0dd7d28d3cf36cbf5fd11820ab26e01f34065de2
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           c6grid_00;
97     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     real             *vdwgridparam;
99     __m128           one_half = _mm_set1_ps(0.5);
100     __m128           minus_one = _mm_set1_ps(-1.0);
101     __m128i          ewitab;
102     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124     vdwgridparam     = fr->ljpme_c6grid;
125     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
126     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
127     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
128
129     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }  
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165         
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,
227                                          vdwparam+vdwioffset0+vdwjidx0C,
228                                          vdwparam+vdwioffset0+vdwjidx0D,
229                                          &c6_00,&c12_00);
230             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
231                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
232                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
233                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _mm_mul_ps(r00,ewtabscale);
239             ewitab           = _mm_cvttps_epi32(ewrt);
240             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
241             ewitab           = _mm_slli_epi32(ewitab,2);
242             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
243             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
244             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
245             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
246             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
247             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
248             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
249             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
250             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
251
252             /* Analytical LJ-PME */
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
255             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
256             exponent         = gmx_simd_exp_r(ewcljrsq);
257             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
258             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
259             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
260             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
261             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
262             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
263             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
264             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_ps(velecsum,velec);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272             /* Calculate temporary vectorial force */
273             tx               = _mm_mul_ps(fscal,dx00);
274             ty               = _mm_mul_ps(fscal,dy00);
275             tz               = _mm_mul_ps(fscal,dz00);
276
277             /* Update vectorial force */
278             fix0             = _mm_add_ps(fix0,tx);
279             fiy0             = _mm_add_ps(fiy0,ty);
280             fiz0             = _mm_add_ps(fiz0,tz);
281
282             fjptrA             = f+j_coord_offsetA;
283             fjptrB             = f+j_coord_offsetB;
284             fjptrC             = f+j_coord_offsetC;
285             fjptrD             = f+j_coord_offsetD;
286             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
287             
288             /* Inner loop uses 69 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             /* Sign of each element will be negative for non-real atoms.
300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
302              */
303             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             j_coord_offsetA  = DIM*jnrA;
309             j_coord_offsetB  = DIM*jnrB;
310             j_coord_offsetC  = DIM*jnrC;
311             j_coord_offsetD  = DIM*jnrD;
312
313             /* load j atom coordinates */
314             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
315                                               x+j_coord_offsetC,x+j_coord_offsetD,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_ps(ix0,jx0);
320             dy00             = _mm_sub_ps(iy0,jy0);
321             dz00             = _mm_sub_ps(iz0,jz0);
322
323             /* Calculate squared distance and things based on it */
324             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
325
326             rinv00           = gmx_mm_invsqrt_ps(rsq00);
327
328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
329
330             /* Load parameters for j particles */
331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
332                                                               charge+jnrC+0,charge+jnrD+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             r00              = _mm_mul_ps(rsq00,rinv00);
343             r00              = _mm_andnot_ps(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm_mul_ps(iq0,jq0);
347             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
348                                          vdwparam+vdwioffset0+vdwjidx0B,
349                                          vdwparam+vdwioffset0+vdwjidx0C,
350                                          vdwparam+vdwioffset0+vdwjidx0D,
351                                          &c6_00,&c12_00);
352             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
353                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
354                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
355                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
356
357             /* EWALD ELECTROSTATICS */
358
359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360             ewrt             = _mm_mul_ps(r00,ewtabscale);
361             ewitab           = _mm_cvttps_epi32(ewrt);
362             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
363             ewitab           = _mm_slli_epi32(ewitab,2);
364             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
365             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
366             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
367             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
368             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
369             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
370             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
371             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
372             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
373
374             /* Analytical LJ-PME */
375             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
376             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
377             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
378             exponent         = gmx_simd_exp_r(ewcljrsq);
379             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
380             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
381             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
382             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
383             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
384             vvdw             = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
385             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
386             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velec            = _mm_andnot_ps(dummy_mask,velec);
390             velecsum         = _mm_add_ps(velecsum,velec);
391             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
392             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
393
394             fscal            = _mm_add_ps(felec,fvdw);
395
396             fscal            = _mm_andnot_ps(dummy_mask,fscal);
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx00);
400             ty               = _mm_mul_ps(fscal,dy00);
401             tz               = _mm_mul_ps(fscal,dz00);
402
403             /* Update vectorial force */
404             fix0             = _mm_add_ps(fix0,tx);
405             fiy0             = _mm_add_ps(fiy0,ty);
406             fiz0             = _mm_add_ps(fiz0,tz);
407
408             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
409             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
410             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
411             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
413             
414             /* Inner loop uses 70 flops */
415         }
416
417         /* End of innermost loop */
418
419         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
420                                               f+i_coord_offset,fshift+i_shift_offset);
421
422         ggid                        = gid[iidx];
423         /* Update potential energies */
424         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
425         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
426
427         /* Increment number of inner iterations */
428         inneriter                  += j_index_end - j_index_start;
429
430         /* Outer loop uses 9 flops */
431     }
432
433     /* Increment number of outer iterations */
434     outeriter        += nri;
435
436     /* Update outer/inner flops */
437
438     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
439 }
440 /*
441  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
442  * Electrostatics interaction: Ewald
443  * VdW interaction:            LJEwald
444  * Geometry:                   Particle-Particle
445  * Calculate force/pot:        Force
446  */
447 void
448 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_single
449                     (t_nblist                    * gmx_restrict       nlist,
450                      rvec                        * gmx_restrict          xx,
451                      rvec                        * gmx_restrict          ff,
452                      t_forcerec                  * gmx_restrict          fr,
453                      t_mdatoms                   * gmx_restrict     mdatoms,
454                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
455                      t_nrnb                      * gmx_restrict        nrnb)
456 {
457     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
458      * just 0 for non-waters.
459      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
460      * jnr indices corresponding to data put in the four positions in the SIMD register.
461      */
462     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
463     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
464     int              jnrA,jnrB,jnrC,jnrD;
465     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
466     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
467     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
468     real             rcutoff_scalar;
469     real             *shiftvec,*fshift,*x,*f;
470     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
471     real             scratch[4*DIM];
472     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
473     int              vdwioffset0;
474     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
475     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
476     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
477     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
478     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
479     real             *charge;
480     int              nvdwtype;
481     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
482     int              *vdwtype;
483     real             *vdwparam;
484     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
485     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
486     __m128           c6grid_00;
487     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
488     real             *vdwgridparam;
489     __m128           one_half = _mm_set1_ps(0.5);
490     __m128           minus_one = _mm_set1_ps(-1.0);
491     __m128i          ewitab;
492     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
493     real             *ewtab;
494     __m128           dummy_mask,cutoff_mask;
495     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
496     __m128           one     = _mm_set1_ps(1.0);
497     __m128           two     = _mm_set1_ps(2.0);
498     x                = xx[0];
499     f                = ff[0];
500
501     nri              = nlist->nri;
502     iinr             = nlist->iinr;
503     jindex           = nlist->jindex;
504     jjnr             = nlist->jjnr;
505     shiftidx         = nlist->shift;
506     gid              = nlist->gid;
507     shiftvec         = fr->shift_vec[0];
508     fshift           = fr->fshift[0];
509     facel            = _mm_set1_ps(fr->epsfac);
510     charge           = mdatoms->chargeA;
511     nvdwtype         = fr->ntype;
512     vdwparam         = fr->nbfp;
513     vdwtype          = mdatoms->typeA;
514     vdwgridparam     = fr->ljpme_c6grid;
515     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
516     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
517     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
518
519     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
520     ewtab            = fr->ic->tabq_coul_F;
521     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
522     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
523
524     /* Avoid stupid compiler warnings */
525     jnrA = jnrB = jnrC = jnrD = 0;
526     j_coord_offsetA = 0;
527     j_coord_offsetB = 0;
528     j_coord_offsetC = 0;
529     j_coord_offsetD = 0;
530
531     outeriter        = 0;
532     inneriter        = 0;
533
534     for(iidx=0;iidx<4*DIM;iidx++)
535     {
536         scratch[iidx] = 0.0;
537     }  
538
539     /* Start outer loop over neighborlists */
540     for(iidx=0; iidx<nri; iidx++)
541     {
542         /* Load shift vector for this list */
543         i_shift_offset   = DIM*shiftidx[iidx];
544
545         /* Load limits for loop over neighbors */
546         j_index_start    = jindex[iidx];
547         j_index_end      = jindex[iidx+1];
548
549         /* Get outer coordinate index */
550         inr              = iinr[iidx];
551         i_coord_offset   = DIM*inr;
552
553         /* Load i particle coords and add shift vector */
554         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
555         
556         fix0             = _mm_setzero_ps();
557         fiy0             = _mm_setzero_ps();
558         fiz0             = _mm_setzero_ps();
559
560         /* Load parameters for i particles */
561         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
562         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
563
564         /* Start inner kernel loop */
565         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
566         {
567
568             /* Get j neighbor index, and coordinate index */
569             jnrA             = jjnr[jidx];
570             jnrB             = jjnr[jidx+1];
571             jnrC             = jjnr[jidx+2];
572             jnrD             = jjnr[jidx+3];
573             j_coord_offsetA  = DIM*jnrA;
574             j_coord_offsetB  = DIM*jnrB;
575             j_coord_offsetC  = DIM*jnrC;
576             j_coord_offsetD  = DIM*jnrD;
577
578             /* load j atom coordinates */
579             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
580                                               x+j_coord_offsetC,x+j_coord_offsetD,
581                                               &jx0,&jy0,&jz0);
582
583             /* Calculate displacement vector */
584             dx00             = _mm_sub_ps(ix0,jx0);
585             dy00             = _mm_sub_ps(iy0,jy0);
586             dz00             = _mm_sub_ps(iz0,jz0);
587
588             /* Calculate squared distance and things based on it */
589             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
590
591             rinv00           = gmx_mm_invsqrt_ps(rsq00);
592
593             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
594
595             /* Load parameters for j particles */
596             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
597                                                               charge+jnrC+0,charge+jnrD+0);
598             vdwjidx0A        = 2*vdwtype[jnrA+0];
599             vdwjidx0B        = 2*vdwtype[jnrB+0];
600             vdwjidx0C        = 2*vdwtype[jnrC+0];
601             vdwjidx0D        = 2*vdwtype[jnrD+0];
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r00              = _mm_mul_ps(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _mm_mul_ps(iq0,jq0);
611             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
612                                          vdwparam+vdwioffset0+vdwjidx0B,
613                                          vdwparam+vdwioffset0+vdwjidx0C,
614                                          vdwparam+vdwioffset0+vdwjidx0D,
615                                          &c6_00,&c12_00);
616             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
617                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
618                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
619                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
620
621             /* EWALD ELECTROSTATICS */
622
623             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
624             ewrt             = _mm_mul_ps(r00,ewtabscale);
625             ewitab           = _mm_cvttps_epi32(ewrt);
626             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
627             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
628                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
629                                          &ewtabF,&ewtabFn);
630             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
631             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
632
633             /* Analytical LJ-PME */
634             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
635             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
636             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
637             exponent         = gmx_simd_exp_r(ewcljrsq);
638             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
639             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
640             /* f6A = 6 * C6grid * (1 - poly) */
641             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
642             /* f6B = C6grid * exponent * beta^6 */
643             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
644             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
645             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
646
647             fscal            = _mm_add_ps(felec,fvdw);
648
649             /* Calculate temporary vectorial force */
650             tx               = _mm_mul_ps(fscal,dx00);
651             ty               = _mm_mul_ps(fscal,dy00);
652             tz               = _mm_mul_ps(fscal,dz00);
653
654             /* Update vectorial force */
655             fix0             = _mm_add_ps(fix0,tx);
656             fiy0             = _mm_add_ps(fiy0,ty);
657             fiz0             = _mm_add_ps(fiz0,tz);
658
659             fjptrA             = f+j_coord_offsetA;
660             fjptrB             = f+j_coord_offsetB;
661             fjptrC             = f+j_coord_offsetC;
662             fjptrD             = f+j_coord_offsetD;
663             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
664             
665             /* Inner loop uses 59 flops */
666         }
667
668         if(jidx<j_index_end)
669         {
670
671             /* Get j neighbor index, and coordinate index */
672             jnrlistA         = jjnr[jidx];
673             jnrlistB         = jjnr[jidx+1];
674             jnrlistC         = jjnr[jidx+2];
675             jnrlistD         = jjnr[jidx+3];
676             /* Sign of each element will be negative for non-real atoms.
677              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
678              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
679              */
680             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
681             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
682             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
683             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
684             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
685             j_coord_offsetA  = DIM*jnrA;
686             j_coord_offsetB  = DIM*jnrB;
687             j_coord_offsetC  = DIM*jnrC;
688             j_coord_offsetD  = DIM*jnrD;
689
690             /* load j atom coordinates */
691             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
692                                               x+j_coord_offsetC,x+j_coord_offsetD,
693                                               &jx0,&jy0,&jz0);
694
695             /* Calculate displacement vector */
696             dx00             = _mm_sub_ps(ix0,jx0);
697             dy00             = _mm_sub_ps(iy0,jy0);
698             dz00             = _mm_sub_ps(iz0,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
702
703             rinv00           = gmx_mm_invsqrt_ps(rsq00);
704
705             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
706
707             /* Load parameters for j particles */
708             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
709                                                               charge+jnrC+0,charge+jnrD+0);
710             vdwjidx0A        = 2*vdwtype[jnrA+0];
711             vdwjidx0B        = 2*vdwtype[jnrB+0];
712             vdwjidx0C        = 2*vdwtype[jnrC+0];
713             vdwjidx0D        = 2*vdwtype[jnrD+0];
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             r00              = _mm_mul_ps(rsq00,rinv00);
720             r00              = _mm_andnot_ps(dummy_mask,r00);
721
722             /* Compute parameters for interactions between i and j atoms */
723             qq00             = _mm_mul_ps(iq0,jq0);
724             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
725                                          vdwparam+vdwioffset0+vdwjidx0B,
726                                          vdwparam+vdwioffset0+vdwjidx0C,
727                                          vdwparam+vdwioffset0+vdwjidx0D,
728                                          &c6_00,&c12_00);
729             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
730                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
731                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
732                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
733
734             /* EWALD ELECTROSTATICS */
735
736             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
737             ewrt             = _mm_mul_ps(r00,ewtabscale);
738             ewitab           = _mm_cvttps_epi32(ewrt);
739             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
740             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
741                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
742                                          &ewtabF,&ewtabFn);
743             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
744             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
745
746             /* Analytical LJ-PME */
747             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
748             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
749             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
750             exponent         = gmx_simd_exp_r(ewcljrsq);
751             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
752             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
753             /* f6A = 6 * C6grid * (1 - poly) */
754             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
755             /* f6B = C6grid * exponent * beta^6 */
756             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
757             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
758             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
759
760             fscal            = _mm_add_ps(felec,fvdw);
761
762             fscal            = _mm_andnot_ps(dummy_mask,fscal);
763
764             /* Calculate temporary vectorial force */
765             tx               = _mm_mul_ps(fscal,dx00);
766             ty               = _mm_mul_ps(fscal,dy00);
767             tz               = _mm_mul_ps(fscal,dz00);
768
769             /* Update vectorial force */
770             fix0             = _mm_add_ps(fix0,tx);
771             fiy0             = _mm_add_ps(fiy0,ty);
772             fiz0             = _mm_add_ps(fiz0,tz);
773
774             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
775             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
776             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
777             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
778             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
779             
780             /* Inner loop uses 60 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
786                                               f+i_coord_offset,fshift+i_shift_offset);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 7 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
800 }