Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           c6grid_00;
99     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
100     real             *vdwgridparam;
101     __m128           one_half = _mm_set1_ps(0.5);
102     __m128           minus_one = _mm_set1_ps(-1.0);
103     __m128i          ewitab;
104     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126     vdwgridparam     = fr->ljpme_c6grid;
127     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
128     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
129     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
130
131     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
134     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }  
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
167         
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171
172         /* Load parameters for i particles */
173         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
174         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
206
207             rinv00           = gmx_mm_invsqrt_ps(rsq00);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = _mm_mul_ps(rsq00,rinv00);
224
225             /* Compute parameters for interactions between i and j atoms */
226             qq00             = _mm_mul_ps(iq0,jq0);
227             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
228                                          vdwparam+vdwioffset0+vdwjidx0B,
229                                          vdwparam+vdwioffset0+vdwjidx0C,
230                                          vdwparam+vdwioffset0+vdwjidx0D,
231                                          &c6_00,&c12_00);
232             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
233                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
234                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
235                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
236
237             /* EWALD ELECTROSTATICS */
238
239             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
240             ewrt             = _mm_mul_ps(r00,ewtabscale);
241             ewitab           = _mm_cvttps_epi32(ewrt);
242             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
243             ewitab           = _mm_slli_epi32(ewitab,2);
244             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
245             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
246             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
247             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
248             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
249             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
250             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
251             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
252             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
253
254             /* Analytical LJ-PME */
255             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
256             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
257             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
258             exponent         = gmx_simd_exp_r(ewcljrsq);
259             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
260             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
261             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
262             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
263             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
264             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
265             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
266             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_ps(velecsum,velec);
270             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
271
272             fscal            = _mm_add_ps(felec,fvdw);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_ps(fscal,dx00);
276             ty               = _mm_mul_ps(fscal,dy00);
277             tz               = _mm_mul_ps(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_ps(fix0,tx);
281             fiy0             = _mm_add_ps(fiy0,ty);
282             fiz0             = _mm_add_ps(fiz0,tz);
283
284             fjptrA             = f+j_coord_offsetA;
285             fjptrB             = f+j_coord_offsetB;
286             fjptrC             = f+j_coord_offsetC;
287             fjptrD             = f+j_coord_offsetD;
288             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
289             
290             /* Inner loop uses 69 flops */
291         }
292
293         if(jidx<j_index_end)
294         {
295
296             /* Get j neighbor index, and coordinate index */
297             jnrlistA         = jjnr[jidx];
298             jnrlistB         = jjnr[jidx+1];
299             jnrlistC         = jjnr[jidx+2];
300             jnrlistD         = jjnr[jidx+3];
301             /* Sign of each element will be negative for non-real atoms.
302              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
303              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
304              */
305             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
306             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
307             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
308             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
309             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
310             j_coord_offsetA  = DIM*jnrA;
311             j_coord_offsetB  = DIM*jnrB;
312             j_coord_offsetC  = DIM*jnrC;
313             j_coord_offsetD  = DIM*jnrD;
314
315             /* load j atom coordinates */
316             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
317                                               x+j_coord_offsetC,x+j_coord_offsetD,
318                                               &jx0,&jy0,&jz0);
319
320             /* Calculate displacement vector */
321             dx00             = _mm_sub_ps(ix0,jx0);
322             dy00             = _mm_sub_ps(iy0,jy0);
323             dz00             = _mm_sub_ps(iz0,jz0);
324
325             /* Calculate squared distance and things based on it */
326             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
327
328             rinv00           = gmx_mm_invsqrt_ps(rsq00);
329
330             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
331
332             /* Load parameters for j particles */
333             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
334                                                               charge+jnrC+0,charge+jnrD+0);
335             vdwjidx0A        = 2*vdwtype[jnrA+0];
336             vdwjidx0B        = 2*vdwtype[jnrB+0];
337             vdwjidx0C        = 2*vdwtype[jnrC+0];
338             vdwjidx0D        = 2*vdwtype[jnrD+0];
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             r00              = _mm_mul_ps(rsq00,rinv00);
345             r00              = _mm_andnot_ps(dummy_mask,r00);
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq00             = _mm_mul_ps(iq0,jq0);
349             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
350                                          vdwparam+vdwioffset0+vdwjidx0B,
351                                          vdwparam+vdwioffset0+vdwjidx0C,
352                                          vdwparam+vdwioffset0+vdwjidx0D,
353                                          &c6_00,&c12_00);
354             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
355                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
356                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
357                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _mm_mul_ps(r00,ewtabscale);
363             ewitab           = _mm_cvttps_epi32(ewrt);
364             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
365             ewitab           = _mm_slli_epi32(ewitab,2);
366             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
367             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
368             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
369             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
370             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
371             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
372             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
373             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
374             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
375
376             /* Analytical LJ-PME */
377             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
378             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
379             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
380             exponent         = gmx_simd_exp_r(ewcljrsq);
381             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
382             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
383             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
384             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
385             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
386             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
387             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
388             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_andnot_ps(dummy_mask,velec);
392             velecsum         = _mm_add_ps(velecsum,velec);
393             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
394             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
395
396             fscal            = _mm_add_ps(felec,fvdw);
397
398             fscal            = _mm_andnot_ps(dummy_mask,fscal);
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm_mul_ps(fscal,dx00);
402             ty               = _mm_mul_ps(fscal,dy00);
403             tz               = _mm_mul_ps(fscal,dz00);
404
405             /* Update vectorial force */
406             fix0             = _mm_add_ps(fix0,tx);
407             fiy0             = _mm_add_ps(fiy0,ty);
408             fiz0             = _mm_add_ps(fiz0,tz);
409
410             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
411             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
412             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
413             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
415             
416             /* Inner loop uses 70 flops */
417         }
418
419         /* End of innermost loop */
420
421         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
422                                               f+i_coord_offset,fshift+i_shift_offset);
423
424         ggid                        = gid[iidx];
425         /* Update potential energies */
426         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
427         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
428
429         /* Increment number of inner iterations */
430         inneriter                  += j_index_end - j_index_start;
431
432         /* Outer loop uses 9 flops */
433     }
434
435     /* Increment number of outer iterations */
436     outeriter        += nri;
437
438     /* Update outer/inner flops */
439
440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
441 }
442 /*
443  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
444  * Electrostatics interaction: Ewald
445  * VdW interaction:            LJEwald
446  * Geometry:                   Particle-Particle
447  * Calculate force/pot:        Force
448  */
449 void
450 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
451                     (t_nblist                    * gmx_restrict       nlist,
452                      rvec                        * gmx_restrict          xx,
453                      rvec                        * gmx_restrict          ff,
454                      t_forcerec                  * gmx_restrict          fr,
455                      t_mdatoms                   * gmx_restrict     mdatoms,
456                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
457                      t_nrnb                      * gmx_restrict        nrnb)
458 {
459     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
460      * just 0 for non-waters.
461      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
462      * jnr indices corresponding to data put in the four positions in the SIMD register.
463      */
464     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
465     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
466     int              jnrA,jnrB,jnrC,jnrD;
467     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
468     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
469     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
470     real             rcutoff_scalar;
471     real             *shiftvec,*fshift,*x,*f;
472     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
473     real             scratch[4*DIM];
474     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
475     int              vdwioffset0;
476     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
477     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
478     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
479     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
480     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
481     real             *charge;
482     int              nvdwtype;
483     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
484     int              *vdwtype;
485     real             *vdwparam;
486     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
487     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
488     __m128           c6grid_00;
489     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
490     real             *vdwgridparam;
491     __m128           one_half = _mm_set1_ps(0.5);
492     __m128           minus_one = _mm_set1_ps(-1.0);
493     __m128i          ewitab;
494     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
495     real             *ewtab;
496     __m128           dummy_mask,cutoff_mask;
497     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
498     __m128           one     = _mm_set1_ps(1.0);
499     __m128           two     = _mm_set1_ps(2.0);
500     x                = xx[0];
501     f                = ff[0];
502
503     nri              = nlist->nri;
504     iinr             = nlist->iinr;
505     jindex           = nlist->jindex;
506     jjnr             = nlist->jjnr;
507     shiftidx         = nlist->shift;
508     gid              = nlist->gid;
509     shiftvec         = fr->shift_vec[0];
510     fshift           = fr->fshift[0];
511     facel            = _mm_set1_ps(fr->epsfac);
512     charge           = mdatoms->chargeA;
513     nvdwtype         = fr->ntype;
514     vdwparam         = fr->nbfp;
515     vdwtype          = mdatoms->typeA;
516     vdwgridparam     = fr->ljpme_c6grid;
517     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
518     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
519     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
520
521     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
522     ewtab            = fr->ic->tabq_coul_F;
523     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
524     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
525
526     /* Avoid stupid compiler warnings */
527     jnrA = jnrB = jnrC = jnrD = 0;
528     j_coord_offsetA = 0;
529     j_coord_offsetB = 0;
530     j_coord_offsetC = 0;
531     j_coord_offsetD = 0;
532
533     outeriter        = 0;
534     inneriter        = 0;
535
536     for(iidx=0;iidx<4*DIM;iidx++)
537     {
538         scratch[iidx] = 0.0;
539     }  
540
541     /* Start outer loop over neighborlists */
542     for(iidx=0; iidx<nri; iidx++)
543     {
544         /* Load shift vector for this list */
545         i_shift_offset   = DIM*shiftidx[iidx];
546
547         /* Load limits for loop over neighbors */
548         j_index_start    = jindex[iidx];
549         j_index_end      = jindex[iidx+1];
550
551         /* Get outer coordinate index */
552         inr              = iinr[iidx];
553         i_coord_offset   = DIM*inr;
554
555         /* Load i particle coords and add shift vector */
556         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
557         
558         fix0             = _mm_setzero_ps();
559         fiy0             = _mm_setzero_ps();
560         fiz0             = _mm_setzero_ps();
561
562         /* Load parameters for i particles */
563         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
564         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
565
566         /* Start inner kernel loop */
567         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
568         {
569
570             /* Get j neighbor index, and coordinate index */
571             jnrA             = jjnr[jidx];
572             jnrB             = jjnr[jidx+1];
573             jnrC             = jjnr[jidx+2];
574             jnrD             = jjnr[jidx+3];
575             j_coord_offsetA  = DIM*jnrA;
576             j_coord_offsetB  = DIM*jnrB;
577             j_coord_offsetC  = DIM*jnrC;
578             j_coord_offsetD  = DIM*jnrD;
579
580             /* load j atom coordinates */
581             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
582                                               x+j_coord_offsetC,x+j_coord_offsetD,
583                                               &jx0,&jy0,&jz0);
584
585             /* Calculate displacement vector */
586             dx00             = _mm_sub_ps(ix0,jx0);
587             dy00             = _mm_sub_ps(iy0,jy0);
588             dz00             = _mm_sub_ps(iz0,jz0);
589
590             /* Calculate squared distance and things based on it */
591             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
592
593             rinv00           = gmx_mm_invsqrt_ps(rsq00);
594
595             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
599                                                               charge+jnrC+0,charge+jnrD+0);
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601             vdwjidx0B        = 2*vdwtype[jnrB+0];
602             vdwjidx0C        = 2*vdwtype[jnrC+0];
603             vdwjidx0D        = 2*vdwtype[jnrD+0];
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             r00              = _mm_mul_ps(rsq00,rinv00);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm_mul_ps(iq0,jq0);
613             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
614                                          vdwparam+vdwioffset0+vdwjidx0B,
615                                          vdwparam+vdwioffset0+vdwjidx0C,
616                                          vdwparam+vdwioffset0+vdwjidx0D,
617                                          &c6_00,&c12_00);
618             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
619                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
620                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
621                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_ps(r00,ewtabscale);
627             ewitab           = _mm_cvttps_epi32(ewrt);
628             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
629             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
630                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
631                                          &ewtabF,&ewtabFn);
632             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
633             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
634
635             /* Analytical LJ-PME */
636             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
637             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
638             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
639             exponent         = gmx_simd_exp_r(ewcljrsq);
640             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
641             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
642             /* f6A = 6 * C6grid * (1 - poly) */
643             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
644             /* f6B = C6grid * exponent * beta^6 */
645             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
646             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
647             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
648
649             fscal            = _mm_add_ps(felec,fvdw);
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm_mul_ps(fscal,dx00);
653             ty               = _mm_mul_ps(fscal,dy00);
654             tz               = _mm_mul_ps(fscal,dz00);
655
656             /* Update vectorial force */
657             fix0             = _mm_add_ps(fix0,tx);
658             fiy0             = _mm_add_ps(fiy0,ty);
659             fiz0             = _mm_add_ps(fiz0,tz);
660
661             fjptrA             = f+j_coord_offsetA;
662             fjptrB             = f+j_coord_offsetB;
663             fjptrC             = f+j_coord_offsetC;
664             fjptrD             = f+j_coord_offsetD;
665             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
666             
667             /* Inner loop uses 59 flops */
668         }
669
670         if(jidx<j_index_end)
671         {
672
673             /* Get j neighbor index, and coordinate index */
674             jnrlistA         = jjnr[jidx];
675             jnrlistB         = jjnr[jidx+1];
676             jnrlistC         = jjnr[jidx+2];
677             jnrlistD         = jjnr[jidx+3];
678             /* Sign of each element will be negative for non-real atoms.
679              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
680              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
681              */
682             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
683             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
684             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
685             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
686             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               x+j_coord_offsetC,x+j_coord_offsetD,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm_sub_ps(ix0,jx0);
699             dy00             = _mm_sub_ps(iy0,jy0);
700             dz00             = _mm_sub_ps(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
704
705             rinv00           = gmx_mm_invsqrt_ps(rsq00);
706
707             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
711                                                               charge+jnrC+0,charge+jnrD+0);
712             vdwjidx0A        = 2*vdwtype[jnrA+0];
713             vdwjidx0B        = 2*vdwtype[jnrB+0];
714             vdwjidx0C        = 2*vdwtype[jnrC+0];
715             vdwjidx0D        = 2*vdwtype[jnrD+0];
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             r00              = _mm_mul_ps(rsq00,rinv00);
722             r00              = _mm_andnot_ps(dummy_mask,r00);
723
724             /* Compute parameters for interactions between i and j atoms */
725             qq00             = _mm_mul_ps(iq0,jq0);
726             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
727                                          vdwparam+vdwioffset0+vdwjidx0B,
728                                          vdwparam+vdwioffset0+vdwjidx0C,
729                                          vdwparam+vdwioffset0+vdwjidx0D,
730                                          &c6_00,&c12_00);
731             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
732                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
733                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
734                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
735
736             /* EWALD ELECTROSTATICS */
737
738             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
739             ewrt             = _mm_mul_ps(r00,ewtabscale);
740             ewitab           = _mm_cvttps_epi32(ewrt);
741             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
742             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
743                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
744                                          &ewtabF,&ewtabFn);
745             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
746             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
747
748             /* Analytical LJ-PME */
749             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
750             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
751             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
752             exponent         = gmx_simd_exp_r(ewcljrsq);
753             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
754             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
755             /* f6A = 6 * C6grid * (1 - poly) */
756             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
757             /* f6B = C6grid * exponent * beta^6 */
758             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
759             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
760             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
761
762             fscal            = _mm_add_ps(felec,fvdw);
763
764             fscal            = _mm_andnot_ps(dummy_mask,fscal);
765
766             /* Calculate temporary vectorial force */
767             tx               = _mm_mul_ps(fscal,dx00);
768             ty               = _mm_mul_ps(fscal,dy00);
769             tz               = _mm_mul_ps(fscal,dz00);
770
771             /* Update vectorial force */
772             fix0             = _mm_add_ps(fix0,tx);
773             fiy0             = _mm_add_ps(fiy0,ty);
774             fiz0             = _mm_add_ps(fiz0,tz);
775
776             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
777             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
778             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
779             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
780             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
781             
782             /* Inner loop uses 60 flops */
783         }
784
785         /* End of innermost loop */
786
787         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
788                                               f+i_coord_offset,fshift+i_shift_offset);
789
790         /* Increment number of inner iterations */
791         inneriter                  += j_index_end - j_index_start;
792
793         /* Outer loop uses 7 flops */
794     }
795
796     /* Increment number of outer iterations */
797     outeriter        += nri;
798
799     /* Update outer/inner flops */
800
801     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
802 }