Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
91     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
93     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
110     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
111     __m128i          vfitab;
112     __m128i          ifour       = _mm_set1_epi32(4);
113     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
114     real             *vftab;
115     __m128i          ewitab;
116     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128           dummy_mask,cutoff_mask;
119     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
120     __m128           one     = _mm_set1_ps(1.0);
121     __m128           two     = _mm_set1_ps(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_ps(fr->ic->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138
139     vftab            = kernel_data->table_vdw->data;
140     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
141
142     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
143     ewtab            = fr->ic->tabq_coul_FDV0;
144     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
145     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
146
147     /* Setup water-specific parameters */
148     inr              = nlist->iinr[0];
149     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
150     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154     jq0              = _mm_set1_ps(charge[inr+0]);
155     jq1              = _mm_set1_ps(charge[inr+1]);
156     jq2              = _mm_set1_ps(charge[inr+2]);
157     vdwjidx0A        = 2*vdwtype[inr+0];
158     qq00             = _mm_mul_ps(iq0,jq0);
159     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
160     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
161     qq01             = _mm_mul_ps(iq0,jq1);
162     qq02             = _mm_mul_ps(iq0,jq2);
163     qq10             = _mm_mul_ps(iq1,jq0);
164     qq11             = _mm_mul_ps(iq1,jq1);
165     qq12             = _mm_mul_ps(iq1,jq2);
166     qq20             = _mm_mul_ps(iq2,jq0);
167     qq21             = _mm_mul_ps(iq2,jq1);
168     qq22             = _mm_mul_ps(iq2,jq2);
169
170     /* Avoid stupid compiler warnings */
171     jnrA = jnrB = jnrC = jnrD = 0;
172     j_coord_offsetA = 0;
173     j_coord_offsetB = 0;
174     j_coord_offsetC = 0;
175     j_coord_offsetD = 0;
176
177     outeriter        = 0;
178     inneriter        = 0;
179
180     for(iidx=0;iidx<4*DIM;iidx++)
181     {
182         scratch[iidx] = 0.0;
183     }  
184
185     /* Start outer loop over neighborlists */
186     for(iidx=0; iidx<nri; iidx++)
187     {
188         /* Load shift vector for this list */
189         i_shift_offset   = DIM*shiftidx[iidx];
190
191         /* Load limits for loop over neighbors */
192         j_index_start    = jindex[iidx];
193         j_index_end      = jindex[iidx+1];
194
195         /* Get outer coordinate index */
196         inr              = iinr[iidx];
197         i_coord_offset   = DIM*inr;
198
199         /* Load i particle coords and add shift vector */
200         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
201                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
202         
203         fix0             = _mm_setzero_ps();
204         fiy0             = _mm_setzero_ps();
205         fiz0             = _mm_setzero_ps();
206         fix1             = _mm_setzero_ps();
207         fiy1             = _mm_setzero_ps();
208         fiz1             = _mm_setzero_ps();
209         fix2             = _mm_setzero_ps();
210         fiy2             = _mm_setzero_ps();
211         fiz2             = _mm_setzero_ps();
212
213         /* Reset potential sums */
214         velecsum         = _mm_setzero_ps();
215         vvdwsum          = _mm_setzero_ps();
216
217         /* Start inner kernel loop */
218         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
219         {
220
221             /* Get j neighbor index, and coordinate index */
222             jnrA             = jjnr[jidx];
223             jnrB             = jjnr[jidx+1];
224             jnrC             = jjnr[jidx+2];
225             jnrD             = jjnr[jidx+3];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228             j_coord_offsetC  = DIM*jnrC;
229             j_coord_offsetD  = DIM*jnrD;
230
231             /* load j atom coordinates */
232             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
233                                               x+j_coord_offsetC,x+j_coord_offsetD,
234                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
235
236             /* Calculate displacement vector */
237             dx00             = _mm_sub_ps(ix0,jx0);
238             dy00             = _mm_sub_ps(iy0,jy0);
239             dz00             = _mm_sub_ps(iz0,jz0);
240             dx01             = _mm_sub_ps(ix0,jx1);
241             dy01             = _mm_sub_ps(iy0,jy1);
242             dz01             = _mm_sub_ps(iz0,jz1);
243             dx02             = _mm_sub_ps(ix0,jx2);
244             dy02             = _mm_sub_ps(iy0,jy2);
245             dz02             = _mm_sub_ps(iz0,jz2);
246             dx10             = _mm_sub_ps(ix1,jx0);
247             dy10             = _mm_sub_ps(iy1,jy0);
248             dz10             = _mm_sub_ps(iz1,jz0);
249             dx11             = _mm_sub_ps(ix1,jx1);
250             dy11             = _mm_sub_ps(iy1,jy1);
251             dz11             = _mm_sub_ps(iz1,jz1);
252             dx12             = _mm_sub_ps(ix1,jx2);
253             dy12             = _mm_sub_ps(iy1,jy2);
254             dz12             = _mm_sub_ps(iz1,jz2);
255             dx20             = _mm_sub_ps(ix2,jx0);
256             dy20             = _mm_sub_ps(iy2,jy0);
257             dz20             = _mm_sub_ps(iz2,jz0);
258             dx21             = _mm_sub_ps(ix2,jx1);
259             dy21             = _mm_sub_ps(iy2,jy1);
260             dz21             = _mm_sub_ps(iz2,jz1);
261             dx22             = _mm_sub_ps(ix2,jx2);
262             dy22             = _mm_sub_ps(iy2,jy2);
263             dz22             = _mm_sub_ps(iz2,jz2);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
267             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
268             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
269             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
270             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
271             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
272             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
273             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
274             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
275
276             rinv00           = sse2_invsqrt_f(rsq00);
277             rinv01           = sse2_invsqrt_f(rsq01);
278             rinv02           = sse2_invsqrt_f(rsq02);
279             rinv10           = sse2_invsqrt_f(rsq10);
280             rinv11           = sse2_invsqrt_f(rsq11);
281             rinv12           = sse2_invsqrt_f(rsq12);
282             rinv20           = sse2_invsqrt_f(rsq20);
283             rinv21           = sse2_invsqrt_f(rsq21);
284             rinv22           = sse2_invsqrt_f(rsq22);
285
286             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
287             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
288             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
289             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
290             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
291             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
292             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
293             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
294             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
295
296             fjx0             = _mm_setzero_ps();
297             fjy0             = _mm_setzero_ps();
298             fjz0             = _mm_setzero_ps();
299             fjx1             = _mm_setzero_ps();
300             fjy1             = _mm_setzero_ps();
301             fjz1             = _mm_setzero_ps();
302             fjx2             = _mm_setzero_ps();
303             fjy2             = _mm_setzero_ps();
304             fjz2             = _mm_setzero_ps();
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             r00              = _mm_mul_ps(rsq00,rinv00);
311
312             /* Calculate table index by multiplying r with table scale and truncate to integer */
313             rt               = _mm_mul_ps(r00,vftabscale);
314             vfitab           = _mm_cvttps_epi32(rt);
315             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
316             vfitab           = _mm_slli_epi32(vfitab,3);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
321             ewrt             = _mm_mul_ps(r00,ewtabscale);
322             ewitab           = _mm_cvttps_epi32(ewrt);
323             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
324             ewitab           = _mm_slli_epi32(ewitab,2);
325             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
326             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
327             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
328             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
329             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
330             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
331             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
332             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
333             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
334
335             /* CUBIC SPLINE TABLE DISPERSION */
336             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
337             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
338             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
339             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
340             _MM_TRANSPOSE4_PS(Y,F,G,H);
341             Heps             = _mm_mul_ps(vfeps,H);
342             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
343             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
344             vvdw6            = _mm_mul_ps(c6_00,VV);
345             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
346             fvdw6            = _mm_mul_ps(c6_00,FF);
347
348             /* CUBIC SPLINE TABLE REPULSION */
349             vfitab           = _mm_add_epi32(vfitab,ifour);
350             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
351             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
352             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
353             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
354             _MM_TRANSPOSE4_PS(Y,F,G,H);
355             Heps             = _mm_mul_ps(vfeps,H);
356             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
357             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
358             vvdw12           = _mm_mul_ps(c12_00,VV);
359             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
360             fvdw12           = _mm_mul_ps(c12_00,FF);
361             vvdw             = _mm_add_ps(vvdw12,vvdw6);
362             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velecsum         = _mm_add_ps(velecsum,velec);
366             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
367
368             fscal            = _mm_add_ps(felec,fvdw);
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_ps(fscal,dx00);
372             ty               = _mm_mul_ps(fscal,dy00);
373             tz               = _mm_mul_ps(fscal,dz00);
374
375             /* Update vectorial force */
376             fix0             = _mm_add_ps(fix0,tx);
377             fiy0             = _mm_add_ps(fiy0,ty);
378             fiz0             = _mm_add_ps(fiz0,tz);
379
380             fjx0             = _mm_add_ps(fjx0,tx);
381             fjy0             = _mm_add_ps(fjy0,ty);
382             fjz0             = _mm_add_ps(fjz0,tz);
383             
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r01              = _mm_mul_ps(rsq01,rinv01);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _mm_mul_ps(r01,ewtabscale);
394             ewitab           = _mm_cvttps_epi32(ewrt);
395             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
399             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
400             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
401             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
402             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
403             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
404             velec            = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
405             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velecsum         = _mm_add_ps(velecsum,velec);
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_ps(fscal,dx01);
414             ty               = _mm_mul_ps(fscal,dy01);
415             tz               = _mm_mul_ps(fscal,dz01);
416
417             /* Update vectorial force */
418             fix0             = _mm_add_ps(fix0,tx);
419             fiy0             = _mm_add_ps(fiy0,ty);
420             fiz0             = _mm_add_ps(fiz0,tz);
421
422             fjx1             = _mm_add_ps(fjx1,tx);
423             fjy1             = _mm_add_ps(fjy1,ty);
424             fjz1             = _mm_add_ps(fjz1,tz);
425             
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             r02              = _mm_mul_ps(rsq02,rinv02);
431
432             /* EWALD ELECTROSTATICS */
433
434             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
435             ewrt             = _mm_mul_ps(r02,ewtabscale);
436             ewitab           = _mm_cvttps_epi32(ewrt);
437             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
438             ewitab           = _mm_slli_epi32(ewitab,2);
439             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
440             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
441             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
442             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
443             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
444             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
445             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
446             velec            = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
447             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
448
449             /* Update potential sum for this i atom from the interaction with this j atom. */
450             velecsum         = _mm_add_ps(velecsum,velec);
451
452             fscal            = felec;
453
454             /* Calculate temporary vectorial force */
455             tx               = _mm_mul_ps(fscal,dx02);
456             ty               = _mm_mul_ps(fscal,dy02);
457             tz               = _mm_mul_ps(fscal,dz02);
458
459             /* Update vectorial force */
460             fix0             = _mm_add_ps(fix0,tx);
461             fiy0             = _mm_add_ps(fiy0,ty);
462             fiz0             = _mm_add_ps(fiz0,tz);
463
464             fjx2             = _mm_add_ps(fjx2,tx);
465             fjy2             = _mm_add_ps(fjy2,ty);
466             fjz2             = _mm_add_ps(fjz2,tz);
467             
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             r10              = _mm_mul_ps(rsq10,rinv10);
473
474             /* EWALD ELECTROSTATICS */
475
476             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
477             ewrt             = _mm_mul_ps(r10,ewtabscale);
478             ewitab           = _mm_cvttps_epi32(ewrt);
479             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
480             ewitab           = _mm_slli_epi32(ewitab,2);
481             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
482             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
483             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
484             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
485             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
486             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
487             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
488             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
489             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velecsum         = _mm_add_ps(velecsum,velec);
493
494             fscal            = felec;
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_ps(fscal,dx10);
498             ty               = _mm_mul_ps(fscal,dy10);
499             tz               = _mm_mul_ps(fscal,dz10);
500
501             /* Update vectorial force */
502             fix1             = _mm_add_ps(fix1,tx);
503             fiy1             = _mm_add_ps(fiy1,ty);
504             fiz1             = _mm_add_ps(fiz1,tz);
505
506             fjx0             = _mm_add_ps(fjx0,tx);
507             fjy0             = _mm_add_ps(fjy0,ty);
508             fjz0             = _mm_add_ps(fjz0,tz);
509             
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             r11              = _mm_mul_ps(rsq11,rinv11);
515
516             /* EWALD ELECTROSTATICS */
517
518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519             ewrt             = _mm_mul_ps(r11,ewtabscale);
520             ewitab           = _mm_cvttps_epi32(ewrt);
521             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
522             ewitab           = _mm_slli_epi32(ewitab,2);
523             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
524             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
525             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
526             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
527             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
528             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
529             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
530             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
531             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velecsum         = _mm_add_ps(velecsum,velec);
535
536             fscal            = felec;
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_ps(fscal,dx11);
540             ty               = _mm_mul_ps(fscal,dy11);
541             tz               = _mm_mul_ps(fscal,dz11);
542
543             /* Update vectorial force */
544             fix1             = _mm_add_ps(fix1,tx);
545             fiy1             = _mm_add_ps(fiy1,ty);
546             fiz1             = _mm_add_ps(fiz1,tz);
547
548             fjx1             = _mm_add_ps(fjx1,tx);
549             fjy1             = _mm_add_ps(fjy1,ty);
550             fjz1             = _mm_add_ps(fjz1,tz);
551             
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             r12              = _mm_mul_ps(rsq12,rinv12);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
561             ewrt             = _mm_mul_ps(r12,ewtabscale);
562             ewitab           = _mm_cvttps_epi32(ewrt);
563             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
564             ewitab           = _mm_slli_epi32(ewitab,2);
565             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
566             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
567             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
568             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
569             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
570             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
571             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
572             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
573             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velecsum         = _mm_add_ps(velecsum,velec);
577
578             fscal            = felec;
579
580             /* Calculate temporary vectorial force */
581             tx               = _mm_mul_ps(fscal,dx12);
582             ty               = _mm_mul_ps(fscal,dy12);
583             tz               = _mm_mul_ps(fscal,dz12);
584
585             /* Update vectorial force */
586             fix1             = _mm_add_ps(fix1,tx);
587             fiy1             = _mm_add_ps(fiy1,ty);
588             fiz1             = _mm_add_ps(fiz1,tz);
589
590             fjx2             = _mm_add_ps(fjx2,tx);
591             fjy2             = _mm_add_ps(fjy2,ty);
592             fjz2             = _mm_add_ps(fjz2,tz);
593             
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r20              = _mm_mul_ps(rsq20,rinv20);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_ps(r20,ewtabscale);
604             ewitab           = _mm_cvttps_epi32(ewrt);
605             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
609             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
610             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
611             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
612             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
613             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
614             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
615             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velecsum         = _mm_add_ps(velecsum,velec);
619
620             fscal            = felec;
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_ps(fscal,dx20);
624             ty               = _mm_mul_ps(fscal,dy20);
625             tz               = _mm_mul_ps(fscal,dz20);
626
627             /* Update vectorial force */
628             fix2             = _mm_add_ps(fix2,tx);
629             fiy2             = _mm_add_ps(fiy2,ty);
630             fiz2             = _mm_add_ps(fiz2,tz);
631
632             fjx0             = _mm_add_ps(fjx0,tx);
633             fjy0             = _mm_add_ps(fjy0,ty);
634             fjz0             = _mm_add_ps(fjz0,tz);
635             
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             r21              = _mm_mul_ps(rsq21,rinv21);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm_mul_ps(r21,ewtabscale);
646             ewitab           = _mm_cvttps_epi32(ewrt);
647             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
648             ewitab           = _mm_slli_epi32(ewitab,2);
649             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
650             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
651             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
652             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
653             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
654             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
655             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
656             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
657             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
658
659             /* Update potential sum for this i atom from the interaction with this j atom. */
660             velecsum         = _mm_add_ps(velecsum,velec);
661
662             fscal            = felec;
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm_mul_ps(fscal,dx21);
666             ty               = _mm_mul_ps(fscal,dy21);
667             tz               = _mm_mul_ps(fscal,dz21);
668
669             /* Update vectorial force */
670             fix2             = _mm_add_ps(fix2,tx);
671             fiy2             = _mm_add_ps(fiy2,ty);
672             fiz2             = _mm_add_ps(fiz2,tz);
673
674             fjx1             = _mm_add_ps(fjx1,tx);
675             fjy1             = _mm_add_ps(fjy1,ty);
676             fjz1             = _mm_add_ps(fjz1,tz);
677             
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             r22              = _mm_mul_ps(rsq22,rinv22);
683
684             /* EWALD ELECTROSTATICS */
685
686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
687             ewrt             = _mm_mul_ps(r22,ewtabscale);
688             ewitab           = _mm_cvttps_epi32(ewrt);
689             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
690             ewitab           = _mm_slli_epi32(ewitab,2);
691             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
692             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
693             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
694             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
695             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
696             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
697             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
698             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
699             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
700
701             /* Update potential sum for this i atom from the interaction with this j atom. */
702             velecsum         = _mm_add_ps(velecsum,velec);
703
704             fscal            = felec;
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm_mul_ps(fscal,dx22);
708             ty               = _mm_mul_ps(fscal,dy22);
709             tz               = _mm_mul_ps(fscal,dz22);
710
711             /* Update vectorial force */
712             fix2             = _mm_add_ps(fix2,tx);
713             fiy2             = _mm_add_ps(fiy2,ty);
714             fiz2             = _mm_add_ps(fiz2,tz);
715
716             fjx2             = _mm_add_ps(fjx2,tx);
717             fjy2             = _mm_add_ps(fjy2,ty);
718             fjz2             = _mm_add_ps(fjz2,tz);
719             
720             fjptrA             = f+j_coord_offsetA;
721             fjptrB             = f+j_coord_offsetB;
722             fjptrC             = f+j_coord_offsetC;
723             fjptrD             = f+j_coord_offsetD;
724
725             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
726                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
727
728             /* Inner loop uses 403 flops */
729         }
730
731         if(jidx<j_index_end)
732         {
733
734             /* Get j neighbor index, and coordinate index */
735             jnrlistA         = jjnr[jidx];
736             jnrlistB         = jjnr[jidx+1];
737             jnrlistC         = jjnr[jidx+2];
738             jnrlistD         = jjnr[jidx+3];
739             /* Sign of each element will be negative for non-real atoms.
740              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
741              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
742              */
743             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
744             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
745             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
746             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
747             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
748             j_coord_offsetA  = DIM*jnrA;
749             j_coord_offsetB  = DIM*jnrB;
750             j_coord_offsetC  = DIM*jnrC;
751             j_coord_offsetD  = DIM*jnrD;
752
753             /* load j atom coordinates */
754             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
755                                               x+j_coord_offsetC,x+j_coord_offsetD,
756                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
757
758             /* Calculate displacement vector */
759             dx00             = _mm_sub_ps(ix0,jx0);
760             dy00             = _mm_sub_ps(iy0,jy0);
761             dz00             = _mm_sub_ps(iz0,jz0);
762             dx01             = _mm_sub_ps(ix0,jx1);
763             dy01             = _mm_sub_ps(iy0,jy1);
764             dz01             = _mm_sub_ps(iz0,jz1);
765             dx02             = _mm_sub_ps(ix0,jx2);
766             dy02             = _mm_sub_ps(iy0,jy2);
767             dz02             = _mm_sub_ps(iz0,jz2);
768             dx10             = _mm_sub_ps(ix1,jx0);
769             dy10             = _mm_sub_ps(iy1,jy0);
770             dz10             = _mm_sub_ps(iz1,jz0);
771             dx11             = _mm_sub_ps(ix1,jx1);
772             dy11             = _mm_sub_ps(iy1,jy1);
773             dz11             = _mm_sub_ps(iz1,jz1);
774             dx12             = _mm_sub_ps(ix1,jx2);
775             dy12             = _mm_sub_ps(iy1,jy2);
776             dz12             = _mm_sub_ps(iz1,jz2);
777             dx20             = _mm_sub_ps(ix2,jx0);
778             dy20             = _mm_sub_ps(iy2,jy0);
779             dz20             = _mm_sub_ps(iz2,jz0);
780             dx21             = _mm_sub_ps(ix2,jx1);
781             dy21             = _mm_sub_ps(iy2,jy1);
782             dz21             = _mm_sub_ps(iz2,jz1);
783             dx22             = _mm_sub_ps(ix2,jx2);
784             dy22             = _mm_sub_ps(iy2,jy2);
785             dz22             = _mm_sub_ps(iz2,jz2);
786
787             /* Calculate squared distance and things based on it */
788             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
789             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
790             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
791             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
792             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
793             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
794             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
795             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
796             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
797
798             rinv00           = sse2_invsqrt_f(rsq00);
799             rinv01           = sse2_invsqrt_f(rsq01);
800             rinv02           = sse2_invsqrt_f(rsq02);
801             rinv10           = sse2_invsqrt_f(rsq10);
802             rinv11           = sse2_invsqrt_f(rsq11);
803             rinv12           = sse2_invsqrt_f(rsq12);
804             rinv20           = sse2_invsqrt_f(rsq20);
805             rinv21           = sse2_invsqrt_f(rsq21);
806             rinv22           = sse2_invsqrt_f(rsq22);
807
808             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
809             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
810             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
811             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
812             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
813             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
814             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
815             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
816             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
817
818             fjx0             = _mm_setzero_ps();
819             fjy0             = _mm_setzero_ps();
820             fjz0             = _mm_setzero_ps();
821             fjx1             = _mm_setzero_ps();
822             fjy1             = _mm_setzero_ps();
823             fjz1             = _mm_setzero_ps();
824             fjx2             = _mm_setzero_ps();
825             fjy2             = _mm_setzero_ps();
826             fjz2             = _mm_setzero_ps();
827
828             /**************************
829              * CALCULATE INTERACTIONS *
830              **************************/
831
832             r00              = _mm_mul_ps(rsq00,rinv00);
833             r00              = _mm_andnot_ps(dummy_mask,r00);
834
835             /* Calculate table index by multiplying r with table scale and truncate to integer */
836             rt               = _mm_mul_ps(r00,vftabscale);
837             vfitab           = _mm_cvttps_epi32(rt);
838             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
839             vfitab           = _mm_slli_epi32(vfitab,3);
840
841             /* EWALD ELECTROSTATICS */
842
843             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
844             ewrt             = _mm_mul_ps(r00,ewtabscale);
845             ewitab           = _mm_cvttps_epi32(ewrt);
846             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
847             ewitab           = _mm_slli_epi32(ewitab,2);
848             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
849             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
850             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
851             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
852             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
853             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
854             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
855             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
856             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
857
858             /* CUBIC SPLINE TABLE DISPERSION */
859             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
860             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
861             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
862             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
863             _MM_TRANSPOSE4_PS(Y,F,G,H);
864             Heps             = _mm_mul_ps(vfeps,H);
865             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
866             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
867             vvdw6            = _mm_mul_ps(c6_00,VV);
868             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
869             fvdw6            = _mm_mul_ps(c6_00,FF);
870
871             /* CUBIC SPLINE TABLE REPULSION */
872             vfitab           = _mm_add_epi32(vfitab,ifour);
873             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
874             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
875             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
876             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
877             _MM_TRANSPOSE4_PS(Y,F,G,H);
878             Heps             = _mm_mul_ps(vfeps,H);
879             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
880             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
881             vvdw12           = _mm_mul_ps(c12_00,VV);
882             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
883             fvdw12           = _mm_mul_ps(c12_00,FF);
884             vvdw             = _mm_add_ps(vvdw12,vvdw6);
885             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
886
887             /* Update potential sum for this i atom from the interaction with this j atom. */
888             velec            = _mm_andnot_ps(dummy_mask,velec);
889             velecsum         = _mm_add_ps(velecsum,velec);
890             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
891             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
892
893             fscal            = _mm_add_ps(felec,fvdw);
894
895             fscal            = _mm_andnot_ps(dummy_mask,fscal);
896
897             /* Calculate temporary vectorial force */
898             tx               = _mm_mul_ps(fscal,dx00);
899             ty               = _mm_mul_ps(fscal,dy00);
900             tz               = _mm_mul_ps(fscal,dz00);
901
902             /* Update vectorial force */
903             fix0             = _mm_add_ps(fix0,tx);
904             fiy0             = _mm_add_ps(fiy0,ty);
905             fiz0             = _mm_add_ps(fiz0,tz);
906
907             fjx0             = _mm_add_ps(fjx0,tx);
908             fjy0             = _mm_add_ps(fjy0,ty);
909             fjz0             = _mm_add_ps(fjz0,tz);
910             
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r01              = _mm_mul_ps(rsq01,rinv01);
916             r01              = _mm_andnot_ps(dummy_mask,r01);
917
918             /* EWALD ELECTROSTATICS */
919
920             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
921             ewrt             = _mm_mul_ps(r01,ewtabscale);
922             ewitab           = _mm_cvttps_epi32(ewrt);
923             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
924             ewitab           = _mm_slli_epi32(ewitab,2);
925             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
926             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
927             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
928             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
929             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
930             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
931             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
932             velec            = _mm_mul_ps(qq01,_mm_sub_ps(rinv01,velec));
933             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
934
935             /* Update potential sum for this i atom from the interaction with this j atom. */
936             velec            = _mm_andnot_ps(dummy_mask,velec);
937             velecsum         = _mm_add_ps(velecsum,velec);
938
939             fscal            = felec;
940
941             fscal            = _mm_andnot_ps(dummy_mask,fscal);
942
943             /* Calculate temporary vectorial force */
944             tx               = _mm_mul_ps(fscal,dx01);
945             ty               = _mm_mul_ps(fscal,dy01);
946             tz               = _mm_mul_ps(fscal,dz01);
947
948             /* Update vectorial force */
949             fix0             = _mm_add_ps(fix0,tx);
950             fiy0             = _mm_add_ps(fiy0,ty);
951             fiz0             = _mm_add_ps(fiz0,tz);
952
953             fjx1             = _mm_add_ps(fjx1,tx);
954             fjy1             = _mm_add_ps(fjy1,ty);
955             fjz1             = _mm_add_ps(fjz1,tz);
956             
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r02              = _mm_mul_ps(rsq02,rinv02);
962             r02              = _mm_andnot_ps(dummy_mask,r02);
963
964             /* EWALD ELECTROSTATICS */
965
966             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
967             ewrt             = _mm_mul_ps(r02,ewtabscale);
968             ewitab           = _mm_cvttps_epi32(ewrt);
969             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
970             ewitab           = _mm_slli_epi32(ewitab,2);
971             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
972             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
973             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
974             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
975             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
976             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
977             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
978             velec            = _mm_mul_ps(qq02,_mm_sub_ps(rinv02,velec));
979             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
980
981             /* Update potential sum for this i atom from the interaction with this j atom. */
982             velec            = _mm_andnot_ps(dummy_mask,velec);
983             velecsum         = _mm_add_ps(velecsum,velec);
984
985             fscal            = felec;
986
987             fscal            = _mm_andnot_ps(dummy_mask,fscal);
988
989             /* Calculate temporary vectorial force */
990             tx               = _mm_mul_ps(fscal,dx02);
991             ty               = _mm_mul_ps(fscal,dy02);
992             tz               = _mm_mul_ps(fscal,dz02);
993
994             /* Update vectorial force */
995             fix0             = _mm_add_ps(fix0,tx);
996             fiy0             = _mm_add_ps(fiy0,ty);
997             fiz0             = _mm_add_ps(fiz0,tz);
998
999             fjx2             = _mm_add_ps(fjx2,tx);
1000             fjy2             = _mm_add_ps(fjy2,ty);
1001             fjz2             = _mm_add_ps(fjz2,tz);
1002             
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r10              = _mm_mul_ps(rsq10,rinv10);
1008             r10              = _mm_andnot_ps(dummy_mask,r10);
1009
1010             /* EWALD ELECTROSTATICS */
1011
1012             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1013             ewrt             = _mm_mul_ps(r10,ewtabscale);
1014             ewitab           = _mm_cvttps_epi32(ewrt);
1015             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1016             ewitab           = _mm_slli_epi32(ewitab,2);
1017             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1018             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1019             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1020             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1021             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1022             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1023             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1024             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1025             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1026
1027             /* Update potential sum for this i atom from the interaction with this j atom. */
1028             velec            = _mm_andnot_ps(dummy_mask,velec);
1029             velecsum         = _mm_add_ps(velecsum,velec);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm_mul_ps(fscal,dx10);
1037             ty               = _mm_mul_ps(fscal,dy10);
1038             tz               = _mm_mul_ps(fscal,dz10);
1039
1040             /* Update vectorial force */
1041             fix1             = _mm_add_ps(fix1,tx);
1042             fiy1             = _mm_add_ps(fiy1,ty);
1043             fiz1             = _mm_add_ps(fiz1,tz);
1044
1045             fjx0             = _mm_add_ps(fjx0,tx);
1046             fjy0             = _mm_add_ps(fjy0,ty);
1047             fjz0             = _mm_add_ps(fjz0,tz);
1048             
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             r11              = _mm_mul_ps(rsq11,rinv11);
1054             r11              = _mm_andnot_ps(dummy_mask,r11);
1055
1056             /* EWALD ELECTROSTATICS */
1057
1058             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1059             ewrt             = _mm_mul_ps(r11,ewtabscale);
1060             ewitab           = _mm_cvttps_epi32(ewrt);
1061             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1062             ewitab           = _mm_slli_epi32(ewitab,2);
1063             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1064             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1065             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1066             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1067             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1068             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1069             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1070             velec            = _mm_mul_ps(qq11,_mm_sub_ps(rinv11,velec));
1071             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1072
1073             /* Update potential sum for this i atom from the interaction with this j atom. */
1074             velec            = _mm_andnot_ps(dummy_mask,velec);
1075             velecsum         = _mm_add_ps(velecsum,velec);
1076
1077             fscal            = felec;
1078
1079             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx11);
1083             ty               = _mm_mul_ps(fscal,dy11);
1084             tz               = _mm_mul_ps(fscal,dz11);
1085
1086             /* Update vectorial force */
1087             fix1             = _mm_add_ps(fix1,tx);
1088             fiy1             = _mm_add_ps(fiy1,ty);
1089             fiz1             = _mm_add_ps(fiz1,tz);
1090
1091             fjx1             = _mm_add_ps(fjx1,tx);
1092             fjy1             = _mm_add_ps(fjy1,ty);
1093             fjz1             = _mm_add_ps(fjz1,tz);
1094             
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r12              = _mm_mul_ps(rsq12,rinv12);
1100             r12              = _mm_andnot_ps(dummy_mask,r12);
1101
1102             /* EWALD ELECTROSTATICS */
1103
1104             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1105             ewrt             = _mm_mul_ps(r12,ewtabscale);
1106             ewitab           = _mm_cvttps_epi32(ewrt);
1107             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1108             ewitab           = _mm_slli_epi32(ewitab,2);
1109             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1110             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1111             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1112             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1113             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1114             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1115             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1116             velec            = _mm_mul_ps(qq12,_mm_sub_ps(rinv12,velec));
1117             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1118
1119             /* Update potential sum for this i atom from the interaction with this j atom. */
1120             velec            = _mm_andnot_ps(dummy_mask,velec);
1121             velecsum         = _mm_add_ps(velecsum,velec);
1122
1123             fscal            = felec;
1124
1125             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1126
1127             /* Calculate temporary vectorial force */
1128             tx               = _mm_mul_ps(fscal,dx12);
1129             ty               = _mm_mul_ps(fscal,dy12);
1130             tz               = _mm_mul_ps(fscal,dz12);
1131
1132             /* Update vectorial force */
1133             fix1             = _mm_add_ps(fix1,tx);
1134             fiy1             = _mm_add_ps(fiy1,ty);
1135             fiz1             = _mm_add_ps(fiz1,tz);
1136
1137             fjx2             = _mm_add_ps(fjx2,tx);
1138             fjy2             = _mm_add_ps(fjy2,ty);
1139             fjz2             = _mm_add_ps(fjz2,tz);
1140             
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             r20              = _mm_mul_ps(rsq20,rinv20);
1146             r20              = _mm_andnot_ps(dummy_mask,r20);
1147
1148             /* EWALD ELECTROSTATICS */
1149
1150             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1151             ewrt             = _mm_mul_ps(r20,ewtabscale);
1152             ewitab           = _mm_cvttps_epi32(ewrt);
1153             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1154             ewitab           = _mm_slli_epi32(ewitab,2);
1155             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1156             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1157             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1158             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1159             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1160             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1161             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1162             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1163             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1164
1165             /* Update potential sum for this i atom from the interaction with this j atom. */
1166             velec            = _mm_andnot_ps(dummy_mask,velec);
1167             velecsum         = _mm_add_ps(velecsum,velec);
1168
1169             fscal            = felec;
1170
1171             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1172
1173             /* Calculate temporary vectorial force */
1174             tx               = _mm_mul_ps(fscal,dx20);
1175             ty               = _mm_mul_ps(fscal,dy20);
1176             tz               = _mm_mul_ps(fscal,dz20);
1177
1178             /* Update vectorial force */
1179             fix2             = _mm_add_ps(fix2,tx);
1180             fiy2             = _mm_add_ps(fiy2,ty);
1181             fiz2             = _mm_add_ps(fiz2,tz);
1182
1183             fjx0             = _mm_add_ps(fjx0,tx);
1184             fjy0             = _mm_add_ps(fjy0,ty);
1185             fjz0             = _mm_add_ps(fjz0,tz);
1186             
1187             /**************************
1188              * CALCULATE INTERACTIONS *
1189              **************************/
1190
1191             r21              = _mm_mul_ps(rsq21,rinv21);
1192             r21              = _mm_andnot_ps(dummy_mask,r21);
1193
1194             /* EWALD ELECTROSTATICS */
1195
1196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1197             ewrt             = _mm_mul_ps(r21,ewtabscale);
1198             ewitab           = _mm_cvttps_epi32(ewrt);
1199             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1200             ewitab           = _mm_slli_epi32(ewitab,2);
1201             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1202             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1203             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1204             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1205             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1206             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1207             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1208             velec            = _mm_mul_ps(qq21,_mm_sub_ps(rinv21,velec));
1209             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1210
1211             /* Update potential sum for this i atom from the interaction with this j atom. */
1212             velec            = _mm_andnot_ps(dummy_mask,velec);
1213             velecsum         = _mm_add_ps(velecsum,velec);
1214
1215             fscal            = felec;
1216
1217             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1218
1219             /* Calculate temporary vectorial force */
1220             tx               = _mm_mul_ps(fscal,dx21);
1221             ty               = _mm_mul_ps(fscal,dy21);
1222             tz               = _mm_mul_ps(fscal,dz21);
1223
1224             /* Update vectorial force */
1225             fix2             = _mm_add_ps(fix2,tx);
1226             fiy2             = _mm_add_ps(fiy2,ty);
1227             fiz2             = _mm_add_ps(fiz2,tz);
1228
1229             fjx1             = _mm_add_ps(fjx1,tx);
1230             fjy1             = _mm_add_ps(fjy1,ty);
1231             fjz1             = _mm_add_ps(fjz1,tz);
1232             
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r22              = _mm_mul_ps(rsq22,rinv22);
1238             r22              = _mm_andnot_ps(dummy_mask,r22);
1239
1240             /* EWALD ELECTROSTATICS */
1241
1242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1243             ewrt             = _mm_mul_ps(r22,ewtabscale);
1244             ewitab           = _mm_cvttps_epi32(ewrt);
1245             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1246             ewitab           = _mm_slli_epi32(ewitab,2);
1247             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1248             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1249             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1250             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1251             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1252             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1253             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1254             velec            = _mm_mul_ps(qq22,_mm_sub_ps(rinv22,velec));
1255             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1256
1257             /* Update potential sum for this i atom from the interaction with this j atom. */
1258             velec            = _mm_andnot_ps(dummy_mask,velec);
1259             velecsum         = _mm_add_ps(velecsum,velec);
1260
1261             fscal            = felec;
1262
1263             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1264
1265             /* Calculate temporary vectorial force */
1266             tx               = _mm_mul_ps(fscal,dx22);
1267             ty               = _mm_mul_ps(fscal,dy22);
1268             tz               = _mm_mul_ps(fscal,dz22);
1269
1270             /* Update vectorial force */
1271             fix2             = _mm_add_ps(fix2,tx);
1272             fiy2             = _mm_add_ps(fiy2,ty);
1273             fiz2             = _mm_add_ps(fiz2,tz);
1274
1275             fjx2             = _mm_add_ps(fjx2,tx);
1276             fjy2             = _mm_add_ps(fjy2,ty);
1277             fjz2             = _mm_add_ps(fjz2,tz);
1278             
1279             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1280             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1281             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1282             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1283
1284             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1285                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1286
1287             /* Inner loop uses 412 flops */
1288         }
1289
1290         /* End of innermost loop */
1291
1292         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1293                                               f+i_coord_offset,fshift+i_shift_offset);
1294
1295         ggid                        = gid[iidx];
1296         /* Update potential energies */
1297         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1298         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1299
1300         /* Increment number of inner iterations */
1301         inneriter                  += j_index_end - j_index_start;
1302
1303         /* Outer loop uses 20 flops */
1304     }
1305
1306     /* Increment number of outer iterations */
1307     outeriter        += nri;
1308
1309     /* Update outer/inner flops */
1310
1311     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*412);
1312 }
1313 /*
1314  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse2_single
1315  * Electrostatics interaction: Ewald
1316  * VdW interaction:            CubicSplineTable
1317  * Geometry:                   Water3-Water3
1318  * Calculate force/pot:        Force
1319  */
1320 void
1321 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_sse2_single
1322                     (t_nblist                    * gmx_restrict       nlist,
1323                      rvec                        * gmx_restrict          xx,
1324                      rvec                        * gmx_restrict          ff,
1325                      struct t_forcerec           * gmx_restrict          fr,
1326                      t_mdatoms                   * gmx_restrict     mdatoms,
1327                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1328                      t_nrnb                      * gmx_restrict        nrnb)
1329 {
1330     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1331      * just 0 for non-waters.
1332      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1333      * jnr indices corresponding to data put in the four positions in the SIMD register.
1334      */
1335     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1336     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1337     int              jnrA,jnrB,jnrC,jnrD;
1338     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1339     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1340     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1341     real             rcutoff_scalar;
1342     real             *shiftvec,*fshift,*x,*f;
1343     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1344     real             scratch[4*DIM];
1345     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1346     int              vdwioffset0;
1347     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1348     int              vdwioffset1;
1349     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1350     int              vdwioffset2;
1351     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1352     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1353     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1354     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1355     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1356     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1357     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1358     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1359     __m128           dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1360     __m128           dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1361     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1362     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1363     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1364     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1365     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1366     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1367     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1368     real             *charge;
1369     int              nvdwtype;
1370     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1371     int              *vdwtype;
1372     real             *vdwparam;
1373     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1374     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1375     __m128i          vfitab;
1376     __m128i          ifour       = _mm_set1_epi32(4);
1377     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1378     real             *vftab;
1379     __m128i          ewitab;
1380     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1381     real             *ewtab;
1382     __m128           dummy_mask,cutoff_mask;
1383     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1384     __m128           one     = _mm_set1_ps(1.0);
1385     __m128           two     = _mm_set1_ps(2.0);
1386     x                = xx[0];
1387     f                = ff[0];
1388
1389     nri              = nlist->nri;
1390     iinr             = nlist->iinr;
1391     jindex           = nlist->jindex;
1392     jjnr             = nlist->jjnr;
1393     shiftidx         = nlist->shift;
1394     gid              = nlist->gid;
1395     shiftvec         = fr->shift_vec[0];
1396     fshift           = fr->fshift[0];
1397     facel            = _mm_set1_ps(fr->ic->epsfac);
1398     charge           = mdatoms->chargeA;
1399     nvdwtype         = fr->ntype;
1400     vdwparam         = fr->nbfp;
1401     vdwtype          = mdatoms->typeA;
1402
1403     vftab            = kernel_data->table_vdw->data;
1404     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
1405
1406     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1407     ewtab            = fr->ic->tabq_coul_F;
1408     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1409     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1410
1411     /* Setup water-specific parameters */
1412     inr              = nlist->iinr[0];
1413     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
1414     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1415     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1416     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1417
1418     jq0              = _mm_set1_ps(charge[inr+0]);
1419     jq1              = _mm_set1_ps(charge[inr+1]);
1420     jq2              = _mm_set1_ps(charge[inr+2]);
1421     vdwjidx0A        = 2*vdwtype[inr+0];
1422     qq00             = _mm_mul_ps(iq0,jq0);
1423     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1424     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1425     qq01             = _mm_mul_ps(iq0,jq1);
1426     qq02             = _mm_mul_ps(iq0,jq2);
1427     qq10             = _mm_mul_ps(iq1,jq0);
1428     qq11             = _mm_mul_ps(iq1,jq1);
1429     qq12             = _mm_mul_ps(iq1,jq2);
1430     qq20             = _mm_mul_ps(iq2,jq0);
1431     qq21             = _mm_mul_ps(iq2,jq1);
1432     qq22             = _mm_mul_ps(iq2,jq2);
1433
1434     /* Avoid stupid compiler warnings */
1435     jnrA = jnrB = jnrC = jnrD = 0;
1436     j_coord_offsetA = 0;
1437     j_coord_offsetB = 0;
1438     j_coord_offsetC = 0;
1439     j_coord_offsetD = 0;
1440
1441     outeriter        = 0;
1442     inneriter        = 0;
1443
1444     for(iidx=0;iidx<4*DIM;iidx++)
1445     {
1446         scratch[iidx] = 0.0;
1447     }  
1448
1449     /* Start outer loop over neighborlists */
1450     for(iidx=0; iidx<nri; iidx++)
1451     {
1452         /* Load shift vector for this list */
1453         i_shift_offset   = DIM*shiftidx[iidx];
1454
1455         /* Load limits for loop over neighbors */
1456         j_index_start    = jindex[iidx];
1457         j_index_end      = jindex[iidx+1];
1458
1459         /* Get outer coordinate index */
1460         inr              = iinr[iidx];
1461         i_coord_offset   = DIM*inr;
1462
1463         /* Load i particle coords and add shift vector */
1464         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1465                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1466         
1467         fix0             = _mm_setzero_ps();
1468         fiy0             = _mm_setzero_ps();
1469         fiz0             = _mm_setzero_ps();
1470         fix1             = _mm_setzero_ps();
1471         fiy1             = _mm_setzero_ps();
1472         fiz1             = _mm_setzero_ps();
1473         fix2             = _mm_setzero_ps();
1474         fiy2             = _mm_setzero_ps();
1475         fiz2             = _mm_setzero_ps();
1476
1477         /* Start inner kernel loop */
1478         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1479         {
1480
1481             /* Get j neighbor index, and coordinate index */
1482             jnrA             = jjnr[jidx];
1483             jnrB             = jjnr[jidx+1];
1484             jnrC             = jjnr[jidx+2];
1485             jnrD             = jjnr[jidx+3];
1486             j_coord_offsetA  = DIM*jnrA;
1487             j_coord_offsetB  = DIM*jnrB;
1488             j_coord_offsetC  = DIM*jnrC;
1489             j_coord_offsetD  = DIM*jnrD;
1490
1491             /* load j atom coordinates */
1492             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1493                                               x+j_coord_offsetC,x+j_coord_offsetD,
1494                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1495
1496             /* Calculate displacement vector */
1497             dx00             = _mm_sub_ps(ix0,jx0);
1498             dy00             = _mm_sub_ps(iy0,jy0);
1499             dz00             = _mm_sub_ps(iz0,jz0);
1500             dx01             = _mm_sub_ps(ix0,jx1);
1501             dy01             = _mm_sub_ps(iy0,jy1);
1502             dz01             = _mm_sub_ps(iz0,jz1);
1503             dx02             = _mm_sub_ps(ix0,jx2);
1504             dy02             = _mm_sub_ps(iy0,jy2);
1505             dz02             = _mm_sub_ps(iz0,jz2);
1506             dx10             = _mm_sub_ps(ix1,jx0);
1507             dy10             = _mm_sub_ps(iy1,jy0);
1508             dz10             = _mm_sub_ps(iz1,jz0);
1509             dx11             = _mm_sub_ps(ix1,jx1);
1510             dy11             = _mm_sub_ps(iy1,jy1);
1511             dz11             = _mm_sub_ps(iz1,jz1);
1512             dx12             = _mm_sub_ps(ix1,jx2);
1513             dy12             = _mm_sub_ps(iy1,jy2);
1514             dz12             = _mm_sub_ps(iz1,jz2);
1515             dx20             = _mm_sub_ps(ix2,jx0);
1516             dy20             = _mm_sub_ps(iy2,jy0);
1517             dz20             = _mm_sub_ps(iz2,jz0);
1518             dx21             = _mm_sub_ps(ix2,jx1);
1519             dy21             = _mm_sub_ps(iy2,jy1);
1520             dz21             = _mm_sub_ps(iz2,jz1);
1521             dx22             = _mm_sub_ps(ix2,jx2);
1522             dy22             = _mm_sub_ps(iy2,jy2);
1523             dz22             = _mm_sub_ps(iz2,jz2);
1524
1525             /* Calculate squared distance and things based on it */
1526             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1527             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1528             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1529             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1530             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1531             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1532             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1533             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1534             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1535
1536             rinv00           = sse2_invsqrt_f(rsq00);
1537             rinv01           = sse2_invsqrt_f(rsq01);
1538             rinv02           = sse2_invsqrt_f(rsq02);
1539             rinv10           = sse2_invsqrt_f(rsq10);
1540             rinv11           = sse2_invsqrt_f(rsq11);
1541             rinv12           = sse2_invsqrt_f(rsq12);
1542             rinv20           = sse2_invsqrt_f(rsq20);
1543             rinv21           = sse2_invsqrt_f(rsq21);
1544             rinv22           = sse2_invsqrt_f(rsq22);
1545
1546             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1547             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
1548             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
1549             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1550             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1551             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1552             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1553             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1554             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1555
1556             fjx0             = _mm_setzero_ps();
1557             fjy0             = _mm_setzero_ps();
1558             fjz0             = _mm_setzero_ps();
1559             fjx1             = _mm_setzero_ps();
1560             fjy1             = _mm_setzero_ps();
1561             fjz1             = _mm_setzero_ps();
1562             fjx2             = _mm_setzero_ps();
1563             fjy2             = _mm_setzero_ps();
1564             fjz2             = _mm_setzero_ps();
1565
1566             /**************************
1567              * CALCULATE INTERACTIONS *
1568              **************************/
1569
1570             r00              = _mm_mul_ps(rsq00,rinv00);
1571
1572             /* Calculate table index by multiplying r with table scale and truncate to integer */
1573             rt               = _mm_mul_ps(r00,vftabscale);
1574             vfitab           = _mm_cvttps_epi32(rt);
1575             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1576             vfitab           = _mm_slli_epi32(vfitab,3);
1577
1578             /* EWALD ELECTROSTATICS */
1579
1580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1581             ewrt             = _mm_mul_ps(r00,ewtabscale);
1582             ewitab           = _mm_cvttps_epi32(ewrt);
1583             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1584             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1585                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1586                                          &ewtabF,&ewtabFn);
1587             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1588             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1589
1590             /* CUBIC SPLINE TABLE DISPERSION */
1591             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1592             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1593             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1594             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1595             _MM_TRANSPOSE4_PS(Y,F,G,H);
1596             Heps             = _mm_mul_ps(vfeps,H);
1597             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1598             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1599             fvdw6            = _mm_mul_ps(c6_00,FF);
1600
1601             /* CUBIC SPLINE TABLE REPULSION */
1602             vfitab           = _mm_add_epi32(vfitab,ifour);
1603             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1604             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1605             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1606             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1607             _MM_TRANSPOSE4_PS(Y,F,G,H);
1608             Heps             = _mm_mul_ps(vfeps,H);
1609             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1610             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1611             fvdw12           = _mm_mul_ps(c12_00,FF);
1612             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1613
1614             fscal            = _mm_add_ps(felec,fvdw);
1615
1616             /* Calculate temporary vectorial force */
1617             tx               = _mm_mul_ps(fscal,dx00);
1618             ty               = _mm_mul_ps(fscal,dy00);
1619             tz               = _mm_mul_ps(fscal,dz00);
1620
1621             /* Update vectorial force */
1622             fix0             = _mm_add_ps(fix0,tx);
1623             fiy0             = _mm_add_ps(fiy0,ty);
1624             fiz0             = _mm_add_ps(fiz0,tz);
1625
1626             fjx0             = _mm_add_ps(fjx0,tx);
1627             fjy0             = _mm_add_ps(fjy0,ty);
1628             fjz0             = _mm_add_ps(fjz0,tz);
1629             
1630             /**************************
1631              * CALCULATE INTERACTIONS *
1632              **************************/
1633
1634             r01              = _mm_mul_ps(rsq01,rinv01);
1635
1636             /* EWALD ELECTROSTATICS */
1637
1638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1639             ewrt             = _mm_mul_ps(r01,ewtabscale);
1640             ewitab           = _mm_cvttps_epi32(ewrt);
1641             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1642             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1643                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1644                                          &ewtabF,&ewtabFn);
1645             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1646             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
1647
1648             fscal            = felec;
1649
1650             /* Calculate temporary vectorial force */
1651             tx               = _mm_mul_ps(fscal,dx01);
1652             ty               = _mm_mul_ps(fscal,dy01);
1653             tz               = _mm_mul_ps(fscal,dz01);
1654
1655             /* Update vectorial force */
1656             fix0             = _mm_add_ps(fix0,tx);
1657             fiy0             = _mm_add_ps(fiy0,ty);
1658             fiz0             = _mm_add_ps(fiz0,tz);
1659
1660             fjx1             = _mm_add_ps(fjx1,tx);
1661             fjy1             = _mm_add_ps(fjy1,ty);
1662             fjz1             = _mm_add_ps(fjz1,tz);
1663             
1664             /**************************
1665              * CALCULATE INTERACTIONS *
1666              **************************/
1667
1668             r02              = _mm_mul_ps(rsq02,rinv02);
1669
1670             /* EWALD ELECTROSTATICS */
1671
1672             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1673             ewrt             = _mm_mul_ps(r02,ewtabscale);
1674             ewitab           = _mm_cvttps_epi32(ewrt);
1675             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1676             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1677                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1678                                          &ewtabF,&ewtabFn);
1679             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1680             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
1681
1682             fscal            = felec;
1683
1684             /* Calculate temporary vectorial force */
1685             tx               = _mm_mul_ps(fscal,dx02);
1686             ty               = _mm_mul_ps(fscal,dy02);
1687             tz               = _mm_mul_ps(fscal,dz02);
1688
1689             /* Update vectorial force */
1690             fix0             = _mm_add_ps(fix0,tx);
1691             fiy0             = _mm_add_ps(fiy0,ty);
1692             fiz0             = _mm_add_ps(fiz0,tz);
1693
1694             fjx2             = _mm_add_ps(fjx2,tx);
1695             fjy2             = _mm_add_ps(fjy2,ty);
1696             fjz2             = _mm_add_ps(fjz2,tz);
1697             
1698             /**************************
1699              * CALCULATE INTERACTIONS *
1700              **************************/
1701
1702             r10              = _mm_mul_ps(rsq10,rinv10);
1703
1704             /* EWALD ELECTROSTATICS */
1705
1706             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1707             ewrt             = _mm_mul_ps(r10,ewtabscale);
1708             ewitab           = _mm_cvttps_epi32(ewrt);
1709             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1710             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1711                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1712                                          &ewtabF,&ewtabFn);
1713             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1714             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1715
1716             fscal            = felec;
1717
1718             /* Calculate temporary vectorial force */
1719             tx               = _mm_mul_ps(fscal,dx10);
1720             ty               = _mm_mul_ps(fscal,dy10);
1721             tz               = _mm_mul_ps(fscal,dz10);
1722
1723             /* Update vectorial force */
1724             fix1             = _mm_add_ps(fix1,tx);
1725             fiy1             = _mm_add_ps(fiy1,ty);
1726             fiz1             = _mm_add_ps(fiz1,tz);
1727
1728             fjx0             = _mm_add_ps(fjx0,tx);
1729             fjy0             = _mm_add_ps(fjy0,ty);
1730             fjz0             = _mm_add_ps(fjz0,tz);
1731             
1732             /**************************
1733              * CALCULATE INTERACTIONS *
1734              **************************/
1735
1736             r11              = _mm_mul_ps(rsq11,rinv11);
1737
1738             /* EWALD ELECTROSTATICS */
1739
1740             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1741             ewrt             = _mm_mul_ps(r11,ewtabscale);
1742             ewitab           = _mm_cvttps_epi32(ewrt);
1743             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1744             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1745                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1746                                          &ewtabF,&ewtabFn);
1747             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1748             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1749
1750             fscal            = felec;
1751
1752             /* Calculate temporary vectorial force */
1753             tx               = _mm_mul_ps(fscal,dx11);
1754             ty               = _mm_mul_ps(fscal,dy11);
1755             tz               = _mm_mul_ps(fscal,dz11);
1756
1757             /* Update vectorial force */
1758             fix1             = _mm_add_ps(fix1,tx);
1759             fiy1             = _mm_add_ps(fiy1,ty);
1760             fiz1             = _mm_add_ps(fiz1,tz);
1761
1762             fjx1             = _mm_add_ps(fjx1,tx);
1763             fjy1             = _mm_add_ps(fjy1,ty);
1764             fjz1             = _mm_add_ps(fjz1,tz);
1765             
1766             /**************************
1767              * CALCULATE INTERACTIONS *
1768              **************************/
1769
1770             r12              = _mm_mul_ps(rsq12,rinv12);
1771
1772             /* EWALD ELECTROSTATICS */
1773
1774             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1775             ewrt             = _mm_mul_ps(r12,ewtabscale);
1776             ewitab           = _mm_cvttps_epi32(ewrt);
1777             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1778             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1779                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1780                                          &ewtabF,&ewtabFn);
1781             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1782             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1783
1784             fscal            = felec;
1785
1786             /* Calculate temporary vectorial force */
1787             tx               = _mm_mul_ps(fscal,dx12);
1788             ty               = _mm_mul_ps(fscal,dy12);
1789             tz               = _mm_mul_ps(fscal,dz12);
1790
1791             /* Update vectorial force */
1792             fix1             = _mm_add_ps(fix1,tx);
1793             fiy1             = _mm_add_ps(fiy1,ty);
1794             fiz1             = _mm_add_ps(fiz1,tz);
1795
1796             fjx2             = _mm_add_ps(fjx2,tx);
1797             fjy2             = _mm_add_ps(fjy2,ty);
1798             fjz2             = _mm_add_ps(fjz2,tz);
1799             
1800             /**************************
1801              * CALCULATE INTERACTIONS *
1802              **************************/
1803
1804             r20              = _mm_mul_ps(rsq20,rinv20);
1805
1806             /* EWALD ELECTROSTATICS */
1807
1808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1809             ewrt             = _mm_mul_ps(r20,ewtabscale);
1810             ewitab           = _mm_cvttps_epi32(ewrt);
1811             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1812             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1813                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1814                                          &ewtabF,&ewtabFn);
1815             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1816             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1817
1818             fscal            = felec;
1819
1820             /* Calculate temporary vectorial force */
1821             tx               = _mm_mul_ps(fscal,dx20);
1822             ty               = _mm_mul_ps(fscal,dy20);
1823             tz               = _mm_mul_ps(fscal,dz20);
1824
1825             /* Update vectorial force */
1826             fix2             = _mm_add_ps(fix2,tx);
1827             fiy2             = _mm_add_ps(fiy2,ty);
1828             fiz2             = _mm_add_ps(fiz2,tz);
1829
1830             fjx0             = _mm_add_ps(fjx0,tx);
1831             fjy0             = _mm_add_ps(fjy0,ty);
1832             fjz0             = _mm_add_ps(fjz0,tz);
1833             
1834             /**************************
1835              * CALCULATE INTERACTIONS *
1836              **************************/
1837
1838             r21              = _mm_mul_ps(rsq21,rinv21);
1839
1840             /* EWALD ELECTROSTATICS */
1841
1842             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1843             ewrt             = _mm_mul_ps(r21,ewtabscale);
1844             ewitab           = _mm_cvttps_epi32(ewrt);
1845             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1846             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1847                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1848                                          &ewtabF,&ewtabFn);
1849             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1850             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1851
1852             fscal            = felec;
1853
1854             /* Calculate temporary vectorial force */
1855             tx               = _mm_mul_ps(fscal,dx21);
1856             ty               = _mm_mul_ps(fscal,dy21);
1857             tz               = _mm_mul_ps(fscal,dz21);
1858
1859             /* Update vectorial force */
1860             fix2             = _mm_add_ps(fix2,tx);
1861             fiy2             = _mm_add_ps(fiy2,ty);
1862             fiz2             = _mm_add_ps(fiz2,tz);
1863
1864             fjx1             = _mm_add_ps(fjx1,tx);
1865             fjy1             = _mm_add_ps(fjy1,ty);
1866             fjz1             = _mm_add_ps(fjz1,tz);
1867             
1868             /**************************
1869              * CALCULATE INTERACTIONS *
1870              **************************/
1871
1872             r22              = _mm_mul_ps(rsq22,rinv22);
1873
1874             /* EWALD ELECTROSTATICS */
1875
1876             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1877             ewrt             = _mm_mul_ps(r22,ewtabscale);
1878             ewitab           = _mm_cvttps_epi32(ewrt);
1879             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1880             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1881                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1882                                          &ewtabF,&ewtabFn);
1883             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1884             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1885
1886             fscal            = felec;
1887
1888             /* Calculate temporary vectorial force */
1889             tx               = _mm_mul_ps(fscal,dx22);
1890             ty               = _mm_mul_ps(fscal,dy22);
1891             tz               = _mm_mul_ps(fscal,dz22);
1892
1893             /* Update vectorial force */
1894             fix2             = _mm_add_ps(fix2,tx);
1895             fiy2             = _mm_add_ps(fiy2,ty);
1896             fiz2             = _mm_add_ps(fiz2,tz);
1897
1898             fjx2             = _mm_add_ps(fjx2,tx);
1899             fjy2             = _mm_add_ps(fjy2,ty);
1900             fjz2             = _mm_add_ps(fjz2,tz);
1901             
1902             fjptrA             = f+j_coord_offsetA;
1903             fjptrB             = f+j_coord_offsetB;
1904             fjptrC             = f+j_coord_offsetC;
1905             fjptrD             = f+j_coord_offsetD;
1906
1907             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1908                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1909
1910             /* Inner loop uses 350 flops */
1911         }
1912
1913         if(jidx<j_index_end)
1914         {
1915
1916             /* Get j neighbor index, and coordinate index */
1917             jnrlistA         = jjnr[jidx];
1918             jnrlistB         = jjnr[jidx+1];
1919             jnrlistC         = jjnr[jidx+2];
1920             jnrlistD         = jjnr[jidx+3];
1921             /* Sign of each element will be negative for non-real atoms.
1922              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1923              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1924              */
1925             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1926             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1927             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1928             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1929             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1930             j_coord_offsetA  = DIM*jnrA;
1931             j_coord_offsetB  = DIM*jnrB;
1932             j_coord_offsetC  = DIM*jnrC;
1933             j_coord_offsetD  = DIM*jnrD;
1934
1935             /* load j atom coordinates */
1936             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1937                                               x+j_coord_offsetC,x+j_coord_offsetD,
1938                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1939
1940             /* Calculate displacement vector */
1941             dx00             = _mm_sub_ps(ix0,jx0);
1942             dy00             = _mm_sub_ps(iy0,jy0);
1943             dz00             = _mm_sub_ps(iz0,jz0);
1944             dx01             = _mm_sub_ps(ix0,jx1);
1945             dy01             = _mm_sub_ps(iy0,jy1);
1946             dz01             = _mm_sub_ps(iz0,jz1);
1947             dx02             = _mm_sub_ps(ix0,jx2);
1948             dy02             = _mm_sub_ps(iy0,jy2);
1949             dz02             = _mm_sub_ps(iz0,jz2);
1950             dx10             = _mm_sub_ps(ix1,jx0);
1951             dy10             = _mm_sub_ps(iy1,jy0);
1952             dz10             = _mm_sub_ps(iz1,jz0);
1953             dx11             = _mm_sub_ps(ix1,jx1);
1954             dy11             = _mm_sub_ps(iy1,jy1);
1955             dz11             = _mm_sub_ps(iz1,jz1);
1956             dx12             = _mm_sub_ps(ix1,jx2);
1957             dy12             = _mm_sub_ps(iy1,jy2);
1958             dz12             = _mm_sub_ps(iz1,jz2);
1959             dx20             = _mm_sub_ps(ix2,jx0);
1960             dy20             = _mm_sub_ps(iy2,jy0);
1961             dz20             = _mm_sub_ps(iz2,jz0);
1962             dx21             = _mm_sub_ps(ix2,jx1);
1963             dy21             = _mm_sub_ps(iy2,jy1);
1964             dz21             = _mm_sub_ps(iz2,jz1);
1965             dx22             = _mm_sub_ps(ix2,jx2);
1966             dy22             = _mm_sub_ps(iy2,jy2);
1967             dz22             = _mm_sub_ps(iz2,jz2);
1968
1969             /* Calculate squared distance and things based on it */
1970             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1971             rsq01            = gmx_mm_calc_rsq_ps(dx01,dy01,dz01);
1972             rsq02            = gmx_mm_calc_rsq_ps(dx02,dy02,dz02);
1973             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1974             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1975             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1976             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1977             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1978             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1979
1980             rinv00           = sse2_invsqrt_f(rsq00);
1981             rinv01           = sse2_invsqrt_f(rsq01);
1982             rinv02           = sse2_invsqrt_f(rsq02);
1983             rinv10           = sse2_invsqrt_f(rsq10);
1984             rinv11           = sse2_invsqrt_f(rsq11);
1985             rinv12           = sse2_invsqrt_f(rsq12);
1986             rinv20           = sse2_invsqrt_f(rsq20);
1987             rinv21           = sse2_invsqrt_f(rsq21);
1988             rinv22           = sse2_invsqrt_f(rsq22);
1989
1990             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1991             rinvsq01         = _mm_mul_ps(rinv01,rinv01);
1992             rinvsq02         = _mm_mul_ps(rinv02,rinv02);
1993             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1994             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1995             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1996             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1997             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1998             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1999
2000             fjx0             = _mm_setzero_ps();
2001             fjy0             = _mm_setzero_ps();
2002             fjz0             = _mm_setzero_ps();
2003             fjx1             = _mm_setzero_ps();
2004             fjy1             = _mm_setzero_ps();
2005             fjz1             = _mm_setzero_ps();
2006             fjx2             = _mm_setzero_ps();
2007             fjy2             = _mm_setzero_ps();
2008             fjz2             = _mm_setzero_ps();
2009
2010             /**************************
2011              * CALCULATE INTERACTIONS *
2012              **************************/
2013
2014             r00              = _mm_mul_ps(rsq00,rinv00);
2015             r00              = _mm_andnot_ps(dummy_mask,r00);
2016
2017             /* Calculate table index by multiplying r with table scale and truncate to integer */
2018             rt               = _mm_mul_ps(r00,vftabscale);
2019             vfitab           = _mm_cvttps_epi32(rt);
2020             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
2021             vfitab           = _mm_slli_epi32(vfitab,3);
2022
2023             /* EWALD ELECTROSTATICS */
2024
2025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2026             ewrt             = _mm_mul_ps(r00,ewtabscale);
2027             ewitab           = _mm_cvttps_epi32(ewrt);
2028             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2029             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2030                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2031                                          &ewtabF,&ewtabFn);
2032             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2033             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
2034
2035             /* CUBIC SPLINE TABLE DISPERSION */
2036             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
2037             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
2038             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
2039             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
2040             _MM_TRANSPOSE4_PS(Y,F,G,H);
2041             Heps             = _mm_mul_ps(vfeps,H);
2042             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
2043             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
2044             fvdw6            = _mm_mul_ps(c6_00,FF);
2045
2046             /* CUBIC SPLINE TABLE REPULSION */
2047             vfitab           = _mm_add_epi32(vfitab,ifour);
2048             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
2049             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
2050             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
2051             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
2052             _MM_TRANSPOSE4_PS(Y,F,G,H);
2053             Heps             = _mm_mul_ps(vfeps,H);
2054             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
2055             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
2056             fvdw12           = _mm_mul_ps(c12_00,FF);
2057             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
2058
2059             fscal            = _mm_add_ps(felec,fvdw);
2060
2061             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2062
2063             /* Calculate temporary vectorial force */
2064             tx               = _mm_mul_ps(fscal,dx00);
2065             ty               = _mm_mul_ps(fscal,dy00);
2066             tz               = _mm_mul_ps(fscal,dz00);
2067
2068             /* Update vectorial force */
2069             fix0             = _mm_add_ps(fix0,tx);
2070             fiy0             = _mm_add_ps(fiy0,ty);
2071             fiz0             = _mm_add_ps(fiz0,tz);
2072
2073             fjx0             = _mm_add_ps(fjx0,tx);
2074             fjy0             = _mm_add_ps(fjy0,ty);
2075             fjz0             = _mm_add_ps(fjz0,tz);
2076             
2077             /**************************
2078              * CALCULATE INTERACTIONS *
2079              **************************/
2080
2081             r01              = _mm_mul_ps(rsq01,rinv01);
2082             r01              = _mm_andnot_ps(dummy_mask,r01);
2083
2084             /* EWALD ELECTROSTATICS */
2085
2086             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2087             ewrt             = _mm_mul_ps(r01,ewtabscale);
2088             ewitab           = _mm_cvttps_epi32(ewrt);
2089             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2090             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2091                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2092                                          &ewtabF,&ewtabFn);
2093             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2094             felec            = _mm_mul_ps(_mm_mul_ps(qq01,rinv01),_mm_sub_ps(rinvsq01,felec));
2095
2096             fscal            = felec;
2097
2098             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2099
2100             /* Calculate temporary vectorial force */
2101             tx               = _mm_mul_ps(fscal,dx01);
2102             ty               = _mm_mul_ps(fscal,dy01);
2103             tz               = _mm_mul_ps(fscal,dz01);
2104
2105             /* Update vectorial force */
2106             fix0             = _mm_add_ps(fix0,tx);
2107             fiy0             = _mm_add_ps(fiy0,ty);
2108             fiz0             = _mm_add_ps(fiz0,tz);
2109
2110             fjx1             = _mm_add_ps(fjx1,tx);
2111             fjy1             = _mm_add_ps(fjy1,ty);
2112             fjz1             = _mm_add_ps(fjz1,tz);
2113             
2114             /**************************
2115              * CALCULATE INTERACTIONS *
2116              **************************/
2117
2118             r02              = _mm_mul_ps(rsq02,rinv02);
2119             r02              = _mm_andnot_ps(dummy_mask,r02);
2120
2121             /* EWALD ELECTROSTATICS */
2122
2123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2124             ewrt             = _mm_mul_ps(r02,ewtabscale);
2125             ewitab           = _mm_cvttps_epi32(ewrt);
2126             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2127             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2128                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2129                                          &ewtabF,&ewtabFn);
2130             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2131             felec            = _mm_mul_ps(_mm_mul_ps(qq02,rinv02),_mm_sub_ps(rinvsq02,felec));
2132
2133             fscal            = felec;
2134
2135             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2136
2137             /* Calculate temporary vectorial force */
2138             tx               = _mm_mul_ps(fscal,dx02);
2139             ty               = _mm_mul_ps(fscal,dy02);
2140             tz               = _mm_mul_ps(fscal,dz02);
2141
2142             /* Update vectorial force */
2143             fix0             = _mm_add_ps(fix0,tx);
2144             fiy0             = _mm_add_ps(fiy0,ty);
2145             fiz0             = _mm_add_ps(fiz0,tz);
2146
2147             fjx2             = _mm_add_ps(fjx2,tx);
2148             fjy2             = _mm_add_ps(fjy2,ty);
2149             fjz2             = _mm_add_ps(fjz2,tz);
2150             
2151             /**************************
2152              * CALCULATE INTERACTIONS *
2153              **************************/
2154
2155             r10              = _mm_mul_ps(rsq10,rinv10);
2156             r10              = _mm_andnot_ps(dummy_mask,r10);
2157
2158             /* EWALD ELECTROSTATICS */
2159
2160             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2161             ewrt             = _mm_mul_ps(r10,ewtabscale);
2162             ewitab           = _mm_cvttps_epi32(ewrt);
2163             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2164             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2165                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2166                                          &ewtabF,&ewtabFn);
2167             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2168             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
2169
2170             fscal            = felec;
2171
2172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2173
2174             /* Calculate temporary vectorial force */
2175             tx               = _mm_mul_ps(fscal,dx10);
2176             ty               = _mm_mul_ps(fscal,dy10);
2177             tz               = _mm_mul_ps(fscal,dz10);
2178
2179             /* Update vectorial force */
2180             fix1             = _mm_add_ps(fix1,tx);
2181             fiy1             = _mm_add_ps(fiy1,ty);
2182             fiz1             = _mm_add_ps(fiz1,tz);
2183
2184             fjx0             = _mm_add_ps(fjx0,tx);
2185             fjy0             = _mm_add_ps(fjy0,ty);
2186             fjz0             = _mm_add_ps(fjz0,tz);
2187             
2188             /**************************
2189              * CALCULATE INTERACTIONS *
2190              **************************/
2191
2192             r11              = _mm_mul_ps(rsq11,rinv11);
2193             r11              = _mm_andnot_ps(dummy_mask,r11);
2194
2195             /* EWALD ELECTROSTATICS */
2196
2197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2198             ewrt             = _mm_mul_ps(r11,ewtabscale);
2199             ewitab           = _mm_cvttps_epi32(ewrt);
2200             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2201             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2202                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2203                                          &ewtabF,&ewtabFn);
2204             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2205             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2206
2207             fscal            = felec;
2208
2209             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2210
2211             /* Calculate temporary vectorial force */
2212             tx               = _mm_mul_ps(fscal,dx11);
2213             ty               = _mm_mul_ps(fscal,dy11);
2214             tz               = _mm_mul_ps(fscal,dz11);
2215
2216             /* Update vectorial force */
2217             fix1             = _mm_add_ps(fix1,tx);
2218             fiy1             = _mm_add_ps(fiy1,ty);
2219             fiz1             = _mm_add_ps(fiz1,tz);
2220
2221             fjx1             = _mm_add_ps(fjx1,tx);
2222             fjy1             = _mm_add_ps(fjy1,ty);
2223             fjz1             = _mm_add_ps(fjz1,tz);
2224             
2225             /**************************
2226              * CALCULATE INTERACTIONS *
2227              **************************/
2228
2229             r12              = _mm_mul_ps(rsq12,rinv12);
2230             r12              = _mm_andnot_ps(dummy_mask,r12);
2231
2232             /* EWALD ELECTROSTATICS */
2233
2234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2235             ewrt             = _mm_mul_ps(r12,ewtabscale);
2236             ewitab           = _mm_cvttps_epi32(ewrt);
2237             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2238             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2239                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2240                                          &ewtabF,&ewtabFn);
2241             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2242             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2243
2244             fscal            = felec;
2245
2246             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2247
2248             /* Calculate temporary vectorial force */
2249             tx               = _mm_mul_ps(fscal,dx12);
2250             ty               = _mm_mul_ps(fscal,dy12);
2251             tz               = _mm_mul_ps(fscal,dz12);
2252
2253             /* Update vectorial force */
2254             fix1             = _mm_add_ps(fix1,tx);
2255             fiy1             = _mm_add_ps(fiy1,ty);
2256             fiz1             = _mm_add_ps(fiz1,tz);
2257
2258             fjx2             = _mm_add_ps(fjx2,tx);
2259             fjy2             = _mm_add_ps(fjy2,ty);
2260             fjz2             = _mm_add_ps(fjz2,tz);
2261             
2262             /**************************
2263              * CALCULATE INTERACTIONS *
2264              **************************/
2265
2266             r20              = _mm_mul_ps(rsq20,rinv20);
2267             r20              = _mm_andnot_ps(dummy_mask,r20);
2268
2269             /* EWALD ELECTROSTATICS */
2270
2271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2272             ewrt             = _mm_mul_ps(r20,ewtabscale);
2273             ewitab           = _mm_cvttps_epi32(ewrt);
2274             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2275             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2276                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2277                                          &ewtabF,&ewtabFn);
2278             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2279             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
2280
2281             fscal            = felec;
2282
2283             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2284
2285             /* Calculate temporary vectorial force */
2286             tx               = _mm_mul_ps(fscal,dx20);
2287             ty               = _mm_mul_ps(fscal,dy20);
2288             tz               = _mm_mul_ps(fscal,dz20);
2289
2290             /* Update vectorial force */
2291             fix2             = _mm_add_ps(fix2,tx);
2292             fiy2             = _mm_add_ps(fiy2,ty);
2293             fiz2             = _mm_add_ps(fiz2,tz);
2294
2295             fjx0             = _mm_add_ps(fjx0,tx);
2296             fjy0             = _mm_add_ps(fjy0,ty);
2297             fjz0             = _mm_add_ps(fjz0,tz);
2298             
2299             /**************************
2300              * CALCULATE INTERACTIONS *
2301              **************************/
2302
2303             r21              = _mm_mul_ps(rsq21,rinv21);
2304             r21              = _mm_andnot_ps(dummy_mask,r21);
2305
2306             /* EWALD ELECTROSTATICS */
2307
2308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2309             ewrt             = _mm_mul_ps(r21,ewtabscale);
2310             ewitab           = _mm_cvttps_epi32(ewrt);
2311             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2312             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2313                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2314                                          &ewtabF,&ewtabFn);
2315             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2316             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2317
2318             fscal            = felec;
2319
2320             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2321
2322             /* Calculate temporary vectorial force */
2323             tx               = _mm_mul_ps(fscal,dx21);
2324             ty               = _mm_mul_ps(fscal,dy21);
2325             tz               = _mm_mul_ps(fscal,dz21);
2326
2327             /* Update vectorial force */
2328             fix2             = _mm_add_ps(fix2,tx);
2329             fiy2             = _mm_add_ps(fiy2,ty);
2330             fiz2             = _mm_add_ps(fiz2,tz);
2331
2332             fjx1             = _mm_add_ps(fjx1,tx);
2333             fjy1             = _mm_add_ps(fjy1,ty);
2334             fjz1             = _mm_add_ps(fjz1,tz);
2335             
2336             /**************************
2337              * CALCULATE INTERACTIONS *
2338              **************************/
2339
2340             r22              = _mm_mul_ps(rsq22,rinv22);
2341             r22              = _mm_andnot_ps(dummy_mask,r22);
2342
2343             /* EWALD ELECTROSTATICS */
2344
2345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2346             ewrt             = _mm_mul_ps(r22,ewtabscale);
2347             ewitab           = _mm_cvttps_epi32(ewrt);
2348             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2349             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2350                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2351                                          &ewtabF,&ewtabFn);
2352             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2353             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2354
2355             fscal            = felec;
2356
2357             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2358
2359             /* Calculate temporary vectorial force */
2360             tx               = _mm_mul_ps(fscal,dx22);
2361             ty               = _mm_mul_ps(fscal,dy22);
2362             tz               = _mm_mul_ps(fscal,dz22);
2363
2364             /* Update vectorial force */
2365             fix2             = _mm_add_ps(fix2,tx);
2366             fiy2             = _mm_add_ps(fiy2,ty);
2367             fiz2             = _mm_add_ps(fiz2,tz);
2368
2369             fjx2             = _mm_add_ps(fjx2,tx);
2370             fjy2             = _mm_add_ps(fjy2,ty);
2371             fjz2             = _mm_add_ps(fjz2,tz);
2372             
2373             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2374             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2375             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2376             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2377
2378             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2379                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2380
2381             /* Inner loop uses 359 flops */
2382         }
2383
2384         /* End of innermost loop */
2385
2386         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2387                                               f+i_coord_offset,fshift+i_shift_offset);
2388
2389         /* Increment number of inner iterations */
2390         inneriter                  += j_index_end - j_index_start;
2391
2392         /* Outer loop uses 18 flops */
2393     }
2394
2395     /* Increment number of outer iterations */
2396     outeriter        += nri;
2397
2398     /* Update outer/inner flops */
2399
2400     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*359);
2401 }