db157b874b4606f05f151df1c8d6fb51e0bd2aaa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
144     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
145     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }  
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180         
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190         fix3             = _mm_setzero_ps();
191         fiy3             = _mm_setzero_ps();
192         fiz3             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227             dx30             = _mm_sub_ps(ix3,jx0);
228             dy30             = _mm_sub_ps(iy3,jy0);
229             dz30             = _mm_sub_ps(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm_invsqrt_ps(rsq20);
240             rinv30           = gmx_mm_invsqrt_ps(rsq30);
241
242             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
244             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
248                                                               charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm_setzero_ps();
255             fjy0             = _mm_setzero_ps();
256             fjz0             = _mm_setzero_ps();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             r00              = _mm_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* Calculate table index by multiplying r with table scale and truncate to integer */
272             rt               = _mm_mul_ps(r00,vftabscale);
273             vfitab           = _mm_cvttps_epi32(rt);
274             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
275             vfitab           = _mm_slli_epi32(vfitab,3);
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Heps             = _mm_mul_ps(vfeps,H);
284             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
285             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
286             vvdw6            = _mm_mul_ps(c6_00,VV);
287             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
288             fvdw6            = _mm_mul_ps(c6_00,FF);
289
290             /* CUBIC SPLINE TABLE REPULSION */
291             vfitab           = _mm_add_epi32(vfitab,ifour);
292             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
293             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
294             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
295             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
296             _MM_TRANSPOSE4_PS(Y,F,G,H);
297             Heps             = _mm_mul_ps(vfeps,H);
298             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
299             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
300             vvdw12           = _mm_mul_ps(c12_00,VV);
301             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
302             fvdw12           = _mm_mul_ps(c12_00,FF);
303             vvdw             = _mm_add_ps(vvdw12,vvdw6);
304             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
308
309             fscal            = fvdw;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_ps(fscal,dx00);
313             ty               = _mm_mul_ps(fscal,dy00);
314             tz               = _mm_mul_ps(fscal,dz00);
315
316             /* Update vectorial force */
317             fix0             = _mm_add_ps(fix0,tx);
318             fiy0             = _mm_add_ps(fiy0,ty);
319             fiz0             = _mm_add_ps(fiz0,tz);
320
321             fjx0             = _mm_add_ps(fjx0,tx);
322             fjy0             = _mm_add_ps(fjy0,ty);
323             fjz0             = _mm_add_ps(fjz0,tz);
324             
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             r10              = _mm_mul_ps(rsq10,rinv10);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq10             = _mm_mul_ps(iq1,jq0);
333
334             /* EWALD ELECTROSTATICS */
335
336             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
337             ewrt             = _mm_mul_ps(r10,ewtabscale);
338             ewitab           = _mm_cvttps_epi32(ewrt);
339             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
340             ewitab           = _mm_slli_epi32(ewitab,2);
341             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
342             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
343             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
344             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
345             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
346             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
347             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
348             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
349             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velecsum         = _mm_add_ps(velecsum,velec);
353
354             fscal            = felec;
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm_mul_ps(fscal,dx10);
358             ty               = _mm_mul_ps(fscal,dy10);
359             tz               = _mm_mul_ps(fscal,dz10);
360
361             /* Update vectorial force */
362             fix1             = _mm_add_ps(fix1,tx);
363             fiy1             = _mm_add_ps(fiy1,ty);
364             fiz1             = _mm_add_ps(fiz1,tz);
365
366             fjx0             = _mm_add_ps(fjx0,tx);
367             fjy0             = _mm_add_ps(fjy0,ty);
368             fjz0             = _mm_add_ps(fjz0,tz);
369             
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             r20              = _mm_mul_ps(rsq20,rinv20);
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm_mul_ps(iq2,jq0);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _mm_mul_ps(r20,ewtabscale);
383             ewitab           = _mm_cvttps_epi32(ewrt);
384             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
388             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
389             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
390             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
391             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
392             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
393             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
394             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velecsum         = _mm_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             /* Calculate temporary vectorial force */
402             tx               = _mm_mul_ps(fscal,dx20);
403             ty               = _mm_mul_ps(fscal,dy20);
404             tz               = _mm_mul_ps(fscal,dz20);
405
406             /* Update vectorial force */
407             fix2             = _mm_add_ps(fix2,tx);
408             fiy2             = _mm_add_ps(fiy2,ty);
409             fiz2             = _mm_add_ps(fiz2,tz);
410
411             fjx0             = _mm_add_ps(fjx0,tx);
412             fjy0             = _mm_add_ps(fjy0,ty);
413             fjz0             = _mm_add_ps(fjz0,tz);
414             
415             /**************************
416              * CALCULATE INTERACTIONS *
417              **************************/
418
419             r30              = _mm_mul_ps(rsq30,rinv30);
420
421             /* Compute parameters for interactions between i and j atoms */
422             qq30             = _mm_mul_ps(iq3,jq0);
423
424             /* EWALD ELECTROSTATICS */
425
426             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
427             ewrt             = _mm_mul_ps(r30,ewtabscale);
428             ewitab           = _mm_cvttps_epi32(ewrt);
429             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
430             ewitab           = _mm_slli_epi32(ewitab,2);
431             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
432             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
433             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
434             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
435             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
436             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
437             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
438             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
439             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
440
441             /* Update potential sum for this i atom from the interaction with this j atom. */
442             velecsum         = _mm_add_ps(velecsum,velec);
443
444             fscal            = felec;
445
446             /* Calculate temporary vectorial force */
447             tx               = _mm_mul_ps(fscal,dx30);
448             ty               = _mm_mul_ps(fscal,dy30);
449             tz               = _mm_mul_ps(fscal,dz30);
450
451             /* Update vectorial force */
452             fix3             = _mm_add_ps(fix3,tx);
453             fiy3             = _mm_add_ps(fiy3,ty);
454             fiz3             = _mm_add_ps(fiz3,tz);
455
456             fjx0             = _mm_add_ps(fjx0,tx);
457             fjy0             = _mm_add_ps(fjy0,ty);
458             fjz0             = _mm_add_ps(fjz0,tz);
459             
460             fjptrA             = f+j_coord_offsetA;
461             fjptrB             = f+j_coord_offsetB;
462             fjptrC             = f+j_coord_offsetC;
463             fjptrD             = f+j_coord_offsetD;
464
465             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
466
467             /* Inner loop uses 179 flops */
468         }
469
470         if(jidx<j_index_end)
471         {
472
473             /* Get j neighbor index, and coordinate index */
474             jnrlistA         = jjnr[jidx];
475             jnrlistB         = jjnr[jidx+1];
476             jnrlistC         = jjnr[jidx+2];
477             jnrlistD         = jjnr[jidx+3];
478             /* Sign of each element will be negative for non-real atoms.
479              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
480              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
481              */
482             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
483             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
484             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
485             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
486             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
487             j_coord_offsetA  = DIM*jnrA;
488             j_coord_offsetB  = DIM*jnrB;
489             j_coord_offsetC  = DIM*jnrC;
490             j_coord_offsetD  = DIM*jnrD;
491
492             /* load j atom coordinates */
493             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
494                                               x+j_coord_offsetC,x+j_coord_offsetD,
495                                               &jx0,&jy0,&jz0);
496
497             /* Calculate displacement vector */
498             dx00             = _mm_sub_ps(ix0,jx0);
499             dy00             = _mm_sub_ps(iy0,jy0);
500             dz00             = _mm_sub_ps(iz0,jz0);
501             dx10             = _mm_sub_ps(ix1,jx0);
502             dy10             = _mm_sub_ps(iy1,jy0);
503             dz10             = _mm_sub_ps(iz1,jz0);
504             dx20             = _mm_sub_ps(ix2,jx0);
505             dy20             = _mm_sub_ps(iy2,jy0);
506             dz20             = _mm_sub_ps(iz2,jz0);
507             dx30             = _mm_sub_ps(ix3,jx0);
508             dy30             = _mm_sub_ps(iy3,jy0);
509             dz30             = _mm_sub_ps(iz3,jz0);
510
511             /* Calculate squared distance and things based on it */
512             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
513             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
514             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
515             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
516
517             rinv00           = gmx_mm_invsqrt_ps(rsq00);
518             rinv10           = gmx_mm_invsqrt_ps(rsq10);
519             rinv20           = gmx_mm_invsqrt_ps(rsq20);
520             rinv30           = gmx_mm_invsqrt_ps(rsq30);
521
522             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
523             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
524             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
525
526             /* Load parameters for j particles */
527             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
528                                                               charge+jnrC+0,charge+jnrD+0);
529             vdwjidx0A        = 2*vdwtype[jnrA+0];
530             vdwjidx0B        = 2*vdwtype[jnrB+0];
531             vdwjidx0C        = 2*vdwtype[jnrC+0];
532             vdwjidx0D        = 2*vdwtype[jnrD+0];
533
534             fjx0             = _mm_setzero_ps();
535             fjy0             = _mm_setzero_ps();
536             fjz0             = _mm_setzero_ps();
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _mm_mul_ps(rsq00,rinv00);
543             r00              = _mm_andnot_ps(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
547                                          vdwparam+vdwioffset0+vdwjidx0B,
548                                          vdwparam+vdwioffset0+vdwjidx0C,
549                                          vdwparam+vdwioffset0+vdwjidx0D,
550                                          &c6_00,&c12_00);
551
552             /* Calculate table index by multiplying r with table scale and truncate to integer */
553             rt               = _mm_mul_ps(r00,vftabscale);
554             vfitab           = _mm_cvttps_epi32(rt);
555             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
556             vfitab           = _mm_slli_epi32(vfitab,3);
557
558             /* CUBIC SPLINE TABLE DISPERSION */
559             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
560             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
561             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
562             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
563             _MM_TRANSPOSE4_PS(Y,F,G,H);
564             Heps             = _mm_mul_ps(vfeps,H);
565             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
566             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
567             vvdw6            = _mm_mul_ps(c6_00,VV);
568             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
569             fvdw6            = _mm_mul_ps(c6_00,FF);
570
571             /* CUBIC SPLINE TABLE REPULSION */
572             vfitab           = _mm_add_epi32(vfitab,ifour);
573             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
574             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
575             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
576             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
577             _MM_TRANSPOSE4_PS(Y,F,G,H);
578             Heps             = _mm_mul_ps(vfeps,H);
579             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
580             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
581             vvdw12           = _mm_mul_ps(c12_00,VV);
582             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
583             fvdw12           = _mm_mul_ps(c12_00,FF);
584             vvdw             = _mm_add_ps(vvdw12,vvdw6);
585             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
589             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
590
591             fscal            = fvdw;
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_ps(fscal,dx00);
597             ty               = _mm_mul_ps(fscal,dy00);
598             tz               = _mm_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_ps(fix0,tx);
602             fiy0             = _mm_add_ps(fiy0,ty);
603             fiz0             = _mm_add_ps(fiz0,tz);
604
605             fjx0             = _mm_add_ps(fjx0,tx);
606             fjy0             = _mm_add_ps(fjy0,ty);
607             fjz0             = _mm_add_ps(fjz0,tz);
608             
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             r10              = _mm_mul_ps(rsq10,rinv10);
614             r10              = _mm_andnot_ps(dummy_mask,r10);
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq10             = _mm_mul_ps(iq1,jq0);
618
619             /* EWALD ELECTROSTATICS */
620
621             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
622             ewrt             = _mm_mul_ps(r10,ewtabscale);
623             ewitab           = _mm_cvttps_epi32(ewrt);
624             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
625             ewitab           = _mm_slli_epi32(ewitab,2);
626             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
627             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
628             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
629             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
630             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
631             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
632             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
633             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
634             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
635
636             /* Update potential sum for this i atom from the interaction with this j atom. */
637             velec            = _mm_andnot_ps(dummy_mask,velec);
638             velecsum         = _mm_add_ps(velecsum,velec);
639
640             fscal            = felec;
641
642             fscal            = _mm_andnot_ps(dummy_mask,fscal);
643
644             /* Calculate temporary vectorial force */
645             tx               = _mm_mul_ps(fscal,dx10);
646             ty               = _mm_mul_ps(fscal,dy10);
647             tz               = _mm_mul_ps(fscal,dz10);
648
649             /* Update vectorial force */
650             fix1             = _mm_add_ps(fix1,tx);
651             fiy1             = _mm_add_ps(fiy1,ty);
652             fiz1             = _mm_add_ps(fiz1,tz);
653
654             fjx0             = _mm_add_ps(fjx0,tx);
655             fjy0             = _mm_add_ps(fjy0,ty);
656             fjz0             = _mm_add_ps(fjz0,tz);
657             
658             /**************************
659              * CALCULATE INTERACTIONS *
660              **************************/
661
662             r20              = _mm_mul_ps(rsq20,rinv20);
663             r20              = _mm_andnot_ps(dummy_mask,r20);
664
665             /* Compute parameters for interactions between i and j atoms */
666             qq20             = _mm_mul_ps(iq2,jq0);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_ps(r20,ewtabscale);
672             ewitab           = _mm_cvttps_epi32(ewrt);
673             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
674             ewitab           = _mm_slli_epi32(ewitab,2);
675             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
677             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
678             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
679             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
680             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
681             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
682             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
683             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
684
685             /* Update potential sum for this i atom from the interaction with this j atom. */
686             velec            = _mm_andnot_ps(dummy_mask,velec);
687             velecsum         = _mm_add_ps(velecsum,velec);
688
689             fscal            = felec;
690
691             fscal            = _mm_andnot_ps(dummy_mask,fscal);
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_ps(fscal,dx20);
695             ty               = _mm_mul_ps(fscal,dy20);
696             tz               = _mm_mul_ps(fscal,dz20);
697
698             /* Update vectorial force */
699             fix2             = _mm_add_ps(fix2,tx);
700             fiy2             = _mm_add_ps(fiy2,ty);
701             fiz2             = _mm_add_ps(fiz2,tz);
702
703             fjx0             = _mm_add_ps(fjx0,tx);
704             fjy0             = _mm_add_ps(fjy0,ty);
705             fjz0             = _mm_add_ps(fjz0,tz);
706             
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             r30              = _mm_mul_ps(rsq30,rinv30);
712             r30              = _mm_andnot_ps(dummy_mask,r30);
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq30             = _mm_mul_ps(iq3,jq0);
716
717             /* EWALD ELECTROSTATICS */
718
719             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
720             ewrt             = _mm_mul_ps(r30,ewtabscale);
721             ewitab           = _mm_cvttps_epi32(ewrt);
722             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
723             ewitab           = _mm_slli_epi32(ewitab,2);
724             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
725             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
726             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
727             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
728             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
729             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
730             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
731             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
732             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
733
734             /* Update potential sum for this i atom from the interaction with this j atom. */
735             velec            = _mm_andnot_ps(dummy_mask,velec);
736             velecsum         = _mm_add_ps(velecsum,velec);
737
738             fscal            = felec;
739
740             fscal            = _mm_andnot_ps(dummy_mask,fscal);
741
742             /* Calculate temporary vectorial force */
743             tx               = _mm_mul_ps(fscal,dx30);
744             ty               = _mm_mul_ps(fscal,dy30);
745             tz               = _mm_mul_ps(fscal,dz30);
746
747             /* Update vectorial force */
748             fix3             = _mm_add_ps(fix3,tx);
749             fiy3             = _mm_add_ps(fiy3,ty);
750             fiz3             = _mm_add_ps(fiz3,tz);
751
752             fjx0             = _mm_add_ps(fjx0,tx);
753             fjy0             = _mm_add_ps(fjy0,ty);
754             fjz0             = _mm_add_ps(fjz0,tz);
755             
756             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
757             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
758             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
759             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
760
761             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
762
763             /* Inner loop uses 183 flops */
764         }
765
766         /* End of innermost loop */
767
768         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
769                                               f+i_coord_offset,fshift+i_shift_offset);
770
771         ggid                        = gid[iidx];
772         /* Update potential energies */
773         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
774         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
775
776         /* Increment number of inner iterations */
777         inneriter                  += j_index_end - j_index_start;
778
779         /* Outer loop uses 26 flops */
780     }
781
782     /* Increment number of outer iterations */
783     outeriter        += nri;
784
785     /* Update outer/inner flops */
786
787     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*183);
788 }
789 /*
790  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
791  * Electrostatics interaction: Ewald
792  * VdW interaction:            CubicSplineTable
793  * Geometry:                   Water4-Particle
794  * Calculate force/pot:        Force
795  */
796 void
797 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
798                     (t_nblist                    * gmx_restrict       nlist,
799                      rvec                        * gmx_restrict          xx,
800                      rvec                        * gmx_restrict          ff,
801                      t_forcerec                  * gmx_restrict          fr,
802                      t_mdatoms                   * gmx_restrict     mdatoms,
803                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
804                      t_nrnb                      * gmx_restrict        nrnb)
805 {
806     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
807      * just 0 for non-waters.
808      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
809      * jnr indices corresponding to data put in the four positions in the SIMD register.
810      */
811     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
812     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
813     int              jnrA,jnrB,jnrC,jnrD;
814     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
815     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
816     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
817     real             rcutoff_scalar;
818     real             *shiftvec,*fshift,*x,*f;
819     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
820     real             scratch[4*DIM];
821     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
822     int              vdwioffset0;
823     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
824     int              vdwioffset1;
825     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
826     int              vdwioffset2;
827     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
828     int              vdwioffset3;
829     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
830     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
831     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
832     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
833     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
834     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
835     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
836     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
837     real             *charge;
838     int              nvdwtype;
839     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
840     int              *vdwtype;
841     real             *vdwparam;
842     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
843     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
844     __m128i          vfitab;
845     __m128i          ifour       = _mm_set1_epi32(4);
846     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
847     real             *vftab;
848     __m128i          ewitab;
849     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
850     real             *ewtab;
851     __m128           dummy_mask,cutoff_mask;
852     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
853     __m128           one     = _mm_set1_ps(1.0);
854     __m128           two     = _mm_set1_ps(2.0);
855     x                = xx[0];
856     f                = ff[0];
857
858     nri              = nlist->nri;
859     iinr             = nlist->iinr;
860     jindex           = nlist->jindex;
861     jjnr             = nlist->jjnr;
862     shiftidx         = nlist->shift;
863     gid              = nlist->gid;
864     shiftvec         = fr->shift_vec[0];
865     fshift           = fr->fshift[0];
866     facel            = _mm_set1_ps(fr->epsfac);
867     charge           = mdatoms->chargeA;
868     nvdwtype         = fr->ntype;
869     vdwparam         = fr->nbfp;
870     vdwtype          = mdatoms->typeA;
871
872     vftab            = kernel_data->table_vdw->data;
873     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
874
875     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
876     ewtab            = fr->ic->tabq_coul_F;
877     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
878     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
879
880     /* Setup water-specific parameters */
881     inr              = nlist->iinr[0];
882     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
883     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
884     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
885     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
886
887     /* Avoid stupid compiler warnings */
888     jnrA = jnrB = jnrC = jnrD = 0;
889     j_coord_offsetA = 0;
890     j_coord_offsetB = 0;
891     j_coord_offsetC = 0;
892     j_coord_offsetD = 0;
893
894     outeriter        = 0;
895     inneriter        = 0;
896
897     for(iidx=0;iidx<4*DIM;iidx++)
898     {
899         scratch[iidx] = 0.0;
900     }  
901
902     /* Start outer loop over neighborlists */
903     for(iidx=0; iidx<nri; iidx++)
904     {
905         /* Load shift vector for this list */
906         i_shift_offset   = DIM*shiftidx[iidx];
907
908         /* Load limits for loop over neighbors */
909         j_index_start    = jindex[iidx];
910         j_index_end      = jindex[iidx+1];
911
912         /* Get outer coordinate index */
913         inr              = iinr[iidx];
914         i_coord_offset   = DIM*inr;
915
916         /* Load i particle coords and add shift vector */
917         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
918                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
919         
920         fix0             = _mm_setzero_ps();
921         fiy0             = _mm_setzero_ps();
922         fiz0             = _mm_setzero_ps();
923         fix1             = _mm_setzero_ps();
924         fiy1             = _mm_setzero_ps();
925         fiz1             = _mm_setzero_ps();
926         fix2             = _mm_setzero_ps();
927         fiy2             = _mm_setzero_ps();
928         fiz2             = _mm_setzero_ps();
929         fix3             = _mm_setzero_ps();
930         fiy3             = _mm_setzero_ps();
931         fiz3             = _mm_setzero_ps();
932
933         /* Start inner kernel loop */
934         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
935         {
936
937             /* Get j neighbor index, and coordinate index */
938             jnrA             = jjnr[jidx];
939             jnrB             = jjnr[jidx+1];
940             jnrC             = jjnr[jidx+2];
941             jnrD             = jjnr[jidx+3];
942             j_coord_offsetA  = DIM*jnrA;
943             j_coord_offsetB  = DIM*jnrB;
944             j_coord_offsetC  = DIM*jnrC;
945             j_coord_offsetD  = DIM*jnrD;
946
947             /* load j atom coordinates */
948             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
949                                               x+j_coord_offsetC,x+j_coord_offsetD,
950                                               &jx0,&jy0,&jz0);
951
952             /* Calculate displacement vector */
953             dx00             = _mm_sub_ps(ix0,jx0);
954             dy00             = _mm_sub_ps(iy0,jy0);
955             dz00             = _mm_sub_ps(iz0,jz0);
956             dx10             = _mm_sub_ps(ix1,jx0);
957             dy10             = _mm_sub_ps(iy1,jy0);
958             dz10             = _mm_sub_ps(iz1,jz0);
959             dx20             = _mm_sub_ps(ix2,jx0);
960             dy20             = _mm_sub_ps(iy2,jy0);
961             dz20             = _mm_sub_ps(iz2,jz0);
962             dx30             = _mm_sub_ps(ix3,jx0);
963             dy30             = _mm_sub_ps(iy3,jy0);
964             dz30             = _mm_sub_ps(iz3,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
968             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
969             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
970             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
971
972             rinv00           = gmx_mm_invsqrt_ps(rsq00);
973             rinv10           = gmx_mm_invsqrt_ps(rsq10);
974             rinv20           = gmx_mm_invsqrt_ps(rsq20);
975             rinv30           = gmx_mm_invsqrt_ps(rsq30);
976
977             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
978             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
979             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
980
981             /* Load parameters for j particles */
982             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
983                                                               charge+jnrC+0,charge+jnrD+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985             vdwjidx0B        = 2*vdwtype[jnrB+0];
986             vdwjidx0C        = 2*vdwtype[jnrC+0];
987             vdwjidx0D        = 2*vdwtype[jnrD+0];
988
989             fjx0             = _mm_setzero_ps();
990             fjy0             = _mm_setzero_ps();
991             fjz0             = _mm_setzero_ps();
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             r00              = _mm_mul_ps(rsq00,rinv00);
998
999             /* Compute parameters for interactions between i and j atoms */
1000             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1001                                          vdwparam+vdwioffset0+vdwjidx0B,
1002                                          vdwparam+vdwioffset0+vdwjidx0C,
1003                                          vdwparam+vdwioffset0+vdwjidx0D,
1004                                          &c6_00,&c12_00);
1005
1006             /* Calculate table index by multiplying r with table scale and truncate to integer */
1007             rt               = _mm_mul_ps(r00,vftabscale);
1008             vfitab           = _mm_cvttps_epi32(rt);
1009             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1010             vfitab           = _mm_slli_epi32(vfitab,3);
1011
1012             /* CUBIC SPLINE TABLE DISPERSION */
1013             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1014             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1015             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1016             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1017             _MM_TRANSPOSE4_PS(Y,F,G,H);
1018             Heps             = _mm_mul_ps(vfeps,H);
1019             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1020             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1021             fvdw6            = _mm_mul_ps(c6_00,FF);
1022
1023             /* CUBIC SPLINE TABLE REPULSION */
1024             vfitab           = _mm_add_epi32(vfitab,ifour);
1025             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1026             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1027             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1028             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1029             _MM_TRANSPOSE4_PS(Y,F,G,H);
1030             Heps             = _mm_mul_ps(vfeps,H);
1031             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1032             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1033             fvdw12           = _mm_mul_ps(c12_00,FF);
1034             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1035
1036             fscal            = fvdw;
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_ps(fscal,dx00);
1040             ty               = _mm_mul_ps(fscal,dy00);
1041             tz               = _mm_mul_ps(fscal,dz00);
1042
1043             /* Update vectorial force */
1044             fix0             = _mm_add_ps(fix0,tx);
1045             fiy0             = _mm_add_ps(fiy0,ty);
1046             fiz0             = _mm_add_ps(fiz0,tz);
1047
1048             fjx0             = _mm_add_ps(fjx0,tx);
1049             fjy0             = _mm_add_ps(fjy0,ty);
1050             fjz0             = _mm_add_ps(fjz0,tz);
1051             
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             r10              = _mm_mul_ps(rsq10,rinv10);
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq10             = _mm_mul_ps(iq1,jq0);
1060
1061             /* EWALD ELECTROSTATICS */
1062
1063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1064             ewrt             = _mm_mul_ps(r10,ewtabscale);
1065             ewitab           = _mm_cvttps_epi32(ewrt);
1066             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1067             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1068                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1069                                          &ewtabF,&ewtabFn);
1070             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1071             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1072
1073             fscal            = felec;
1074
1075             /* Calculate temporary vectorial force */
1076             tx               = _mm_mul_ps(fscal,dx10);
1077             ty               = _mm_mul_ps(fscal,dy10);
1078             tz               = _mm_mul_ps(fscal,dz10);
1079
1080             /* Update vectorial force */
1081             fix1             = _mm_add_ps(fix1,tx);
1082             fiy1             = _mm_add_ps(fiy1,ty);
1083             fiz1             = _mm_add_ps(fiz1,tz);
1084
1085             fjx0             = _mm_add_ps(fjx0,tx);
1086             fjy0             = _mm_add_ps(fjy0,ty);
1087             fjz0             = _mm_add_ps(fjz0,tz);
1088             
1089             /**************************
1090              * CALCULATE INTERACTIONS *
1091              **************************/
1092
1093             r20              = _mm_mul_ps(rsq20,rinv20);
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             qq20             = _mm_mul_ps(iq2,jq0);
1097
1098             /* EWALD ELECTROSTATICS */
1099
1100             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1101             ewrt             = _mm_mul_ps(r20,ewtabscale);
1102             ewitab           = _mm_cvttps_epi32(ewrt);
1103             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1104             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1105                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1106                                          &ewtabF,&ewtabFn);
1107             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1108             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1109
1110             fscal            = felec;
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx20);
1114             ty               = _mm_mul_ps(fscal,dy20);
1115             tz               = _mm_mul_ps(fscal,dz20);
1116
1117             /* Update vectorial force */
1118             fix2             = _mm_add_ps(fix2,tx);
1119             fiy2             = _mm_add_ps(fiy2,ty);
1120             fiz2             = _mm_add_ps(fiz2,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125             
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             r30              = _mm_mul_ps(rsq30,rinv30);
1131
1132             /* Compute parameters for interactions between i and j atoms */
1133             qq30             = _mm_mul_ps(iq3,jq0);
1134
1135             /* EWALD ELECTROSTATICS */
1136
1137             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1138             ewrt             = _mm_mul_ps(r30,ewtabscale);
1139             ewitab           = _mm_cvttps_epi32(ewrt);
1140             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1141             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1142                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1143                                          &ewtabF,&ewtabFn);
1144             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1145             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1146
1147             fscal            = felec;
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = _mm_mul_ps(fscal,dx30);
1151             ty               = _mm_mul_ps(fscal,dy30);
1152             tz               = _mm_mul_ps(fscal,dz30);
1153
1154             /* Update vectorial force */
1155             fix3             = _mm_add_ps(fix3,tx);
1156             fiy3             = _mm_add_ps(fiy3,ty);
1157             fiz3             = _mm_add_ps(fiz3,tz);
1158
1159             fjx0             = _mm_add_ps(fjx0,tx);
1160             fjy0             = _mm_add_ps(fjy0,ty);
1161             fjz0             = _mm_add_ps(fjz0,tz);
1162             
1163             fjptrA             = f+j_coord_offsetA;
1164             fjptrB             = f+j_coord_offsetB;
1165             fjptrC             = f+j_coord_offsetC;
1166             fjptrD             = f+j_coord_offsetD;
1167
1168             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1169
1170             /* Inner loop uses 156 flops */
1171         }
1172
1173         if(jidx<j_index_end)
1174         {
1175
1176             /* Get j neighbor index, and coordinate index */
1177             jnrlistA         = jjnr[jidx];
1178             jnrlistB         = jjnr[jidx+1];
1179             jnrlistC         = jjnr[jidx+2];
1180             jnrlistD         = jjnr[jidx+3];
1181             /* Sign of each element will be negative for non-real atoms.
1182              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1183              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1184              */
1185             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1186             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1187             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1188             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1189             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1190             j_coord_offsetA  = DIM*jnrA;
1191             j_coord_offsetB  = DIM*jnrB;
1192             j_coord_offsetC  = DIM*jnrC;
1193             j_coord_offsetD  = DIM*jnrD;
1194
1195             /* load j atom coordinates */
1196             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1197                                               x+j_coord_offsetC,x+j_coord_offsetD,
1198                                               &jx0,&jy0,&jz0);
1199
1200             /* Calculate displacement vector */
1201             dx00             = _mm_sub_ps(ix0,jx0);
1202             dy00             = _mm_sub_ps(iy0,jy0);
1203             dz00             = _mm_sub_ps(iz0,jz0);
1204             dx10             = _mm_sub_ps(ix1,jx0);
1205             dy10             = _mm_sub_ps(iy1,jy0);
1206             dz10             = _mm_sub_ps(iz1,jz0);
1207             dx20             = _mm_sub_ps(ix2,jx0);
1208             dy20             = _mm_sub_ps(iy2,jy0);
1209             dz20             = _mm_sub_ps(iz2,jz0);
1210             dx30             = _mm_sub_ps(ix3,jx0);
1211             dy30             = _mm_sub_ps(iy3,jy0);
1212             dz30             = _mm_sub_ps(iz3,jz0);
1213
1214             /* Calculate squared distance and things based on it */
1215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1216             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1217             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1218             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1219
1220             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1221             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1222             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1223             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1224
1225             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1226             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1227             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1228
1229             /* Load parameters for j particles */
1230             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1231                                                               charge+jnrC+0,charge+jnrD+0);
1232             vdwjidx0A        = 2*vdwtype[jnrA+0];
1233             vdwjidx0B        = 2*vdwtype[jnrB+0];
1234             vdwjidx0C        = 2*vdwtype[jnrC+0];
1235             vdwjidx0D        = 2*vdwtype[jnrD+0];
1236
1237             fjx0             = _mm_setzero_ps();
1238             fjy0             = _mm_setzero_ps();
1239             fjz0             = _mm_setzero_ps();
1240
1241             /**************************
1242              * CALCULATE INTERACTIONS *
1243              **************************/
1244
1245             r00              = _mm_mul_ps(rsq00,rinv00);
1246             r00              = _mm_andnot_ps(dummy_mask,r00);
1247
1248             /* Compute parameters for interactions between i and j atoms */
1249             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1250                                          vdwparam+vdwioffset0+vdwjidx0B,
1251                                          vdwparam+vdwioffset0+vdwjidx0C,
1252                                          vdwparam+vdwioffset0+vdwjidx0D,
1253                                          &c6_00,&c12_00);
1254
1255             /* Calculate table index by multiplying r with table scale and truncate to integer */
1256             rt               = _mm_mul_ps(r00,vftabscale);
1257             vfitab           = _mm_cvttps_epi32(rt);
1258             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1259             vfitab           = _mm_slli_epi32(vfitab,3);
1260
1261             /* CUBIC SPLINE TABLE DISPERSION */
1262             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1263             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1264             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1265             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1266             _MM_TRANSPOSE4_PS(Y,F,G,H);
1267             Heps             = _mm_mul_ps(vfeps,H);
1268             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1270             fvdw6            = _mm_mul_ps(c6_00,FF);
1271
1272             /* CUBIC SPLINE TABLE REPULSION */
1273             vfitab           = _mm_add_epi32(vfitab,ifour);
1274             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1275             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1276             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1277             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1278             _MM_TRANSPOSE4_PS(Y,F,G,H);
1279             Heps             = _mm_mul_ps(vfeps,H);
1280             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1281             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1282             fvdw12           = _mm_mul_ps(c12_00,FF);
1283             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1284
1285             fscal            = fvdw;
1286
1287             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1288
1289             /* Calculate temporary vectorial force */
1290             tx               = _mm_mul_ps(fscal,dx00);
1291             ty               = _mm_mul_ps(fscal,dy00);
1292             tz               = _mm_mul_ps(fscal,dz00);
1293
1294             /* Update vectorial force */
1295             fix0             = _mm_add_ps(fix0,tx);
1296             fiy0             = _mm_add_ps(fiy0,ty);
1297             fiz0             = _mm_add_ps(fiz0,tz);
1298
1299             fjx0             = _mm_add_ps(fjx0,tx);
1300             fjy0             = _mm_add_ps(fjy0,ty);
1301             fjz0             = _mm_add_ps(fjz0,tz);
1302             
1303             /**************************
1304              * CALCULATE INTERACTIONS *
1305              **************************/
1306
1307             r10              = _mm_mul_ps(rsq10,rinv10);
1308             r10              = _mm_andnot_ps(dummy_mask,r10);
1309
1310             /* Compute parameters for interactions between i and j atoms */
1311             qq10             = _mm_mul_ps(iq1,jq0);
1312
1313             /* EWALD ELECTROSTATICS */
1314
1315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1316             ewrt             = _mm_mul_ps(r10,ewtabscale);
1317             ewitab           = _mm_cvttps_epi32(ewrt);
1318             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1319             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1320                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1321                                          &ewtabF,&ewtabFn);
1322             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1323             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1324
1325             fscal            = felec;
1326
1327             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1328
1329             /* Calculate temporary vectorial force */
1330             tx               = _mm_mul_ps(fscal,dx10);
1331             ty               = _mm_mul_ps(fscal,dy10);
1332             tz               = _mm_mul_ps(fscal,dz10);
1333
1334             /* Update vectorial force */
1335             fix1             = _mm_add_ps(fix1,tx);
1336             fiy1             = _mm_add_ps(fiy1,ty);
1337             fiz1             = _mm_add_ps(fiz1,tz);
1338
1339             fjx0             = _mm_add_ps(fjx0,tx);
1340             fjy0             = _mm_add_ps(fjy0,ty);
1341             fjz0             = _mm_add_ps(fjz0,tz);
1342             
1343             /**************************
1344              * CALCULATE INTERACTIONS *
1345              **************************/
1346
1347             r20              = _mm_mul_ps(rsq20,rinv20);
1348             r20              = _mm_andnot_ps(dummy_mask,r20);
1349
1350             /* Compute parameters for interactions between i and j atoms */
1351             qq20             = _mm_mul_ps(iq2,jq0);
1352
1353             /* EWALD ELECTROSTATICS */
1354
1355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1356             ewrt             = _mm_mul_ps(r20,ewtabscale);
1357             ewitab           = _mm_cvttps_epi32(ewrt);
1358             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1359             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1360                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1361                                          &ewtabF,&ewtabFn);
1362             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1363             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1364
1365             fscal            = felec;
1366
1367             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1368
1369             /* Calculate temporary vectorial force */
1370             tx               = _mm_mul_ps(fscal,dx20);
1371             ty               = _mm_mul_ps(fscal,dy20);
1372             tz               = _mm_mul_ps(fscal,dz20);
1373
1374             /* Update vectorial force */
1375             fix2             = _mm_add_ps(fix2,tx);
1376             fiy2             = _mm_add_ps(fiy2,ty);
1377             fiz2             = _mm_add_ps(fiz2,tz);
1378
1379             fjx0             = _mm_add_ps(fjx0,tx);
1380             fjy0             = _mm_add_ps(fjy0,ty);
1381             fjz0             = _mm_add_ps(fjz0,tz);
1382             
1383             /**************************
1384              * CALCULATE INTERACTIONS *
1385              **************************/
1386
1387             r30              = _mm_mul_ps(rsq30,rinv30);
1388             r30              = _mm_andnot_ps(dummy_mask,r30);
1389
1390             /* Compute parameters for interactions between i and j atoms */
1391             qq30             = _mm_mul_ps(iq3,jq0);
1392
1393             /* EWALD ELECTROSTATICS */
1394
1395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1396             ewrt             = _mm_mul_ps(r30,ewtabscale);
1397             ewitab           = _mm_cvttps_epi32(ewrt);
1398             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1399             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1400                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1401                                          &ewtabF,&ewtabFn);
1402             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1403             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1404
1405             fscal            = felec;
1406
1407             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1408
1409             /* Calculate temporary vectorial force */
1410             tx               = _mm_mul_ps(fscal,dx30);
1411             ty               = _mm_mul_ps(fscal,dy30);
1412             tz               = _mm_mul_ps(fscal,dz30);
1413
1414             /* Update vectorial force */
1415             fix3             = _mm_add_ps(fix3,tx);
1416             fiy3             = _mm_add_ps(fiy3,ty);
1417             fiz3             = _mm_add_ps(fiz3,tz);
1418
1419             fjx0             = _mm_add_ps(fjx0,tx);
1420             fjy0             = _mm_add_ps(fjy0,ty);
1421             fjz0             = _mm_add_ps(fjz0,tz);
1422             
1423             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1424             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1425             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1426             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1427
1428             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1429
1430             /* Inner loop uses 160 flops */
1431         }
1432
1433         /* End of innermost loop */
1434
1435         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1436                                               f+i_coord_offset,fshift+i_shift_offset);
1437
1438         /* Increment number of inner iterations */
1439         inneriter                  += j_index_end - j_index_start;
1440
1441         /* Outer loop uses 24 flops */
1442     }
1443
1444     /* Increment number of outer iterations */
1445     outeriter        += nri;
1446
1447     /* Update outer/inner flops */
1448
1449     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*160);
1450 }