00           = sse2_invsqrt_f(rsq00);
591
592             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
593
594             /* Load parameters for j particles */
595             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
596                                                               charge+jnrC+0,charge+jnrD+0);
597             vdwjidx0A        = 2*vdwtype[jnrA+0];
598             vdwjidx0B        = 2*vdwtype[jnrB+0];
599             vdwjidx0C        = 2*vdwtype[jnrC+0];
600             vdwjidx0D        = 2*vdwtype[jnrD+0];
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             r00              = _mm_mul_ps(rsq00,rinv00);
607
608             /* Compute parameters for interactions between i and j atoms */
609             qq00             = _mm_mul_ps(iq0,jq0);
610             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
611                                          vdwparam+vdwioffset0+vdwjidx0B,
612                                          vdwparam+vdwioffset0+vdwjidx0C,
613                                          vdwparam+vdwioffset0+vdwjidx0D,
614                                          &c6_00,&c12_00);
615             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
616                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
617                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
618                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_ps(r00,ewtabscale);
624             ewitab           = _mm_cvttps_epi32(ewrt);
625             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
626             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
627                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
628                                          &ewtabF,&ewtabFn);
629             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
630             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
631
632             /* Analytical LJ-PME */
633             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
634             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
635             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
636             exponent         = sse2_exp_f(ewcljrsq);
637             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
638             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
639             /* f6A = 6 * C6grid * (1 - poly) */
640             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
641             /* f6B = C6grid * exponent * beta^6 */
642             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
643             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
644             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
645
646             fscal            = _mm_add_ps(felec,fvdw);
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_ps(fscal,dx00);
650             ty               = _mm_mul_ps(fscal,dy00);
651             tz               = _mm_mul_ps(fscal,dz00);
652
653             /* Update vectorial force */
654             fix0             = _mm_add_ps(fix0,tx);
655             fiy0             = _mm_add_ps(fiy0,ty);
656             fiz0             = _mm_add_ps(fiz0,tz);
657
658             fjptrA             = f+j_coord_offsetA;
659             fjptrB             = f+j_coord_offsetB;
660             fjptrC             = f+j_coord_offsetC;
661             fjptrD             = f+j_coord_offsetD;
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
663             
664             /* Inner loop uses 59 flops */
665         }
666
667         if(jidx<j_index_end)
668         {
669
670             /* Get j neighbor index, and coordinate index */
671             jnrlistA         = jjnr[jidx];
672             jnrlistB         = jjnr[jidx+1];
673             jnrlistC         = jjnr[jidx+2];
674             jnrlistD         = jjnr[jidx+3];
675             /* Sign of each element will be negative for non-real atoms.
676              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
677              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
678              */
679             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
680             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
681             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
682             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
683             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
684             j_coord_offsetA  = DIM*jnrA;
685             j_coord_offsetB  = DIM*jnrB;
686             j_coord_offsetC  = DIM*jnrC;
687             j_coord_offsetD  = DIM*jnrD;
688
689             /* load j atom coordinates */
690             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
691                                               x+j_coord_offsetC,x+j_coord_offsetD,
692                                               &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx00             = _mm_sub_ps(ix0,jx0);
696             dy00             = _mm_sub_ps(iy0,jy0);
697             dz00             = _mm_sub_ps(iz0,jz0);
698
699             /* Calculate squared distance and things based on it */
700             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
701
702             rinv00           = sse2_invsqrt_f(rsq00);
703
704             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
705
706             /* Load parameters for j particles */
707             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
708                                                               charge+jnrC+0,charge+jnrD+0);
709             vdwjidx0A        = 2*vdwtype[jnrA+0];
710             vdwjidx0B        = 2*vdwtype[jnrB+0];
711             vdwjidx0C        = 2*vdwtype[jnrC+0];
712             vdwjidx0D        = 2*vdwtype[jnrD+0];
713
714             /**************************
715              * CALCULATE INTERACTIONS *
716              **************************/
717
718             r00              = _mm_mul_ps(rsq00,rinv00);
719             r00              = _mm_andnot_ps(dummy_mask,r00);
720
721             /* Compute parameters for interactions between i and j atoms */
722             qq00             = _mm_mul_ps(iq0,jq0);
723             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
724                                          vdwparam+vdwioffset0+vdwjidx0B,
725                                          vdwparam+vdwioffset0+vdwjidx0C,
726                                          vdwparam+vdwioffset0+vdwjidx0D,
727                                          &c6_00,&c12_00);
728             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
729                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
730                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
731                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
732
733             /* EWALD ELECTROSTATICS */
734
735             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
736             ewrt             = _mm_mul_ps(r00,ewtabscale);
737             ewitab           = _mm_cvttps_epi32(ewrt);
738             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
739             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
740                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
741                                          &ewtabF,&ewtabFn);
742             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
743             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
744
745             /* Analytical LJ-PME */
746             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
747             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
748             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
749             exponent         = sse2_exp_f(ewcljrsq);
750             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
751             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
752             /* f6A = 6 * C6grid * (1 - poly) */
753             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
754             /* f6B = C6grid * exponent * beta^6 */
755             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
756             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
757             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
758
759             fscal            = _mm_add_ps(felec,fvdw);
760
761             fscal            = _mm_andnot_ps(dummy_mask,fscal);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm_mul_ps(fscal,dx00);
765             ty               = _mm_mul_ps(fscal,dy00);
766             tz               = _mm_mul_ps(fscal,dz00);
767
768             /* Update vectorial force */
769             fix0             = _mm_add_ps(fix0,tx);
770             fiy0             = _mm_add_ps(fiy0,ty);
771             fiz0             = _mm_add_ps(fiz0,tz);
772
773             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
774             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
775             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
776             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
777             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
778             
779             /* Inner loop uses 60 flops */
780         }
781
782         /* End of innermost loop */
783
784         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
785                                               f+i_coord_offset,fshift+i_shift_offset);
786
787         /* Increment number of inner iterations */
788         inneriter                  += j_index_end - j_index_start;
789
790         /* Outer loop uses 7 flops */
791     }
792
793     /* Increment number of outer iterations */
794     outeriter        += nri;
795
796     /* Update outer/inner flops */
797
798     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
799 }