Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128i          ewitab;
96     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }  
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166         
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176         fix3             = _mm_setzero_ps();
177         fiy3             = _mm_setzero_ps();
178         fiz3             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213             dx30             = _mm_sub_ps(ix3,jx0);
214             dy30             = _mm_sub_ps(iy3,jy0);
215             dz30             = _mm_sub_ps(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226             rinv30           = gmx_mm_invsqrt_ps(rsq30);
227
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_ps(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
257             vfitab           = _mm_slli_epi32(vfitab,3);
258
259             /* CUBIC SPLINE TABLE DISPERSION */
260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Heps             = _mm_mul_ps(vfeps,H);
266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
267             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
268             vvdw6            = _mm_mul_ps(c6_00,VV);
269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
270             fvdw6            = _mm_mul_ps(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Heps             = _mm_mul_ps(vfeps,H);
280             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
281             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
282             vvdw12           = _mm_mul_ps(c12_00,VV);
283             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
284             fvdw12           = _mm_mul_ps(c12_00,FF);
285             vvdw             = _mm_add_ps(vvdw12,vvdw6);
286             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
290
291             fscal            = fvdw;
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm_mul_ps(fscal,dx00);
295             ty               = _mm_mul_ps(fscal,dy00);
296             tz               = _mm_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm_add_ps(fix0,tx);
300             fiy0             = _mm_add_ps(fiy0,ty);
301             fiz0             = _mm_add_ps(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
308             
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             r10              = _mm_mul_ps(rsq10,rinv10);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_ps(iq1,jq0);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
321             ewrt             = _mm_mul_ps(r10,ewtabscale);
322             ewitab           = _mm_cvttps_epi32(ewrt);
323             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
324             ewitab           = _mm_slli_epi32(ewitab,2);
325             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
326             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
327             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
328             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
329             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
330             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
331             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
332             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
333             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm_mul_ps(fscal,dx10);
342             ty               = _mm_mul_ps(fscal,dy10);
343             tz               = _mm_mul_ps(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm_add_ps(fix1,tx);
347             fiy1             = _mm_add_ps(fiy1,ty);
348             fiz1             = _mm_add_ps(fiz1,tz);
349
350             fjptrA             = f+j_coord_offsetA;
351             fjptrB             = f+j_coord_offsetB;
352             fjptrC             = f+j_coord_offsetC;
353             fjptrD             = f+j_coord_offsetD;
354             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
355             
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             r20              = _mm_mul_ps(rsq20,rinv20);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq20             = _mm_mul_ps(iq2,jq0);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = _mm_mul_ps(r20,ewtabscale);
369             ewitab           = _mm_cvttps_epi32(ewrt);
370             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
371             ewitab           = _mm_slli_epi32(ewitab,2);
372             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
373             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
374             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
375             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
376             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
377             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
378             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
379             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
380             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm_add_ps(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Calculate temporary vectorial force */
388             tx               = _mm_mul_ps(fscal,dx20);
389             ty               = _mm_mul_ps(fscal,dy20);
390             tz               = _mm_mul_ps(fscal,dz20);
391
392             /* Update vectorial force */
393             fix2             = _mm_add_ps(fix2,tx);
394             fiy2             = _mm_add_ps(fiy2,ty);
395             fiz2             = _mm_add_ps(fiz2,tz);
396
397             fjptrA             = f+j_coord_offsetA;
398             fjptrB             = f+j_coord_offsetB;
399             fjptrC             = f+j_coord_offsetC;
400             fjptrD             = f+j_coord_offsetD;
401             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
402             
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r30              = _mm_mul_ps(rsq30,rinv30);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq30             = _mm_mul_ps(iq3,jq0);
411
412             /* EWALD ELECTROSTATICS */
413
414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
415             ewrt             = _mm_mul_ps(r30,ewtabscale);
416             ewitab           = _mm_cvttps_epi32(ewrt);
417             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
421             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
422             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
423             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
424             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
425             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
426             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
427             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velecsum         = _mm_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx30);
436             ty               = _mm_mul_ps(fscal,dy30);
437             tz               = _mm_mul_ps(fscal,dz30);
438
439             /* Update vectorial force */
440             fix3             = _mm_add_ps(fix3,tx);
441             fiy3             = _mm_add_ps(fiy3,ty);
442             fiz3             = _mm_add_ps(fiz3,tz);
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
449             
450             /* Inner loop uses 179 flops */
451         }
452
453         if(jidx<j_index_end)
454         {
455
456             /* Get j neighbor index, and coordinate index */
457             jnrlistA         = jjnr[jidx];
458             jnrlistB         = jjnr[jidx+1];
459             jnrlistC         = jjnr[jidx+2];
460             jnrlistD         = jjnr[jidx+3];
461             /* Sign of each element will be negative for non-real atoms.
462              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
463              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
464              */
465             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
466             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
467             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
468             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
469             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
470             j_coord_offsetA  = DIM*jnrA;
471             j_coord_offsetB  = DIM*jnrB;
472             j_coord_offsetC  = DIM*jnrC;
473             j_coord_offsetD  = DIM*jnrD;
474
475             /* load j atom coordinates */
476             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
477                                               x+j_coord_offsetC,x+j_coord_offsetD,
478                                               &jx0,&jy0,&jz0);
479
480             /* Calculate displacement vector */
481             dx00             = _mm_sub_ps(ix0,jx0);
482             dy00             = _mm_sub_ps(iy0,jy0);
483             dz00             = _mm_sub_ps(iz0,jz0);
484             dx10             = _mm_sub_ps(ix1,jx0);
485             dy10             = _mm_sub_ps(iy1,jy0);
486             dz10             = _mm_sub_ps(iz1,jz0);
487             dx20             = _mm_sub_ps(ix2,jx0);
488             dy20             = _mm_sub_ps(iy2,jy0);
489             dz20             = _mm_sub_ps(iz2,jz0);
490             dx30             = _mm_sub_ps(ix3,jx0);
491             dy30             = _mm_sub_ps(iy3,jy0);
492             dz30             = _mm_sub_ps(iz3,jz0);
493
494             /* Calculate squared distance and things based on it */
495             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
496             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
497             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
498             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
499
500             rinv00           = gmx_mm_invsqrt_ps(rsq00);
501             rinv10           = gmx_mm_invsqrt_ps(rsq10);
502             rinv20           = gmx_mm_invsqrt_ps(rsq20);
503             rinv30           = gmx_mm_invsqrt_ps(rsq30);
504
505             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
506             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
507             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
511                                                               charge+jnrC+0,charge+jnrD+0);
512             vdwjidx0A        = 2*vdwtype[jnrA+0];
513             vdwjidx0B        = 2*vdwtype[jnrB+0];
514             vdwjidx0C        = 2*vdwtype[jnrC+0];
515             vdwjidx0D        = 2*vdwtype[jnrD+0];
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             r00              = _mm_mul_ps(rsq00,rinv00);
522             r00              = _mm_andnot_ps(dummy_mask,r00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
526                                          vdwparam+vdwioffset0+vdwjidx0B,
527                                          vdwparam+vdwioffset0+vdwjidx0C,
528                                          vdwparam+vdwioffset0+vdwjidx0D,
529                                          &c6_00,&c12_00);
530
531             /* Calculate table index by multiplying r with table scale and truncate to integer */
532             rt               = _mm_mul_ps(r00,vftabscale);
533             vfitab           = _mm_cvttps_epi32(rt);
534             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
535             vfitab           = _mm_slli_epi32(vfitab,3);
536
537             /* CUBIC SPLINE TABLE DISPERSION */
538             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
539             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
540             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
541             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
542             _MM_TRANSPOSE4_PS(Y,F,G,H);
543             Heps             = _mm_mul_ps(vfeps,H);
544             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
545             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
546             vvdw6            = _mm_mul_ps(c6_00,VV);
547             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
548             fvdw6            = _mm_mul_ps(c6_00,FF);
549
550             /* CUBIC SPLINE TABLE REPULSION */
551             vfitab           = _mm_add_epi32(vfitab,ifour);
552             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
553             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
554             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
555             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
556             _MM_TRANSPOSE4_PS(Y,F,G,H);
557             Heps             = _mm_mul_ps(vfeps,H);
558             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
559             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
560             vvdw12           = _mm_mul_ps(c12_00,VV);
561             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
562             fvdw12           = _mm_mul_ps(c12_00,FF);
563             vvdw             = _mm_add_ps(vvdw12,vvdw6);
564             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
568             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
569
570             fscal            = fvdw;
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx00);
576             ty               = _mm_mul_ps(fscal,dy00);
577             tz               = _mm_mul_ps(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm_add_ps(fix0,tx);
581             fiy0             = _mm_add_ps(fiy0,ty);
582             fiz0             = _mm_add_ps(fiz0,tz);
583
584             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
585             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
586             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
587             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
588             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
589             
590             /**************************
591              * CALCULATE INTERACTIONS *
592              **************************/
593
594             r10              = _mm_mul_ps(rsq10,rinv10);
595             r10              = _mm_andnot_ps(dummy_mask,r10);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq10             = _mm_mul_ps(iq1,jq0);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_ps(r10,ewtabscale);
604             ewitab           = _mm_cvttps_epi32(ewrt);
605             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
609             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
610             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
611             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
612             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
613             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
614             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
615             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm_andnot_ps(dummy_mask,velec);
619             velecsum         = _mm_add_ps(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_ps(fscal,dx10);
627             ty               = _mm_mul_ps(fscal,dy10);
628             tz               = _mm_mul_ps(fscal,dz10);
629
630             /* Update vectorial force */
631             fix1             = _mm_add_ps(fix1,tx);
632             fiy1             = _mm_add_ps(fiy1,ty);
633             fiz1             = _mm_add_ps(fiz1,tz);
634
635             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
636             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
637             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
638             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
639             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
640             
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             r20              = _mm_mul_ps(rsq20,rinv20);
646             r20              = _mm_andnot_ps(dummy_mask,r20);
647
648             /* Compute parameters for interactions between i and j atoms */
649             qq20             = _mm_mul_ps(iq2,jq0);
650
651             /* EWALD ELECTROSTATICS */
652
653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654             ewrt             = _mm_mul_ps(r20,ewtabscale);
655             ewitab           = _mm_cvttps_epi32(ewrt);
656             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
657             ewitab           = _mm_slli_epi32(ewitab,2);
658             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
659             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
660             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
661             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
662             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
663             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
664             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
665             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
666             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm_andnot_ps(dummy_mask,velec);
670             velecsum         = _mm_add_ps(velecsum,velec);
671
672             fscal            = felec;
673
674             fscal            = _mm_andnot_ps(dummy_mask,fscal);
675
676             /* Calculate temporary vectorial force */
677             tx               = _mm_mul_ps(fscal,dx20);
678             ty               = _mm_mul_ps(fscal,dy20);
679             tz               = _mm_mul_ps(fscal,dz20);
680
681             /* Update vectorial force */
682             fix2             = _mm_add_ps(fix2,tx);
683             fiy2             = _mm_add_ps(fiy2,ty);
684             fiz2             = _mm_add_ps(fiz2,tz);
685
686             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
687             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
688             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
689             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
690             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
691             
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             r30              = _mm_mul_ps(rsq30,rinv30);
697             r30              = _mm_andnot_ps(dummy_mask,r30);
698
699             /* Compute parameters for interactions between i and j atoms */
700             qq30             = _mm_mul_ps(iq3,jq0);
701
702             /* EWALD ELECTROSTATICS */
703
704             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
705             ewrt             = _mm_mul_ps(r30,ewtabscale);
706             ewitab           = _mm_cvttps_epi32(ewrt);
707             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
708             ewitab           = _mm_slli_epi32(ewitab,2);
709             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
710             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
711             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
712             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
713             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
714             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
715             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
716             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
717             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
718
719             /* Update potential sum for this i atom from the interaction with this j atom. */
720             velec            = _mm_andnot_ps(dummy_mask,velec);
721             velecsum         = _mm_add_ps(velecsum,velec);
722
723             fscal            = felec;
724
725             fscal            = _mm_andnot_ps(dummy_mask,fscal);
726
727             /* Calculate temporary vectorial force */
728             tx               = _mm_mul_ps(fscal,dx30);
729             ty               = _mm_mul_ps(fscal,dy30);
730             tz               = _mm_mul_ps(fscal,dz30);
731
732             /* Update vectorial force */
733             fix3             = _mm_add_ps(fix3,tx);
734             fiy3             = _mm_add_ps(fiy3,ty);
735             fiz3             = _mm_add_ps(fiz3,tz);
736
737             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
738             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
739             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
740             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
741             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
742             
743             /* Inner loop uses 183 flops */
744         }
745
746         /* End of innermost loop */
747
748         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
749                                               f+i_coord_offset,fshift+i_shift_offset);
750
751         ggid                        = gid[iidx];
752         /* Update potential energies */
753         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
754         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
755
756         /* Increment number of inner iterations */
757         inneriter                  += j_index_end - j_index_start;
758
759         /* Outer loop uses 26 flops */
760     }
761
762     /* Increment number of outer iterations */
763     outeriter        += nri;
764
765     /* Update outer/inner flops */
766
767     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*183);
768 }
769 /*
770  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
771  * Electrostatics interaction: Ewald
772  * VdW interaction:            CubicSplineTable
773  * Geometry:                   Water4-Particle
774  * Calculate force/pot:        Force
775  */
776 void
777 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
778                     (t_nblist * gmx_restrict                nlist,
779                      rvec * gmx_restrict                    xx,
780                      rvec * gmx_restrict                    ff,
781                      t_forcerec * gmx_restrict              fr,
782                      t_mdatoms * gmx_restrict               mdatoms,
783                      nb_kernel_data_t * gmx_restrict        kernel_data,
784                      t_nrnb * gmx_restrict                  nrnb)
785 {
786     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
787      * just 0 for non-waters.
788      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
789      * jnr indices corresponding to data put in the four positions in the SIMD register.
790      */
791     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
792     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
793     int              jnrA,jnrB,jnrC,jnrD;
794     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
795     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
796     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
797     real             rcutoff_scalar;
798     real             *shiftvec,*fshift,*x,*f;
799     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
800     real             scratch[4*DIM];
801     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
802     int              vdwioffset0;
803     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
804     int              vdwioffset1;
805     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
806     int              vdwioffset2;
807     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
808     int              vdwioffset3;
809     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
810     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
811     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
812     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
813     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
814     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
815     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
816     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
817     real             *charge;
818     int              nvdwtype;
819     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
820     int              *vdwtype;
821     real             *vdwparam;
822     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
823     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
824     __m128i          vfitab;
825     __m128i          ifour       = _mm_set1_epi32(4);
826     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
827     real             *vftab;
828     __m128i          ewitab;
829     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
830     real             *ewtab;
831     __m128           dummy_mask,cutoff_mask;
832     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
833     __m128           one     = _mm_set1_ps(1.0);
834     __m128           two     = _mm_set1_ps(2.0);
835     x                = xx[0];
836     f                = ff[0];
837
838     nri              = nlist->nri;
839     iinr             = nlist->iinr;
840     jindex           = nlist->jindex;
841     jjnr             = nlist->jjnr;
842     shiftidx         = nlist->shift;
843     gid              = nlist->gid;
844     shiftvec         = fr->shift_vec[0];
845     fshift           = fr->fshift[0];
846     facel            = _mm_set1_ps(fr->epsfac);
847     charge           = mdatoms->chargeA;
848     nvdwtype         = fr->ntype;
849     vdwparam         = fr->nbfp;
850     vdwtype          = mdatoms->typeA;
851
852     vftab            = kernel_data->table_vdw->data;
853     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
854
855     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
856     ewtab            = fr->ic->tabq_coul_F;
857     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
858     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
859
860     /* Setup water-specific parameters */
861     inr              = nlist->iinr[0];
862     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
863     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
864     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
865     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }  
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
899         
900         fix0             = _mm_setzero_ps();
901         fiy0             = _mm_setzero_ps();
902         fiz0             = _mm_setzero_ps();
903         fix1             = _mm_setzero_ps();
904         fiy1             = _mm_setzero_ps();
905         fiz1             = _mm_setzero_ps();
906         fix2             = _mm_setzero_ps();
907         fiy2             = _mm_setzero_ps();
908         fiz2             = _mm_setzero_ps();
909         fix3             = _mm_setzero_ps();
910         fiy3             = _mm_setzero_ps();
911         fiz3             = _mm_setzero_ps();
912
913         /* Start inner kernel loop */
914         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
915         {
916
917             /* Get j neighbor index, and coordinate index */
918             jnrA             = jjnr[jidx];
919             jnrB             = jjnr[jidx+1];
920             jnrC             = jjnr[jidx+2];
921             jnrD             = jjnr[jidx+3];
922             j_coord_offsetA  = DIM*jnrA;
923             j_coord_offsetB  = DIM*jnrB;
924             j_coord_offsetC  = DIM*jnrC;
925             j_coord_offsetD  = DIM*jnrD;
926
927             /* load j atom coordinates */
928             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
929                                               x+j_coord_offsetC,x+j_coord_offsetD,
930                                               &jx0,&jy0,&jz0);
931
932             /* Calculate displacement vector */
933             dx00             = _mm_sub_ps(ix0,jx0);
934             dy00             = _mm_sub_ps(iy0,jy0);
935             dz00             = _mm_sub_ps(iz0,jz0);
936             dx10             = _mm_sub_ps(ix1,jx0);
937             dy10             = _mm_sub_ps(iy1,jy0);
938             dz10             = _mm_sub_ps(iz1,jz0);
939             dx20             = _mm_sub_ps(ix2,jx0);
940             dy20             = _mm_sub_ps(iy2,jy0);
941             dz20             = _mm_sub_ps(iz2,jz0);
942             dx30             = _mm_sub_ps(ix3,jx0);
943             dy30             = _mm_sub_ps(iy3,jy0);
944             dz30             = _mm_sub_ps(iz3,jz0);
945
946             /* Calculate squared distance and things based on it */
947             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
948             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
949             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
950             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
951
952             rinv00           = gmx_mm_invsqrt_ps(rsq00);
953             rinv10           = gmx_mm_invsqrt_ps(rsq10);
954             rinv20           = gmx_mm_invsqrt_ps(rsq20);
955             rinv30           = gmx_mm_invsqrt_ps(rsq30);
956
957             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
958             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
959             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
960
961             /* Load parameters for j particles */
962             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
963                                                               charge+jnrC+0,charge+jnrD+0);
964             vdwjidx0A        = 2*vdwtype[jnrA+0];
965             vdwjidx0B        = 2*vdwtype[jnrB+0];
966             vdwjidx0C        = 2*vdwtype[jnrC+0];
967             vdwjidx0D        = 2*vdwtype[jnrD+0];
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r00              = _mm_mul_ps(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,
978                                          vdwparam+vdwioffset0+vdwjidx0C,
979                                          vdwparam+vdwioffset0+vdwjidx0D,
980                                          &c6_00,&c12_00);
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = _mm_mul_ps(r00,vftabscale);
984             vfitab           = _mm_cvttps_epi32(rt);
985             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
986             vfitab           = _mm_slli_epi32(vfitab,3);
987
988             /* CUBIC SPLINE TABLE DISPERSION */
989             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
990             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
991             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
992             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
993             _MM_TRANSPOSE4_PS(Y,F,G,H);
994             Heps             = _mm_mul_ps(vfeps,H);
995             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
996             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
997             fvdw6            = _mm_mul_ps(c6_00,FF);
998
999             /* CUBIC SPLINE TABLE REPULSION */
1000             vfitab           = _mm_add_epi32(vfitab,ifour);
1001             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1002             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1003             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1004             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1005             _MM_TRANSPOSE4_PS(Y,F,G,H);
1006             Heps             = _mm_mul_ps(vfeps,H);
1007             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1008             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1009             fvdw12           = _mm_mul_ps(c12_00,FF);
1010             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1011
1012             fscal            = fvdw;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm_mul_ps(fscal,dx00);
1016             ty               = _mm_mul_ps(fscal,dy00);
1017             tz               = _mm_mul_ps(fscal,dz00);
1018
1019             /* Update vectorial force */
1020             fix0             = _mm_add_ps(fix0,tx);
1021             fiy0             = _mm_add_ps(fiy0,ty);
1022             fiz0             = _mm_add_ps(fiz0,tz);
1023
1024             fjptrA             = f+j_coord_offsetA;
1025             fjptrB             = f+j_coord_offsetB;
1026             fjptrC             = f+j_coord_offsetC;
1027             fjptrD             = f+j_coord_offsetD;
1028             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1029             
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             r10              = _mm_mul_ps(rsq10,rinv10);
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq10             = _mm_mul_ps(iq1,jq0);
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1042             ewrt             = _mm_mul_ps(r10,ewtabscale);
1043             ewitab           = _mm_cvttps_epi32(ewrt);
1044             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1045             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1046                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1047                                          &ewtabF,&ewtabFn);
1048             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1049             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1050
1051             fscal            = felec;
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_ps(fscal,dx10);
1055             ty               = _mm_mul_ps(fscal,dy10);
1056             tz               = _mm_mul_ps(fscal,dz10);
1057
1058             /* Update vectorial force */
1059             fix1             = _mm_add_ps(fix1,tx);
1060             fiy1             = _mm_add_ps(fiy1,ty);
1061             fiz1             = _mm_add_ps(fiz1,tz);
1062
1063             fjptrA             = f+j_coord_offsetA;
1064             fjptrB             = f+j_coord_offsetB;
1065             fjptrC             = f+j_coord_offsetC;
1066             fjptrD             = f+j_coord_offsetD;
1067             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1068             
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             r20              = _mm_mul_ps(rsq20,rinv20);
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq20             = _mm_mul_ps(iq2,jq0);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm_mul_ps(r20,ewtabscale);
1082             ewitab           = _mm_cvttps_epi32(ewrt);
1083             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1084             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1085                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1086                                          &ewtabF,&ewtabFn);
1087             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1088             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1089
1090             fscal            = felec;
1091
1092             /* Calculate temporary vectorial force */
1093             tx               = _mm_mul_ps(fscal,dx20);
1094             ty               = _mm_mul_ps(fscal,dy20);
1095             tz               = _mm_mul_ps(fscal,dz20);
1096
1097             /* Update vectorial force */
1098             fix2             = _mm_add_ps(fix2,tx);
1099             fiy2             = _mm_add_ps(fiy2,ty);
1100             fiz2             = _mm_add_ps(fiz2,tz);
1101
1102             fjptrA             = f+j_coord_offsetA;
1103             fjptrB             = f+j_coord_offsetB;
1104             fjptrC             = f+j_coord_offsetC;
1105             fjptrD             = f+j_coord_offsetD;
1106             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1107             
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             r30              = _mm_mul_ps(rsq30,rinv30);
1113
1114             /* Compute parameters for interactions between i and j atoms */
1115             qq30             = _mm_mul_ps(iq3,jq0);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm_mul_ps(r30,ewtabscale);
1121             ewitab           = _mm_cvttps_epi32(ewrt);
1122             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1123             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1124                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1125                                          &ewtabF,&ewtabFn);
1126             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1127             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1128
1129             fscal            = felec;
1130
1131             /* Calculate temporary vectorial force */
1132             tx               = _mm_mul_ps(fscal,dx30);
1133             ty               = _mm_mul_ps(fscal,dy30);
1134             tz               = _mm_mul_ps(fscal,dz30);
1135
1136             /* Update vectorial force */
1137             fix3             = _mm_add_ps(fix3,tx);
1138             fiy3             = _mm_add_ps(fiy3,ty);
1139             fiz3             = _mm_add_ps(fiz3,tz);
1140
1141             fjptrA             = f+j_coord_offsetA;
1142             fjptrB             = f+j_coord_offsetB;
1143             fjptrC             = f+j_coord_offsetC;
1144             fjptrD             = f+j_coord_offsetD;
1145             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1146             
1147             /* Inner loop uses 156 flops */
1148         }
1149
1150         if(jidx<j_index_end)
1151         {
1152
1153             /* Get j neighbor index, and coordinate index */
1154             jnrlistA         = jjnr[jidx];
1155             jnrlistB         = jjnr[jidx+1];
1156             jnrlistC         = jjnr[jidx+2];
1157             jnrlistD         = jjnr[jidx+3];
1158             /* Sign of each element will be negative for non-real atoms.
1159              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1160              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1161              */
1162             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1163             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1164             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1165             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1166             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1167             j_coord_offsetA  = DIM*jnrA;
1168             j_coord_offsetB  = DIM*jnrB;
1169             j_coord_offsetC  = DIM*jnrC;
1170             j_coord_offsetD  = DIM*jnrD;
1171
1172             /* load j atom coordinates */
1173             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1174                                               x+j_coord_offsetC,x+j_coord_offsetD,
1175                                               &jx0,&jy0,&jz0);
1176
1177             /* Calculate displacement vector */
1178             dx00             = _mm_sub_ps(ix0,jx0);
1179             dy00             = _mm_sub_ps(iy0,jy0);
1180             dz00             = _mm_sub_ps(iz0,jz0);
1181             dx10             = _mm_sub_ps(ix1,jx0);
1182             dy10             = _mm_sub_ps(iy1,jy0);
1183             dz10             = _mm_sub_ps(iz1,jz0);
1184             dx20             = _mm_sub_ps(ix2,jx0);
1185             dy20             = _mm_sub_ps(iy2,jy0);
1186             dz20             = _mm_sub_ps(iz2,jz0);
1187             dx30             = _mm_sub_ps(ix3,jx0);
1188             dy30             = _mm_sub_ps(iy3,jy0);
1189             dz30             = _mm_sub_ps(iz3,jz0);
1190
1191             /* Calculate squared distance and things based on it */
1192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1193             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1194             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1195             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1196
1197             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1198             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1199             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1200             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1201
1202             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1203             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1204             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1205
1206             /* Load parameters for j particles */
1207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1208                                                               charge+jnrC+0,charge+jnrD+0);
1209             vdwjidx0A        = 2*vdwtype[jnrA+0];
1210             vdwjidx0B        = 2*vdwtype[jnrB+0];
1211             vdwjidx0C        = 2*vdwtype[jnrC+0];
1212             vdwjidx0D        = 2*vdwtype[jnrD+0];
1213
1214             /**************************
1215              * CALCULATE INTERACTIONS *
1216              **************************/
1217
1218             r00              = _mm_mul_ps(rsq00,rinv00);
1219             r00              = _mm_andnot_ps(dummy_mask,r00);
1220
1221             /* Compute parameters for interactions between i and j atoms */
1222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1223                                          vdwparam+vdwioffset0+vdwjidx0B,
1224                                          vdwparam+vdwioffset0+vdwjidx0C,
1225                                          vdwparam+vdwioffset0+vdwjidx0D,
1226                                          &c6_00,&c12_00);
1227
1228             /* Calculate table index by multiplying r with table scale and truncate to integer */
1229             rt               = _mm_mul_ps(r00,vftabscale);
1230             vfitab           = _mm_cvttps_epi32(rt);
1231             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1232             vfitab           = _mm_slli_epi32(vfitab,3);
1233
1234             /* CUBIC SPLINE TABLE DISPERSION */
1235             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1236             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1237             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1238             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1239             _MM_TRANSPOSE4_PS(Y,F,G,H);
1240             Heps             = _mm_mul_ps(vfeps,H);
1241             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1242             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1243             fvdw6            = _mm_mul_ps(c6_00,FF);
1244
1245             /* CUBIC SPLINE TABLE REPULSION */
1246             vfitab           = _mm_add_epi32(vfitab,ifour);
1247             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1248             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1249             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1250             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1251             _MM_TRANSPOSE4_PS(Y,F,G,H);
1252             Heps             = _mm_mul_ps(vfeps,H);
1253             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1254             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1255             fvdw12           = _mm_mul_ps(c12_00,FF);
1256             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1257
1258             fscal            = fvdw;
1259
1260             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm_mul_ps(fscal,dx00);
1264             ty               = _mm_mul_ps(fscal,dy00);
1265             tz               = _mm_mul_ps(fscal,dz00);
1266
1267             /* Update vectorial force */
1268             fix0             = _mm_add_ps(fix0,tx);
1269             fiy0             = _mm_add_ps(fiy0,ty);
1270             fiz0             = _mm_add_ps(fiz0,tz);
1271
1272             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1273             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1274             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1275             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1276             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1277             
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             r10              = _mm_mul_ps(rsq10,rinv10);
1283             r10              = _mm_andnot_ps(dummy_mask,r10);
1284
1285             /* Compute parameters for interactions between i and j atoms */
1286             qq10             = _mm_mul_ps(iq1,jq0);
1287
1288             /* EWALD ELECTROSTATICS */
1289
1290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1291             ewrt             = _mm_mul_ps(r10,ewtabscale);
1292             ewitab           = _mm_cvttps_epi32(ewrt);
1293             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1294             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1295                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1296                                          &ewtabF,&ewtabFn);
1297             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1298             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1299
1300             fscal            = felec;
1301
1302             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1303
1304             /* Calculate temporary vectorial force */
1305             tx               = _mm_mul_ps(fscal,dx10);
1306             ty               = _mm_mul_ps(fscal,dy10);
1307             tz               = _mm_mul_ps(fscal,dz10);
1308
1309             /* Update vectorial force */
1310             fix1             = _mm_add_ps(fix1,tx);
1311             fiy1             = _mm_add_ps(fiy1,ty);
1312             fiz1             = _mm_add_ps(fiz1,tz);
1313
1314             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1315             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1316             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1317             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1318             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1319             
1320             /**************************
1321              * CALCULATE INTERACTIONS *
1322              **************************/
1323
1324             r20              = _mm_mul_ps(rsq20,rinv20);
1325             r20              = _mm_andnot_ps(dummy_mask,r20);
1326
1327             /* Compute parameters for interactions between i and j atoms */
1328             qq20             = _mm_mul_ps(iq2,jq0);
1329
1330             /* EWALD ELECTROSTATICS */
1331
1332             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1333             ewrt             = _mm_mul_ps(r20,ewtabscale);
1334             ewitab           = _mm_cvttps_epi32(ewrt);
1335             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1336             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1337                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1338                                          &ewtabF,&ewtabFn);
1339             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1340             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1341
1342             fscal            = felec;
1343
1344             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1345
1346             /* Calculate temporary vectorial force */
1347             tx               = _mm_mul_ps(fscal,dx20);
1348             ty               = _mm_mul_ps(fscal,dy20);
1349             tz               = _mm_mul_ps(fscal,dz20);
1350
1351             /* Update vectorial force */
1352             fix2             = _mm_add_ps(fix2,tx);
1353             fiy2             = _mm_add_ps(fiy2,ty);
1354             fiz2             = _mm_add_ps(fiz2,tz);
1355
1356             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1357             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1358             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1359             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1360             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1361             
1362             /**************************
1363              * CALCULATE INTERACTIONS *
1364              **************************/
1365
1366             r30              = _mm_mul_ps(rsq30,rinv30);
1367             r30              = _mm_andnot_ps(dummy_mask,r30);
1368
1369             /* Compute parameters for interactions between i and j atoms */
1370             qq30             = _mm_mul_ps(iq3,jq0);
1371
1372             /* EWALD ELECTROSTATICS */
1373
1374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1375             ewrt             = _mm_mul_ps(r30,ewtabscale);
1376             ewitab           = _mm_cvttps_epi32(ewrt);
1377             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1378             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1379                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1380                                          &ewtabF,&ewtabFn);
1381             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1382             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1383
1384             fscal            = felec;
1385
1386             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1387
1388             /* Calculate temporary vectorial force */
1389             tx               = _mm_mul_ps(fscal,dx30);
1390             ty               = _mm_mul_ps(fscal,dy30);
1391             tz               = _mm_mul_ps(fscal,dz30);
1392
1393             /* Update vectorial force */
1394             fix3             = _mm_add_ps(fix3,tx);
1395             fiy3             = _mm_add_ps(fiy3,ty);
1396             fiz3             = _mm_add_ps(fiz3,tz);
1397
1398             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1399             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1400             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1401             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1402             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1403             
1404             /* Inner loop uses 160 flops */
1405         }
1406
1407         /* End of innermost loop */
1408
1409         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1410                                               f+i_coord_offset,fshift+i_shift_offset);
1411
1412         /* Increment number of inner iterations */
1413         inneriter                  += j_index_end - j_index_start;
1414
1415         /* Outer loop uses 24 flops */
1416     }
1417
1418     /* Increment number of outer iterations */
1419     outeriter        += nri;
1420
1421     /* Update outer/inner flops */
1422
1423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*160);
1424 }