Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
75     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146         shX              = shiftvec[i_shift_offset+XX];
147         shY              = shiftvec[i_shift_offset+YY];
148         shZ              = shiftvec[i_shift_offset+ZZ];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
160         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
161         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
162         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
163         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
164         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
165         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
166         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
167         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
168         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
169         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
170         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181         fix3             = _mm_setzero_ps();
182         fiy3             = _mm_setzero_ps();
183         fiz3             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219             dx30             = _mm_sub_ps(ix3,jx0);
220             dy30             = _mm_sub_ps(iy3,jy0);
221             dz30             = _mm_sub_ps(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_ps(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,
255                                          vdwparam+vdwioffset0+vdwjidx0C,
256                                          vdwparam+vdwioffset0+vdwjidx0D,
257                                          &c6_00,&c12_00);
258
259             /* Calculate table index by multiplying r with table scale and truncate to integer */
260             rt               = _mm_mul_ps(r00,vftabscale);
261             vfitab           = _mm_cvttps_epi32(rt);
262             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
263             vfitab           = _mm_slli_epi32(vfitab,3);
264
265             /* CUBIC SPLINE TABLE DISPERSION */
266             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
269             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
270             _MM_TRANSPOSE4_PS(Y,F,G,H);
271             Heps             = _mm_mul_ps(vfeps,H);
272             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
273             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
274             vvdw6            = _mm_mul_ps(c6_00,VV);
275             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
276             fvdw6            = _mm_mul_ps(c6_00,FF);
277
278             /* CUBIC SPLINE TABLE REPULSION */
279             vfitab           = _mm_add_epi32(vfitab,ifour);
280             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Heps             = _mm_mul_ps(vfeps,H);
286             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
287             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
288             vvdw12           = _mm_mul_ps(c12_00,VV);
289             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
290             fvdw12           = _mm_mul_ps(c12_00,FF);
291             vvdw             = _mm_add_ps(vvdw12,vvdw6);
292             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_ps(fscal,dx00);
301             ty               = _mm_mul_ps(fscal,dy00);
302             tz               = _mm_mul_ps(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm_add_ps(fix0,tx);
306             fiy0             = _mm_add_ps(fiy0,ty);
307             fiz0             = _mm_add_ps(fiz0,tz);
308
309             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
310                                                    f+j_coord_offsetC,f+j_coord_offsetD,
311                                                    tx,ty,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r10              = _mm_mul_ps(rsq10,rinv10);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_ps(r10,ewtabscale);
326             ewitab           = _mm_cvttps_epi32(ewrt);
327             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
332             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
333             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
334             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
335             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
336             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
337             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velecsum         = _mm_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             /* Calculate temporary vectorial force */
345             tx               = _mm_mul_ps(fscal,dx10);
346             ty               = _mm_mul_ps(fscal,dy10);
347             tz               = _mm_mul_ps(fscal,dz10);
348
349             /* Update vectorial force */
350             fix1             = _mm_add_ps(fix1,tx);
351             fiy1             = _mm_add_ps(fiy1,ty);
352             fiz1             = _mm_add_ps(fiz1,tz);
353
354             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
355                                                    f+j_coord_offsetC,f+j_coord_offsetD,
356                                                    tx,ty,tz);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r20              = _mm_mul_ps(rsq20,rinv20);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq20             = _mm_mul_ps(iq2,jq0);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370             ewrt             = _mm_mul_ps(r20,ewtabscale);
371             ewitab           = _mm_cvttps_epi32(ewrt);
372             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
373             ewitab           = _mm_slli_epi32(ewitab,2);
374             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
375             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
376             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
377             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
378             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
379             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
380             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
381             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
382             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velecsum         = _mm_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm_mul_ps(fscal,dx20);
391             ty               = _mm_mul_ps(fscal,dy20);
392             tz               = _mm_mul_ps(fscal,dz20);
393
394             /* Update vectorial force */
395             fix2             = _mm_add_ps(fix2,tx);
396             fiy2             = _mm_add_ps(fiy2,ty);
397             fiz2             = _mm_add_ps(fiz2,tz);
398
399             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
400                                                    f+j_coord_offsetC,f+j_coord_offsetD,
401                                                    tx,ty,tz);
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r30              = _mm_mul_ps(rsq30,rinv30);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq30             = _mm_mul_ps(iq3,jq0);
411
412             /* EWALD ELECTROSTATICS */
413
414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
415             ewrt             = _mm_mul_ps(r30,ewtabscale);
416             ewitab           = _mm_cvttps_epi32(ewrt);
417             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
421             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
422             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
423             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
424             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
425             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
426             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
427             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velecsum         = _mm_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx30);
436             ty               = _mm_mul_ps(fscal,dy30);
437             tz               = _mm_mul_ps(fscal,dz30);
438
439             /* Update vectorial force */
440             fix3             = _mm_add_ps(fix3,tx);
441             fiy3             = _mm_add_ps(fiy3,ty);
442             fiz3             = _mm_add_ps(fiz3,tz);
443
444             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
445                                                    f+j_coord_offsetC,f+j_coord_offsetD,
446                                                    tx,ty,tz);
447
448             /* Inner loop uses 179 flops */
449         }
450
451         if(jidx<j_index_end)
452         {
453
454             /* Get j neighbor index, and coordinate index */
455             jnrA             = jjnr[jidx];
456             jnrB             = jjnr[jidx+1];
457             jnrC             = jjnr[jidx+2];
458             jnrD             = jjnr[jidx+3];
459
460             /* Sign of each element will be negative for non-real atoms.
461              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
462              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
463              */
464             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
465             jnrA       = (jnrA>=0) ? jnrA : 0;
466             jnrB       = (jnrB>=0) ? jnrB : 0;
467             jnrC       = (jnrC>=0) ? jnrC : 0;
468             jnrD       = (jnrD>=0) ? jnrD : 0;
469
470             j_coord_offsetA  = DIM*jnrA;
471             j_coord_offsetB  = DIM*jnrB;
472             j_coord_offsetC  = DIM*jnrC;
473             j_coord_offsetD  = DIM*jnrD;
474
475             /* load j atom coordinates */
476             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
477                                               x+j_coord_offsetC,x+j_coord_offsetD,
478                                               &jx0,&jy0,&jz0);
479
480             /* Calculate displacement vector */
481             dx00             = _mm_sub_ps(ix0,jx0);
482             dy00             = _mm_sub_ps(iy0,jy0);
483             dz00             = _mm_sub_ps(iz0,jz0);
484             dx10             = _mm_sub_ps(ix1,jx0);
485             dy10             = _mm_sub_ps(iy1,jy0);
486             dz10             = _mm_sub_ps(iz1,jz0);
487             dx20             = _mm_sub_ps(ix2,jx0);
488             dy20             = _mm_sub_ps(iy2,jy0);
489             dz20             = _mm_sub_ps(iz2,jz0);
490             dx30             = _mm_sub_ps(ix3,jx0);
491             dy30             = _mm_sub_ps(iy3,jy0);
492             dz30             = _mm_sub_ps(iz3,jz0);
493
494             /* Calculate squared distance and things based on it */
495             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
496             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
497             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
498             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
499
500             rinv00           = gmx_mm_invsqrt_ps(rsq00);
501             rinv10           = gmx_mm_invsqrt_ps(rsq10);
502             rinv20           = gmx_mm_invsqrt_ps(rsq20);
503             rinv30           = gmx_mm_invsqrt_ps(rsq30);
504
505             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
506             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
507             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
511                                                               charge+jnrC+0,charge+jnrD+0);
512             vdwjidx0A        = 2*vdwtype[jnrA+0];
513             vdwjidx0B        = 2*vdwtype[jnrB+0];
514             vdwjidx0C        = 2*vdwtype[jnrC+0];
515             vdwjidx0D        = 2*vdwtype[jnrD+0];
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             r00              = _mm_mul_ps(rsq00,rinv00);
522             r00              = _mm_andnot_ps(dummy_mask,r00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
526                                          vdwparam+vdwioffset0+vdwjidx0B,
527                                          vdwparam+vdwioffset0+vdwjidx0C,
528                                          vdwparam+vdwioffset0+vdwjidx0D,
529                                          &c6_00,&c12_00);
530
531             /* Calculate table index by multiplying r with table scale and truncate to integer */
532             rt               = _mm_mul_ps(r00,vftabscale);
533             vfitab           = _mm_cvttps_epi32(rt);
534             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
535             vfitab           = _mm_slli_epi32(vfitab,3);
536
537             /* CUBIC SPLINE TABLE DISPERSION */
538             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
539             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
540             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
541             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
542             _MM_TRANSPOSE4_PS(Y,F,G,H);
543             Heps             = _mm_mul_ps(vfeps,H);
544             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
545             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
546             vvdw6            = _mm_mul_ps(c6_00,VV);
547             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
548             fvdw6            = _mm_mul_ps(c6_00,FF);
549
550             /* CUBIC SPLINE TABLE REPULSION */
551             vfitab           = _mm_add_epi32(vfitab,ifour);
552             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
553             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
554             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
555             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
556             _MM_TRANSPOSE4_PS(Y,F,G,H);
557             Heps             = _mm_mul_ps(vfeps,H);
558             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
559             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
560             vvdw12           = _mm_mul_ps(c12_00,VV);
561             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
562             fvdw12           = _mm_mul_ps(c12_00,FF);
563             vvdw             = _mm_add_ps(vvdw12,vvdw6);
564             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
568             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
569
570             fscal            = fvdw;
571
572             fscal            = _mm_andnot_ps(dummy_mask,fscal);
573
574             /* Calculate temporary vectorial force */
575             tx               = _mm_mul_ps(fscal,dx00);
576             ty               = _mm_mul_ps(fscal,dy00);
577             tz               = _mm_mul_ps(fscal,dz00);
578
579             /* Update vectorial force */
580             fix0             = _mm_add_ps(fix0,tx);
581             fiy0             = _mm_add_ps(fiy0,ty);
582             fiz0             = _mm_add_ps(fiz0,tz);
583
584             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
585                                                    f+j_coord_offsetC,f+j_coord_offsetD,
586                                                    tx,ty,tz);
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             r10              = _mm_mul_ps(rsq10,rinv10);
593             r10              = _mm_andnot_ps(dummy_mask,r10);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq10             = _mm_mul_ps(iq1,jq0);
597
598             /* EWALD ELECTROSTATICS */
599
600             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
601             ewrt             = _mm_mul_ps(r10,ewtabscale);
602             ewitab           = _mm_cvttps_epi32(ewrt);
603             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
604             ewitab           = _mm_slli_epi32(ewitab,2);
605             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
606             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
607             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
608             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
609             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
610             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
611             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
612             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
613             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm_andnot_ps(dummy_mask,velec);
617             velecsum         = _mm_add_ps(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm_andnot_ps(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm_mul_ps(fscal,dx10);
625             ty               = _mm_mul_ps(fscal,dy10);
626             tz               = _mm_mul_ps(fscal,dz10);
627
628             /* Update vectorial force */
629             fix1             = _mm_add_ps(fix1,tx);
630             fiy1             = _mm_add_ps(fiy1,ty);
631             fiz1             = _mm_add_ps(fiz1,tz);
632
633             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
634                                                    f+j_coord_offsetC,f+j_coord_offsetD,
635                                                    tx,ty,tz);
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             r20              = _mm_mul_ps(rsq20,rinv20);
642             r20              = _mm_andnot_ps(dummy_mask,r20);
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq20             = _mm_mul_ps(iq2,jq0);
646
647             /* EWALD ELECTROSTATICS */
648
649             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
650             ewrt             = _mm_mul_ps(r20,ewtabscale);
651             ewitab           = _mm_cvttps_epi32(ewrt);
652             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
653             ewitab           = _mm_slli_epi32(ewitab,2);
654             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
655             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
656             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
657             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
658             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
659             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
660             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
661             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
662             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
663
664             /* Update potential sum for this i atom from the interaction with this j atom. */
665             velec            = _mm_andnot_ps(dummy_mask,velec);
666             velecsum         = _mm_add_ps(velecsum,velec);
667
668             fscal            = felec;
669
670             fscal            = _mm_andnot_ps(dummy_mask,fscal);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm_mul_ps(fscal,dx20);
674             ty               = _mm_mul_ps(fscal,dy20);
675             tz               = _mm_mul_ps(fscal,dz20);
676
677             /* Update vectorial force */
678             fix2             = _mm_add_ps(fix2,tx);
679             fiy2             = _mm_add_ps(fiy2,ty);
680             fiz2             = _mm_add_ps(fiz2,tz);
681
682             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
683                                                    f+j_coord_offsetC,f+j_coord_offsetD,
684                                                    tx,ty,tz);
685
686             /**************************
687              * CALCULATE INTERACTIONS *
688              **************************/
689
690             r30              = _mm_mul_ps(rsq30,rinv30);
691             r30              = _mm_andnot_ps(dummy_mask,r30);
692
693             /* Compute parameters for interactions between i and j atoms */
694             qq30             = _mm_mul_ps(iq3,jq0);
695
696             /* EWALD ELECTROSTATICS */
697
698             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
699             ewrt             = _mm_mul_ps(r30,ewtabscale);
700             ewitab           = _mm_cvttps_epi32(ewrt);
701             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
702             ewitab           = _mm_slli_epi32(ewitab,2);
703             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
704             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
705             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
706             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
707             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
708             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
709             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
710             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
711             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
712
713             /* Update potential sum for this i atom from the interaction with this j atom. */
714             velec            = _mm_andnot_ps(dummy_mask,velec);
715             velecsum         = _mm_add_ps(velecsum,velec);
716
717             fscal            = felec;
718
719             fscal            = _mm_andnot_ps(dummy_mask,fscal);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm_mul_ps(fscal,dx30);
723             ty               = _mm_mul_ps(fscal,dy30);
724             tz               = _mm_mul_ps(fscal,dz30);
725
726             /* Update vectorial force */
727             fix3             = _mm_add_ps(fix3,tx);
728             fiy3             = _mm_add_ps(fiy3,ty);
729             fiz3             = _mm_add_ps(fiz3,tz);
730
731             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
732                                                    f+j_coord_offsetC,f+j_coord_offsetD,
733                                                    tx,ty,tz);
734
735             /* Inner loop uses 183 flops */
736         }
737
738         /* End of innermost loop */
739
740         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
741                                               f+i_coord_offset,fshift+i_shift_offset);
742
743         ggid                        = gid[iidx];
744         /* Update potential energies */
745         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
746         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
747
748         /* Increment number of inner iterations */
749         inneriter                  += j_index_end - j_index_start;
750
751         /* Outer loop uses 38 flops */
752     }
753
754     /* Increment number of outer iterations */
755     outeriter        += nri;
756
757     /* Update outer/inner flops */
758
759     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*38 + inneriter*183);
760 }
761 /*
762  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
763  * Electrostatics interaction: Ewald
764  * VdW interaction:            CubicSplineTable
765  * Geometry:                   Water4-Particle
766  * Calculate force/pot:        Force
767  */
768 void
769 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_single
770                     (t_nblist * gmx_restrict                nlist,
771                      rvec * gmx_restrict                    xx,
772                      rvec * gmx_restrict                    ff,
773                      t_forcerec * gmx_restrict              fr,
774                      t_mdatoms * gmx_restrict               mdatoms,
775                      nb_kernel_data_t * gmx_restrict        kernel_data,
776                      t_nrnb * gmx_restrict                  nrnb)
777 {
778     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
779      * just 0 for non-waters.
780      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
781      * jnr indices corresponding to data put in the four positions in the SIMD register.
782      */
783     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
784     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
785     int              jnrA,jnrB,jnrC,jnrD;
786     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
787     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
788     real             shX,shY,shZ,rcutoff_scalar;
789     real             *shiftvec,*fshift,*x,*f;
790     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
791     int              vdwioffset0;
792     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
793     int              vdwioffset1;
794     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
795     int              vdwioffset2;
796     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
797     int              vdwioffset3;
798     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
799     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
800     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
801     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
802     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
803     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
804     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
805     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
806     real             *charge;
807     int              nvdwtype;
808     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
809     int              *vdwtype;
810     real             *vdwparam;
811     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
812     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
813     __m128i          vfitab;
814     __m128i          ifour       = _mm_set1_epi32(4);
815     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
816     real             *vftab;
817     __m128i          ewitab;
818     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
819     real             *ewtab;
820     __m128           dummy_mask,cutoff_mask;
821     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
822     __m128           one     = _mm_set1_ps(1.0);
823     __m128           two     = _mm_set1_ps(2.0);
824     x                = xx[0];
825     f                = ff[0];
826
827     nri              = nlist->nri;
828     iinr             = nlist->iinr;
829     jindex           = nlist->jindex;
830     jjnr             = nlist->jjnr;
831     shiftidx         = nlist->shift;
832     gid              = nlist->gid;
833     shiftvec         = fr->shift_vec[0];
834     fshift           = fr->fshift[0];
835     facel            = _mm_set1_ps(fr->epsfac);
836     charge           = mdatoms->chargeA;
837     nvdwtype         = fr->ntype;
838     vdwparam         = fr->nbfp;
839     vdwtype          = mdatoms->typeA;
840
841     vftab            = kernel_data->table_vdw->data;
842     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
843
844     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
845     ewtab            = fr->ic->tabq_coul_F;
846     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
847     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
848
849     /* Setup water-specific parameters */
850     inr              = nlist->iinr[0];
851     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
852     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
853     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
854     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
855
856     /* Avoid stupid compiler warnings */
857     jnrA = jnrB = jnrC = jnrD = 0;
858     j_coord_offsetA = 0;
859     j_coord_offsetB = 0;
860     j_coord_offsetC = 0;
861     j_coord_offsetD = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     /* Start outer loop over neighborlists */
867     for(iidx=0; iidx<nri; iidx++)
868     {
869         /* Load shift vector for this list */
870         i_shift_offset   = DIM*shiftidx[iidx];
871         shX              = shiftvec[i_shift_offset+XX];
872         shY              = shiftvec[i_shift_offset+YY];
873         shZ              = shiftvec[i_shift_offset+ZZ];
874
875         /* Load limits for loop over neighbors */
876         j_index_start    = jindex[iidx];
877         j_index_end      = jindex[iidx+1];
878
879         /* Get outer coordinate index */
880         inr              = iinr[iidx];
881         i_coord_offset   = DIM*inr;
882
883         /* Load i particle coords and add shift vector */
884         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
885         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
886         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
887         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
888         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
889         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
890         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
891         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
892         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
893         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
894         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
895         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
896
897         fix0             = _mm_setzero_ps();
898         fiy0             = _mm_setzero_ps();
899         fiz0             = _mm_setzero_ps();
900         fix1             = _mm_setzero_ps();
901         fiy1             = _mm_setzero_ps();
902         fiz1             = _mm_setzero_ps();
903         fix2             = _mm_setzero_ps();
904         fiy2             = _mm_setzero_ps();
905         fiz2             = _mm_setzero_ps();
906         fix3             = _mm_setzero_ps();
907         fiy3             = _mm_setzero_ps();
908         fiz3             = _mm_setzero_ps();
909
910         /* Start inner kernel loop */
911         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
912         {
913
914             /* Get j neighbor index, and coordinate index */
915             jnrA             = jjnr[jidx];
916             jnrB             = jjnr[jidx+1];
917             jnrC             = jjnr[jidx+2];
918             jnrD             = jjnr[jidx+3];
919
920             j_coord_offsetA  = DIM*jnrA;
921             j_coord_offsetB  = DIM*jnrB;
922             j_coord_offsetC  = DIM*jnrC;
923             j_coord_offsetD  = DIM*jnrD;
924
925             /* load j atom coordinates */
926             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
927                                               x+j_coord_offsetC,x+j_coord_offsetD,
928                                               &jx0,&jy0,&jz0);
929
930             /* Calculate displacement vector */
931             dx00             = _mm_sub_ps(ix0,jx0);
932             dy00             = _mm_sub_ps(iy0,jy0);
933             dz00             = _mm_sub_ps(iz0,jz0);
934             dx10             = _mm_sub_ps(ix1,jx0);
935             dy10             = _mm_sub_ps(iy1,jy0);
936             dz10             = _mm_sub_ps(iz1,jz0);
937             dx20             = _mm_sub_ps(ix2,jx0);
938             dy20             = _mm_sub_ps(iy2,jy0);
939             dz20             = _mm_sub_ps(iz2,jz0);
940             dx30             = _mm_sub_ps(ix3,jx0);
941             dy30             = _mm_sub_ps(iy3,jy0);
942             dz30             = _mm_sub_ps(iz3,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
946             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
947             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
948             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
949
950             rinv00           = gmx_mm_invsqrt_ps(rsq00);
951             rinv10           = gmx_mm_invsqrt_ps(rsq10);
952             rinv20           = gmx_mm_invsqrt_ps(rsq20);
953             rinv30           = gmx_mm_invsqrt_ps(rsq30);
954
955             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
956             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
957             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
958
959             /* Load parameters for j particles */
960             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
961                                                               charge+jnrC+0,charge+jnrD+0);
962             vdwjidx0A        = 2*vdwtype[jnrA+0];
963             vdwjidx0B        = 2*vdwtype[jnrB+0];
964             vdwjidx0C        = 2*vdwtype[jnrC+0];
965             vdwjidx0D        = 2*vdwtype[jnrD+0];
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             r00              = _mm_mul_ps(rsq00,rinv00);
972
973             /* Compute parameters for interactions between i and j atoms */
974             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,
976                                          vdwparam+vdwioffset0+vdwjidx0C,
977                                          vdwparam+vdwioffset0+vdwjidx0D,
978                                          &c6_00,&c12_00);
979
980             /* Calculate table index by multiplying r with table scale and truncate to integer */
981             rt               = _mm_mul_ps(r00,vftabscale);
982             vfitab           = _mm_cvttps_epi32(rt);
983             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
984             vfitab           = _mm_slli_epi32(vfitab,3);
985
986             /* CUBIC SPLINE TABLE DISPERSION */
987             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
988             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
989             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
990             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
991             _MM_TRANSPOSE4_PS(Y,F,G,H);
992             Heps             = _mm_mul_ps(vfeps,H);
993             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
994             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
995             fvdw6            = _mm_mul_ps(c6_00,FF);
996
997             /* CUBIC SPLINE TABLE REPULSION */
998             vfitab           = _mm_add_epi32(vfitab,ifour);
999             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1000             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1001             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1002             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1003             _MM_TRANSPOSE4_PS(Y,F,G,H);
1004             Heps             = _mm_mul_ps(vfeps,H);
1005             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1006             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1007             fvdw12           = _mm_mul_ps(c12_00,FF);
1008             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1009
1010             fscal            = fvdw;
1011
1012             /* Calculate temporary vectorial force */
1013             tx               = _mm_mul_ps(fscal,dx00);
1014             ty               = _mm_mul_ps(fscal,dy00);
1015             tz               = _mm_mul_ps(fscal,dz00);
1016
1017             /* Update vectorial force */
1018             fix0             = _mm_add_ps(fix0,tx);
1019             fiy0             = _mm_add_ps(fiy0,ty);
1020             fiz0             = _mm_add_ps(fiz0,tz);
1021
1022             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1023                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1024                                                    tx,ty,tz);
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             r10              = _mm_mul_ps(rsq10,rinv10);
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq10             = _mm_mul_ps(iq1,jq0);
1034
1035             /* EWALD ELECTROSTATICS */
1036
1037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038             ewrt             = _mm_mul_ps(r10,ewtabscale);
1039             ewitab           = _mm_cvttps_epi32(ewrt);
1040             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1041             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1042                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1043                                          &ewtabF,&ewtabFn);
1044             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1045             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1046
1047             fscal            = felec;
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx10);
1051             ty               = _mm_mul_ps(fscal,dy10);
1052             tz               = _mm_mul_ps(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm_add_ps(fix1,tx);
1056             fiy1             = _mm_add_ps(fiy1,ty);
1057             fiz1             = _mm_add_ps(fiz1,tz);
1058
1059             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1060                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1061                                                    tx,ty,tz);
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r20              = _mm_mul_ps(rsq20,rinv20);
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq20             = _mm_mul_ps(iq2,jq0);
1071
1072             /* EWALD ELECTROSTATICS */
1073
1074             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075             ewrt             = _mm_mul_ps(r20,ewtabscale);
1076             ewitab           = _mm_cvttps_epi32(ewrt);
1077             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1078             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1079                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1080                                          &ewtabF,&ewtabFn);
1081             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1082             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1083
1084             fscal            = felec;
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = _mm_mul_ps(fscal,dx20);
1088             ty               = _mm_mul_ps(fscal,dy20);
1089             tz               = _mm_mul_ps(fscal,dz20);
1090
1091             /* Update vectorial force */
1092             fix2             = _mm_add_ps(fix2,tx);
1093             fiy2             = _mm_add_ps(fiy2,ty);
1094             fiz2             = _mm_add_ps(fiz2,tz);
1095
1096             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1097                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1098                                                    tx,ty,tz);
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             r30              = _mm_mul_ps(rsq30,rinv30);
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             qq30             = _mm_mul_ps(iq3,jq0);
1108
1109             /* EWALD ELECTROSTATICS */
1110
1111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112             ewrt             = _mm_mul_ps(r30,ewtabscale);
1113             ewitab           = _mm_cvttps_epi32(ewrt);
1114             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1115             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1116                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1117                                          &ewtabF,&ewtabFn);
1118             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1119             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1120
1121             fscal            = felec;
1122
1123             /* Calculate temporary vectorial force */
1124             tx               = _mm_mul_ps(fscal,dx30);
1125             ty               = _mm_mul_ps(fscal,dy30);
1126             tz               = _mm_mul_ps(fscal,dz30);
1127
1128             /* Update vectorial force */
1129             fix3             = _mm_add_ps(fix3,tx);
1130             fiy3             = _mm_add_ps(fiy3,ty);
1131             fiz3             = _mm_add_ps(fiz3,tz);
1132
1133             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1134                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1135                                                    tx,ty,tz);
1136
1137             /* Inner loop uses 156 flops */
1138         }
1139
1140         if(jidx<j_index_end)
1141         {
1142
1143             /* Get j neighbor index, and coordinate index */
1144             jnrA             = jjnr[jidx];
1145             jnrB             = jjnr[jidx+1];
1146             jnrC             = jjnr[jidx+2];
1147             jnrD             = jjnr[jidx+3];
1148
1149             /* Sign of each element will be negative for non-real atoms.
1150              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1151              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1152              */
1153             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1154             jnrA       = (jnrA>=0) ? jnrA : 0;
1155             jnrB       = (jnrB>=0) ? jnrB : 0;
1156             jnrC       = (jnrC>=0) ? jnrC : 0;
1157             jnrD       = (jnrD>=0) ? jnrD : 0;
1158
1159             j_coord_offsetA  = DIM*jnrA;
1160             j_coord_offsetB  = DIM*jnrB;
1161             j_coord_offsetC  = DIM*jnrC;
1162             j_coord_offsetD  = DIM*jnrD;
1163
1164             /* load j atom coordinates */
1165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1166                                               x+j_coord_offsetC,x+j_coord_offsetD,
1167                                               &jx0,&jy0,&jz0);
1168
1169             /* Calculate displacement vector */
1170             dx00             = _mm_sub_ps(ix0,jx0);
1171             dy00             = _mm_sub_ps(iy0,jy0);
1172             dz00             = _mm_sub_ps(iz0,jz0);
1173             dx10             = _mm_sub_ps(ix1,jx0);
1174             dy10             = _mm_sub_ps(iy1,jy0);
1175             dz10             = _mm_sub_ps(iz1,jz0);
1176             dx20             = _mm_sub_ps(ix2,jx0);
1177             dy20             = _mm_sub_ps(iy2,jy0);
1178             dz20             = _mm_sub_ps(iz2,jz0);
1179             dx30             = _mm_sub_ps(ix3,jx0);
1180             dy30             = _mm_sub_ps(iy3,jy0);
1181             dz30             = _mm_sub_ps(iz3,jz0);
1182
1183             /* Calculate squared distance and things based on it */
1184             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1185             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1186             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1187             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1188
1189             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1190             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1191             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1192             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1193
1194             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1195             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1196             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1197
1198             /* Load parameters for j particles */
1199             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1200                                                               charge+jnrC+0,charge+jnrD+0);
1201             vdwjidx0A        = 2*vdwtype[jnrA+0];
1202             vdwjidx0B        = 2*vdwtype[jnrB+0];
1203             vdwjidx0C        = 2*vdwtype[jnrC+0];
1204             vdwjidx0D        = 2*vdwtype[jnrD+0];
1205
1206             /**************************
1207              * CALCULATE INTERACTIONS *
1208              **************************/
1209
1210             r00              = _mm_mul_ps(rsq00,rinv00);
1211             r00              = _mm_andnot_ps(dummy_mask,r00);
1212
1213             /* Compute parameters for interactions between i and j atoms */
1214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1215                                          vdwparam+vdwioffset0+vdwjidx0B,
1216                                          vdwparam+vdwioffset0+vdwjidx0C,
1217                                          vdwparam+vdwioffset0+vdwjidx0D,
1218                                          &c6_00,&c12_00);
1219
1220             /* Calculate table index by multiplying r with table scale and truncate to integer */
1221             rt               = _mm_mul_ps(r00,vftabscale);
1222             vfitab           = _mm_cvttps_epi32(rt);
1223             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1224             vfitab           = _mm_slli_epi32(vfitab,3);
1225
1226             /* CUBIC SPLINE TABLE DISPERSION */
1227             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1228             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1229             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1230             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1231             _MM_TRANSPOSE4_PS(Y,F,G,H);
1232             Heps             = _mm_mul_ps(vfeps,H);
1233             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1234             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1235             fvdw6            = _mm_mul_ps(c6_00,FF);
1236
1237             /* CUBIC SPLINE TABLE REPULSION */
1238             vfitab           = _mm_add_epi32(vfitab,ifour);
1239             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1240             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1241             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1242             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1243             _MM_TRANSPOSE4_PS(Y,F,G,H);
1244             Heps             = _mm_mul_ps(vfeps,H);
1245             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1246             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1247             fvdw12           = _mm_mul_ps(c12_00,FF);
1248             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1249
1250             fscal            = fvdw;
1251
1252             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1253
1254             /* Calculate temporary vectorial force */
1255             tx               = _mm_mul_ps(fscal,dx00);
1256             ty               = _mm_mul_ps(fscal,dy00);
1257             tz               = _mm_mul_ps(fscal,dz00);
1258
1259             /* Update vectorial force */
1260             fix0             = _mm_add_ps(fix0,tx);
1261             fiy0             = _mm_add_ps(fiy0,ty);
1262             fiz0             = _mm_add_ps(fiz0,tz);
1263
1264             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1265                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1266                                                    tx,ty,tz);
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             r10              = _mm_mul_ps(rsq10,rinv10);
1273             r10              = _mm_andnot_ps(dummy_mask,r10);
1274
1275             /* Compute parameters for interactions between i and j atoms */
1276             qq10             = _mm_mul_ps(iq1,jq0);
1277
1278             /* EWALD ELECTROSTATICS */
1279
1280             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1281             ewrt             = _mm_mul_ps(r10,ewtabscale);
1282             ewitab           = _mm_cvttps_epi32(ewrt);
1283             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1284             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1285                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1286                                          &ewtabF,&ewtabFn);
1287             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1288             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1289
1290             fscal            = felec;
1291
1292             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1293
1294             /* Calculate temporary vectorial force */
1295             tx               = _mm_mul_ps(fscal,dx10);
1296             ty               = _mm_mul_ps(fscal,dy10);
1297             tz               = _mm_mul_ps(fscal,dz10);
1298
1299             /* Update vectorial force */
1300             fix1             = _mm_add_ps(fix1,tx);
1301             fiy1             = _mm_add_ps(fiy1,ty);
1302             fiz1             = _mm_add_ps(fiz1,tz);
1303
1304             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1305                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1306                                                    tx,ty,tz);
1307
1308             /**************************
1309              * CALCULATE INTERACTIONS *
1310              **************************/
1311
1312             r20              = _mm_mul_ps(rsq20,rinv20);
1313             r20              = _mm_andnot_ps(dummy_mask,r20);
1314
1315             /* Compute parameters for interactions between i and j atoms */
1316             qq20             = _mm_mul_ps(iq2,jq0);
1317
1318             /* EWALD ELECTROSTATICS */
1319
1320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1321             ewrt             = _mm_mul_ps(r20,ewtabscale);
1322             ewitab           = _mm_cvttps_epi32(ewrt);
1323             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1324             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1325                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1326                                          &ewtabF,&ewtabFn);
1327             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1328             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1329
1330             fscal            = felec;
1331
1332             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1333
1334             /* Calculate temporary vectorial force */
1335             tx               = _mm_mul_ps(fscal,dx20);
1336             ty               = _mm_mul_ps(fscal,dy20);
1337             tz               = _mm_mul_ps(fscal,dz20);
1338
1339             /* Update vectorial force */
1340             fix2             = _mm_add_ps(fix2,tx);
1341             fiy2             = _mm_add_ps(fiy2,ty);
1342             fiz2             = _mm_add_ps(fiz2,tz);
1343
1344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1345                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1346                                                    tx,ty,tz);
1347
1348             /**************************
1349              * CALCULATE INTERACTIONS *
1350              **************************/
1351
1352             r30              = _mm_mul_ps(rsq30,rinv30);
1353             r30              = _mm_andnot_ps(dummy_mask,r30);
1354
1355             /* Compute parameters for interactions between i and j atoms */
1356             qq30             = _mm_mul_ps(iq3,jq0);
1357
1358             /* EWALD ELECTROSTATICS */
1359
1360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1361             ewrt             = _mm_mul_ps(r30,ewtabscale);
1362             ewitab           = _mm_cvttps_epi32(ewrt);
1363             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1364             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1365                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1366                                          &ewtabF,&ewtabFn);
1367             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1368             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1369
1370             fscal            = felec;
1371
1372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1373
1374             /* Calculate temporary vectorial force */
1375             tx               = _mm_mul_ps(fscal,dx30);
1376             ty               = _mm_mul_ps(fscal,dy30);
1377             tz               = _mm_mul_ps(fscal,dz30);
1378
1379             /* Update vectorial force */
1380             fix3             = _mm_add_ps(fix3,tx);
1381             fiy3             = _mm_add_ps(fiy3,ty);
1382             fiz3             = _mm_add_ps(fiz3,tz);
1383
1384             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1385                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1386                                                    tx,ty,tz);
1387
1388             /* Inner loop uses 160 flops */
1389         }
1390
1391         /* End of innermost loop */
1392
1393         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1394                                               f+i_coord_offset,fshift+i_shift_offset);
1395
1396         /* Increment number of inner iterations */
1397         inneriter                  += j_index_end - j_index_start;
1398
1399         /* Outer loop uses 36 flops */
1400     }
1401
1402     /* Increment number of outer iterations */
1403     outeriter        += nri;
1404
1405     /* Update outer/inner flops */
1406
1407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*36 + inneriter*160);
1408 }