Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128i          ewitab;
107     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
141     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
142     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }  
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177         
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226
227             rinv00           = gmx_mm_invsqrt_ps(rsq00);
228             rinv10           = gmx_mm_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm_invsqrt_ps(rsq20);
230
231             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm_setzero_ps();
244             fjy0             = _mm_setzero_ps();
245             fjz0             = _mm_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             r00              = _mm_mul_ps(rsq00,rinv00);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq00             = _mm_mul_ps(iq0,jq0);
255             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,
257                                          vdwparam+vdwioffset0+vdwjidx0C,
258                                          vdwparam+vdwioffset0+vdwjidx0D,
259                                          &c6_00,&c12_00);
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = _mm_mul_ps(r00,vftabscale);
263             vfitab           = _mm_cvttps_epi32(rt);
264             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
265             vfitab           = _mm_slli_epi32(vfitab,3);
266
267             /* EWALD ELECTROSTATICS */
268
269             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
270             ewrt             = _mm_mul_ps(r00,ewtabscale);
271             ewitab           = _mm_cvttps_epi32(ewrt);
272             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
273             ewitab           = _mm_slli_epi32(ewitab,2);
274             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
275             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
276             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
277             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
278             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
279             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
280             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
281             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
282             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
283
284             /* CUBIC SPLINE TABLE DISPERSION */
285             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
286             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
287             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
288             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
289             _MM_TRANSPOSE4_PS(Y,F,G,H);
290             Heps             = _mm_mul_ps(vfeps,H);
291             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
292             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
293             vvdw6            = _mm_mul_ps(c6_00,VV);
294             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
295             fvdw6            = _mm_mul_ps(c6_00,FF);
296
297             /* CUBIC SPLINE TABLE REPULSION */
298             vfitab           = _mm_add_epi32(vfitab,ifour);
299             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
300             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
301             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
302             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
303             _MM_TRANSPOSE4_PS(Y,F,G,H);
304             Heps             = _mm_mul_ps(vfeps,H);
305             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
306             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
307             vvdw12           = _mm_mul_ps(c12_00,VV);
308             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
309             fvdw12           = _mm_mul_ps(c12_00,FF);
310             vvdw             = _mm_add_ps(vvdw12,vvdw6);
311             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm_add_ps(velecsum,velec);
315             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
316
317             fscal            = _mm_add_ps(felec,fvdw);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_ps(fscal,dx00);
321             ty               = _mm_mul_ps(fscal,dy00);
322             tz               = _mm_mul_ps(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm_add_ps(fix0,tx);
326             fiy0             = _mm_add_ps(fiy0,ty);
327             fiz0             = _mm_add_ps(fiz0,tz);
328
329             fjx0             = _mm_add_ps(fjx0,tx);
330             fjy0             = _mm_add_ps(fjy0,ty);
331             fjz0             = _mm_add_ps(fjz0,tz);
332             
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r10              = _mm_mul_ps(rsq10,rinv10);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq10             = _mm_mul_ps(iq1,jq0);
341
342             /* EWALD ELECTROSTATICS */
343
344             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
345             ewrt             = _mm_mul_ps(r10,ewtabscale);
346             ewitab           = _mm_cvttps_epi32(ewrt);
347             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
348             ewitab           = _mm_slli_epi32(ewitab,2);
349             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
350             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
351             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
352             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
353             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
354             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
355             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
356             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
357             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_ps(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx10);
366             ty               = _mm_mul_ps(fscal,dy10);
367             tz               = _mm_mul_ps(fscal,dz10);
368
369             /* Update vectorial force */
370             fix1             = _mm_add_ps(fix1,tx);
371             fiy1             = _mm_add_ps(fiy1,ty);
372             fiz1             = _mm_add_ps(fiz1,tz);
373
374             fjx0             = _mm_add_ps(fjx0,tx);
375             fjy0             = _mm_add_ps(fjy0,ty);
376             fjz0             = _mm_add_ps(fjz0,tz);
377             
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r20              = _mm_mul_ps(rsq20,rinv20);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq20             = _mm_mul_ps(iq2,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_ps(r20,ewtabscale);
391             ewitab           = _mm_cvttps_epi32(ewrt);
392             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
393             ewitab           = _mm_slli_epi32(ewitab,2);
394             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
395             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
396             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
397             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
398             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
399             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
400             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
401             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
402             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velecsum         = _mm_add_ps(velecsum,velec);
406
407             fscal            = felec;
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_ps(fscal,dx20);
411             ty               = _mm_mul_ps(fscal,dy20);
412             tz               = _mm_mul_ps(fscal,dz20);
413
414             /* Update vectorial force */
415             fix2             = _mm_add_ps(fix2,tx);
416             fiy2             = _mm_add_ps(fiy2,ty);
417             fiz2             = _mm_add_ps(fiz2,tz);
418
419             fjx0             = _mm_add_ps(fjx0,tx);
420             fjy0             = _mm_add_ps(fjy0,ty);
421             fjz0             = _mm_add_ps(fjz0,tz);
422             
423             fjptrA             = f+j_coord_offsetA;
424             fjptrB             = f+j_coord_offsetB;
425             fjptrC             = f+j_coord_offsetC;
426             fjptrD             = f+j_coord_offsetD;
427
428             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 157 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             /* Get j neighbor index, and coordinate index */
437             jnrlistA         = jjnr[jidx];
438             jnrlistB         = jjnr[jidx+1];
439             jnrlistC         = jjnr[jidx+2];
440             jnrlistD         = jjnr[jidx+3];
441             /* Sign of each element will be negative for non-real atoms.
442              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
443              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
444              */
445             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
446             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
447             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
448             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
449             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
450             j_coord_offsetA  = DIM*jnrA;
451             j_coord_offsetB  = DIM*jnrB;
452             j_coord_offsetC  = DIM*jnrC;
453             j_coord_offsetD  = DIM*jnrD;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                               x+j_coord_offsetC,x+j_coord_offsetD,
458                                               &jx0,&jy0,&jz0);
459
460             /* Calculate displacement vector */
461             dx00             = _mm_sub_ps(ix0,jx0);
462             dy00             = _mm_sub_ps(iy0,jy0);
463             dz00             = _mm_sub_ps(iz0,jz0);
464             dx10             = _mm_sub_ps(ix1,jx0);
465             dy10             = _mm_sub_ps(iy1,jy0);
466             dz10             = _mm_sub_ps(iz1,jz0);
467             dx20             = _mm_sub_ps(ix2,jx0);
468             dy20             = _mm_sub_ps(iy2,jy0);
469             dz20             = _mm_sub_ps(iz2,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
473             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
474             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
475
476             rinv00           = gmx_mm_invsqrt_ps(rsq00);
477             rinv10           = gmx_mm_invsqrt_ps(rsq10);
478             rinv20           = gmx_mm_invsqrt_ps(rsq20);
479
480             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
481             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
482             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
483
484             /* Load parameters for j particles */
485             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
486                                                               charge+jnrC+0,charge+jnrD+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489             vdwjidx0C        = 2*vdwtype[jnrC+0];
490             vdwjidx0D        = 2*vdwtype[jnrD+0];
491
492             fjx0             = _mm_setzero_ps();
493             fjy0             = _mm_setzero_ps();
494             fjz0             = _mm_setzero_ps();
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_ps(rsq00,rinv00);
501             r00              = _mm_andnot_ps(dummy_mask,r00);
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq00             = _mm_mul_ps(iq0,jq0);
505             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
506                                          vdwparam+vdwioffset0+vdwjidx0B,
507                                          vdwparam+vdwioffset0+vdwjidx0C,
508                                          vdwparam+vdwioffset0+vdwjidx0D,
509                                          &c6_00,&c12_00);
510
511             /* Calculate table index by multiplying r with table scale and truncate to integer */
512             rt               = _mm_mul_ps(r00,vftabscale);
513             vfitab           = _mm_cvttps_epi32(rt);
514             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
515             vfitab           = _mm_slli_epi32(vfitab,3);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
520             ewrt             = _mm_mul_ps(r00,ewtabscale);
521             ewitab           = _mm_cvttps_epi32(ewrt);
522             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
523             ewitab           = _mm_slli_epi32(ewitab,2);
524             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
525             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
526             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
527             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
528             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
529             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
530             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
531             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
532             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
533
534             /* CUBIC SPLINE TABLE DISPERSION */
535             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
536             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
537             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
538             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
539             _MM_TRANSPOSE4_PS(Y,F,G,H);
540             Heps             = _mm_mul_ps(vfeps,H);
541             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
542             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
543             vvdw6            = _mm_mul_ps(c6_00,VV);
544             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
545             fvdw6            = _mm_mul_ps(c6_00,FF);
546
547             /* CUBIC SPLINE TABLE REPULSION */
548             vfitab           = _mm_add_epi32(vfitab,ifour);
549             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
550             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
551             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
552             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
553             _MM_TRANSPOSE4_PS(Y,F,G,H);
554             Heps             = _mm_mul_ps(vfeps,H);
555             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
556             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
557             vvdw12           = _mm_mul_ps(c12_00,VV);
558             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
559             fvdw12           = _mm_mul_ps(c12_00,FF);
560             vvdw             = _mm_add_ps(vvdw12,vvdw6);
561             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm_andnot_ps(dummy_mask,velec);
565             velecsum         = _mm_add_ps(velecsum,velec);
566             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
567             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
568
569             fscal            = _mm_add_ps(felec,fvdw);
570
571             fscal            = _mm_andnot_ps(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm_mul_ps(fscal,dx00);
575             ty               = _mm_mul_ps(fscal,dy00);
576             tz               = _mm_mul_ps(fscal,dz00);
577
578             /* Update vectorial force */
579             fix0             = _mm_add_ps(fix0,tx);
580             fiy0             = _mm_add_ps(fiy0,ty);
581             fiz0             = _mm_add_ps(fiz0,tz);
582
583             fjx0             = _mm_add_ps(fjx0,tx);
584             fjy0             = _mm_add_ps(fjy0,ty);
585             fjz0             = _mm_add_ps(fjz0,tz);
586             
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r10              = _mm_mul_ps(rsq10,rinv10);
592             r10              = _mm_andnot_ps(dummy_mask,r10);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq10             = _mm_mul_ps(iq1,jq0);
596
597             /* EWALD ELECTROSTATICS */
598
599             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
600             ewrt             = _mm_mul_ps(r10,ewtabscale);
601             ewitab           = _mm_cvttps_epi32(ewrt);
602             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
603             ewitab           = _mm_slli_epi32(ewitab,2);
604             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
605             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
606             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
607             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
608             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
609             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
610             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
611             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
612             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_andnot_ps(dummy_mask,velec);
616             velecsum         = _mm_add_ps(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm_andnot_ps(dummy_mask,fscal);
621
622             /* Calculate temporary vectorial force */
623             tx               = _mm_mul_ps(fscal,dx10);
624             ty               = _mm_mul_ps(fscal,dy10);
625             tz               = _mm_mul_ps(fscal,dz10);
626
627             /* Update vectorial force */
628             fix1             = _mm_add_ps(fix1,tx);
629             fiy1             = _mm_add_ps(fiy1,ty);
630             fiz1             = _mm_add_ps(fiz1,tz);
631
632             fjx0             = _mm_add_ps(fjx0,tx);
633             fjy0             = _mm_add_ps(fjy0,ty);
634             fjz0             = _mm_add_ps(fjz0,tz);
635             
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             r20              = _mm_mul_ps(rsq20,rinv20);
641             r20              = _mm_andnot_ps(dummy_mask,r20);
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq20             = _mm_mul_ps(iq2,jq0);
645
646             /* EWALD ELECTROSTATICS */
647
648             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
649             ewrt             = _mm_mul_ps(r20,ewtabscale);
650             ewitab           = _mm_cvttps_epi32(ewrt);
651             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
652             ewitab           = _mm_slli_epi32(ewitab,2);
653             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
654             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
655             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
656             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
657             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
658             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
659             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
660             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
661             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
662
663             /* Update potential sum for this i atom from the interaction with this j atom. */
664             velec            = _mm_andnot_ps(dummy_mask,velec);
665             velecsum         = _mm_add_ps(velecsum,velec);
666
667             fscal            = felec;
668
669             fscal            = _mm_andnot_ps(dummy_mask,fscal);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm_mul_ps(fscal,dx20);
673             ty               = _mm_mul_ps(fscal,dy20);
674             tz               = _mm_mul_ps(fscal,dz20);
675
676             /* Update vectorial force */
677             fix2             = _mm_add_ps(fix2,tx);
678             fiy2             = _mm_add_ps(fiy2,ty);
679             fiz2             = _mm_add_ps(fiz2,tz);
680
681             fjx0             = _mm_add_ps(fjx0,tx);
682             fjy0             = _mm_add_ps(fjy0,ty);
683             fjz0             = _mm_add_ps(fjz0,tz);
684             
685             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
686             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
687             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
688             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
689
690             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
691
692             /* Inner loop uses 160 flops */
693         }
694
695         /* End of innermost loop */
696
697         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
698                                               f+i_coord_offset,fshift+i_shift_offset);
699
700         ggid                        = gid[iidx];
701         /* Update potential energies */
702         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
703         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
704
705         /* Increment number of inner iterations */
706         inneriter                  += j_index_end - j_index_start;
707
708         /* Outer loop uses 20 flops */
709     }
710
711     /* Increment number of outer iterations */
712     outeriter        += nri;
713
714     /* Update outer/inner flops */
715
716     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
717 }
718 /*
719  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
720  * Electrostatics interaction: Ewald
721  * VdW interaction:            CubicSplineTable
722  * Geometry:                   Water3-Particle
723  * Calculate force/pot:        Force
724  */
725 void
726 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
727                     (t_nblist                    * gmx_restrict       nlist,
728                      rvec                        * gmx_restrict          xx,
729                      rvec                        * gmx_restrict          ff,
730                      t_forcerec                  * gmx_restrict          fr,
731                      t_mdatoms                   * gmx_restrict     mdatoms,
732                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
733                      t_nrnb                      * gmx_restrict        nrnb)
734 {
735     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
736      * just 0 for non-waters.
737      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
738      * jnr indices corresponding to data put in the four positions in the SIMD register.
739      */
740     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
741     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
742     int              jnrA,jnrB,jnrC,jnrD;
743     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
744     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
745     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
746     real             rcutoff_scalar;
747     real             *shiftvec,*fshift,*x,*f;
748     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
749     real             scratch[4*DIM];
750     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
751     int              vdwioffset0;
752     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
753     int              vdwioffset1;
754     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
755     int              vdwioffset2;
756     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
757     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
758     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
759     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
760     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
761     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
762     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
763     real             *charge;
764     int              nvdwtype;
765     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
766     int              *vdwtype;
767     real             *vdwparam;
768     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
769     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
770     __m128i          vfitab;
771     __m128i          ifour       = _mm_set1_epi32(4);
772     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
773     real             *vftab;
774     __m128i          ewitab;
775     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
776     real             *ewtab;
777     __m128           dummy_mask,cutoff_mask;
778     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
779     __m128           one     = _mm_set1_ps(1.0);
780     __m128           two     = _mm_set1_ps(2.0);
781     x                = xx[0];
782     f                = ff[0];
783
784     nri              = nlist->nri;
785     iinr             = nlist->iinr;
786     jindex           = nlist->jindex;
787     jjnr             = nlist->jjnr;
788     shiftidx         = nlist->shift;
789     gid              = nlist->gid;
790     shiftvec         = fr->shift_vec[0];
791     fshift           = fr->fshift[0];
792     facel            = _mm_set1_ps(fr->epsfac);
793     charge           = mdatoms->chargeA;
794     nvdwtype         = fr->ntype;
795     vdwparam         = fr->nbfp;
796     vdwtype          = mdatoms->typeA;
797
798     vftab            = kernel_data->table_vdw->data;
799     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
800
801     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
802     ewtab            = fr->ic->tabq_coul_F;
803     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
804     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
805
806     /* Setup water-specific parameters */
807     inr              = nlist->iinr[0];
808     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
809     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
810     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
811     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
812
813     /* Avoid stupid compiler warnings */
814     jnrA = jnrB = jnrC = jnrD = 0;
815     j_coord_offsetA = 0;
816     j_coord_offsetB = 0;
817     j_coord_offsetC = 0;
818     j_coord_offsetD = 0;
819
820     outeriter        = 0;
821     inneriter        = 0;
822
823     for(iidx=0;iidx<4*DIM;iidx++)
824     {
825         scratch[iidx] = 0.0;
826     }  
827
828     /* Start outer loop over neighborlists */
829     for(iidx=0; iidx<nri; iidx++)
830     {
831         /* Load shift vector for this list */
832         i_shift_offset   = DIM*shiftidx[iidx];
833
834         /* Load limits for loop over neighbors */
835         j_index_start    = jindex[iidx];
836         j_index_end      = jindex[iidx+1];
837
838         /* Get outer coordinate index */
839         inr              = iinr[iidx];
840         i_coord_offset   = DIM*inr;
841
842         /* Load i particle coords and add shift vector */
843         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
844                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
845         
846         fix0             = _mm_setzero_ps();
847         fiy0             = _mm_setzero_ps();
848         fiz0             = _mm_setzero_ps();
849         fix1             = _mm_setzero_ps();
850         fiy1             = _mm_setzero_ps();
851         fiz1             = _mm_setzero_ps();
852         fix2             = _mm_setzero_ps();
853         fiy2             = _mm_setzero_ps();
854         fiz2             = _mm_setzero_ps();
855
856         /* Start inner kernel loop */
857         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
858         {
859
860             /* Get j neighbor index, and coordinate index */
861             jnrA             = jjnr[jidx];
862             jnrB             = jjnr[jidx+1];
863             jnrC             = jjnr[jidx+2];
864             jnrD             = jjnr[jidx+3];
865             j_coord_offsetA  = DIM*jnrA;
866             j_coord_offsetB  = DIM*jnrB;
867             j_coord_offsetC  = DIM*jnrC;
868             j_coord_offsetD  = DIM*jnrD;
869
870             /* load j atom coordinates */
871             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
872                                               x+j_coord_offsetC,x+j_coord_offsetD,
873                                               &jx0,&jy0,&jz0);
874
875             /* Calculate displacement vector */
876             dx00             = _mm_sub_ps(ix0,jx0);
877             dy00             = _mm_sub_ps(iy0,jy0);
878             dz00             = _mm_sub_ps(iz0,jz0);
879             dx10             = _mm_sub_ps(ix1,jx0);
880             dy10             = _mm_sub_ps(iy1,jy0);
881             dz10             = _mm_sub_ps(iz1,jz0);
882             dx20             = _mm_sub_ps(ix2,jx0);
883             dy20             = _mm_sub_ps(iy2,jy0);
884             dz20             = _mm_sub_ps(iz2,jz0);
885
886             /* Calculate squared distance and things based on it */
887             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
888             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
889             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
890
891             rinv00           = gmx_mm_invsqrt_ps(rsq00);
892             rinv10           = gmx_mm_invsqrt_ps(rsq10);
893             rinv20           = gmx_mm_invsqrt_ps(rsq20);
894
895             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
896             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
897             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
898
899             /* Load parameters for j particles */
900             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
901                                                               charge+jnrC+0,charge+jnrD+0);
902             vdwjidx0A        = 2*vdwtype[jnrA+0];
903             vdwjidx0B        = 2*vdwtype[jnrB+0];
904             vdwjidx0C        = 2*vdwtype[jnrC+0];
905             vdwjidx0D        = 2*vdwtype[jnrD+0];
906
907             fjx0             = _mm_setzero_ps();
908             fjy0             = _mm_setzero_ps();
909             fjz0             = _mm_setzero_ps();
910
911             /**************************
912              * CALCULATE INTERACTIONS *
913              **************************/
914
915             r00              = _mm_mul_ps(rsq00,rinv00);
916
917             /* Compute parameters for interactions between i and j atoms */
918             qq00             = _mm_mul_ps(iq0,jq0);
919             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
920                                          vdwparam+vdwioffset0+vdwjidx0B,
921                                          vdwparam+vdwioffset0+vdwjidx0C,
922                                          vdwparam+vdwioffset0+vdwjidx0D,
923                                          &c6_00,&c12_00);
924
925             /* Calculate table index by multiplying r with table scale and truncate to integer */
926             rt               = _mm_mul_ps(r00,vftabscale);
927             vfitab           = _mm_cvttps_epi32(rt);
928             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
929             vfitab           = _mm_slli_epi32(vfitab,3);
930
931             /* EWALD ELECTROSTATICS */
932
933             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
934             ewrt             = _mm_mul_ps(r00,ewtabscale);
935             ewitab           = _mm_cvttps_epi32(ewrt);
936             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
937             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
938                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
939                                          &ewtabF,&ewtabFn);
940             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
941             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
942
943             /* CUBIC SPLINE TABLE DISPERSION */
944             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
945             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
946             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
947             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
948             _MM_TRANSPOSE4_PS(Y,F,G,H);
949             Heps             = _mm_mul_ps(vfeps,H);
950             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
951             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
952             fvdw6            = _mm_mul_ps(c6_00,FF);
953
954             /* CUBIC SPLINE TABLE REPULSION */
955             vfitab           = _mm_add_epi32(vfitab,ifour);
956             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
957             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
958             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
959             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
960             _MM_TRANSPOSE4_PS(Y,F,G,H);
961             Heps             = _mm_mul_ps(vfeps,H);
962             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
963             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
964             fvdw12           = _mm_mul_ps(c12_00,FF);
965             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
966
967             fscal            = _mm_add_ps(felec,fvdw);
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_ps(fscal,dx00);
971             ty               = _mm_mul_ps(fscal,dy00);
972             tz               = _mm_mul_ps(fscal,dz00);
973
974             /* Update vectorial force */
975             fix0             = _mm_add_ps(fix0,tx);
976             fiy0             = _mm_add_ps(fiy0,ty);
977             fiz0             = _mm_add_ps(fiz0,tz);
978
979             fjx0             = _mm_add_ps(fjx0,tx);
980             fjy0             = _mm_add_ps(fjy0,ty);
981             fjz0             = _mm_add_ps(fjz0,tz);
982             
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r10              = _mm_mul_ps(rsq10,rinv10);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq10             = _mm_mul_ps(iq1,jq0);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995             ewrt             = _mm_mul_ps(r10,ewtabscale);
996             ewitab           = _mm_cvttps_epi32(ewrt);
997             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
998             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
999                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1000                                          &ewtabF,&ewtabFn);
1001             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1002             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1003
1004             fscal            = felec;
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm_mul_ps(fscal,dx10);
1008             ty               = _mm_mul_ps(fscal,dy10);
1009             tz               = _mm_mul_ps(fscal,dz10);
1010
1011             /* Update vectorial force */
1012             fix1             = _mm_add_ps(fix1,tx);
1013             fiy1             = _mm_add_ps(fiy1,ty);
1014             fiz1             = _mm_add_ps(fiz1,tz);
1015
1016             fjx0             = _mm_add_ps(fjx0,tx);
1017             fjy0             = _mm_add_ps(fjy0,ty);
1018             fjz0             = _mm_add_ps(fjz0,tz);
1019             
1020             /**************************
1021              * CALCULATE INTERACTIONS *
1022              **************************/
1023
1024             r20              = _mm_mul_ps(rsq20,rinv20);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq20             = _mm_mul_ps(iq2,jq0);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1032             ewrt             = _mm_mul_ps(r20,ewtabscale);
1033             ewitab           = _mm_cvttps_epi32(ewrt);
1034             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1035             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1036                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1037                                          &ewtabF,&ewtabFn);
1038             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1039             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1040
1041             fscal            = felec;
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm_mul_ps(fscal,dx20);
1045             ty               = _mm_mul_ps(fscal,dy20);
1046             tz               = _mm_mul_ps(fscal,dz20);
1047
1048             /* Update vectorial force */
1049             fix2             = _mm_add_ps(fix2,tx);
1050             fiy2             = _mm_add_ps(fiy2,ty);
1051             fiz2             = _mm_add_ps(fiz2,tz);
1052
1053             fjx0             = _mm_add_ps(fjx0,tx);
1054             fjy0             = _mm_add_ps(fjy0,ty);
1055             fjz0             = _mm_add_ps(fjz0,tz);
1056             
1057             fjptrA             = f+j_coord_offsetA;
1058             fjptrB             = f+j_coord_offsetB;
1059             fjptrC             = f+j_coord_offsetC;
1060             fjptrD             = f+j_coord_offsetD;
1061
1062             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1063
1064             /* Inner loop uses 134 flops */
1065         }
1066
1067         if(jidx<j_index_end)
1068         {
1069
1070             /* Get j neighbor index, and coordinate index */
1071             jnrlistA         = jjnr[jidx];
1072             jnrlistB         = jjnr[jidx+1];
1073             jnrlistC         = jjnr[jidx+2];
1074             jnrlistD         = jjnr[jidx+3];
1075             /* Sign of each element will be negative for non-real atoms.
1076              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1077              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1078              */
1079             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1080             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1081             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1082             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1083             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1084             j_coord_offsetA  = DIM*jnrA;
1085             j_coord_offsetB  = DIM*jnrB;
1086             j_coord_offsetC  = DIM*jnrC;
1087             j_coord_offsetD  = DIM*jnrD;
1088
1089             /* load j atom coordinates */
1090             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1091                                               x+j_coord_offsetC,x+j_coord_offsetD,
1092                                               &jx0,&jy0,&jz0);
1093
1094             /* Calculate displacement vector */
1095             dx00             = _mm_sub_ps(ix0,jx0);
1096             dy00             = _mm_sub_ps(iy0,jy0);
1097             dz00             = _mm_sub_ps(iz0,jz0);
1098             dx10             = _mm_sub_ps(ix1,jx0);
1099             dy10             = _mm_sub_ps(iy1,jy0);
1100             dz10             = _mm_sub_ps(iz1,jz0);
1101             dx20             = _mm_sub_ps(ix2,jx0);
1102             dy20             = _mm_sub_ps(iy2,jy0);
1103             dz20             = _mm_sub_ps(iz2,jz0);
1104
1105             /* Calculate squared distance and things based on it */
1106             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1107             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1108             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1109
1110             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1111             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1112             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1113
1114             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1115             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1116             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1117
1118             /* Load parameters for j particles */
1119             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1120                                                               charge+jnrC+0,charge+jnrD+0);
1121             vdwjidx0A        = 2*vdwtype[jnrA+0];
1122             vdwjidx0B        = 2*vdwtype[jnrB+0];
1123             vdwjidx0C        = 2*vdwtype[jnrC+0];
1124             vdwjidx0D        = 2*vdwtype[jnrD+0];
1125
1126             fjx0             = _mm_setzero_ps();
1127             fjy0             = _mm_setzero_ps();
1128             fjz0             = _mm_setzero_ps();
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             r00              = _mm_mul_ps(rsq00,rinv00);
1135             r00              = _mm_andnot_ps(dummy_mask,r00);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq00             = _mm_mul_ps(iq0,jq0);
1139             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1140                                          vdwparam+vdwioffset0+vdwjidx0B,
1141                                          vdwparam+vdwioffset0+vdwjidx0C,
1142                                          vdwparam+vdwioffset0+vdwjidx0D,
1143                                          &c6_00,&c12_00);
1144
1145             /* Calculate table index by multiplying r with table scale and truncate to integer */
1146             rt               = _mm_mul_ps(r00,vftabscale);
1147             vfitab           = _mm_cvttps_epi32(rt);
1148             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1149             vfitab           = _mm_slli_epi32(vfitab,3);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_ps(r00,ewtabscale);
1155             ewitab           = _mm_cvttps_epi32(ewrt);
1156             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1157             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1158                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1159                                          &ewtabF,&ewtabFn);
1160             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1161             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1162
1163             /* CUBIC SPLINE TABLE DISPERSION */
1164             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1165             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1166             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1167             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1168             _MM_TRANSPOSE4_PS(Y,F,G,H);
1169             Heps             = _mm_mul_ps(vfeps,H);
1170             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1171             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1172             fvdw6            = _mm_mul_ps(c6_00,FF);
1173
1174             /* CUBIC SPLINE TABLE REPULSION */
1175             vfitab           = _mm_add_epi32(vfitab,ifour);
1176             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1177             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1178             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1179             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1180             _MM_TRANSPOSE4_PS(Y,F,G,H);
1181             Heps             = _mm_mul_ps(vfeps,H);
1182             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1183             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1184             fvdw12           = _mm_mul_ps(c12_00,FF);
1185             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1186
1187             fscal            = _mm_add_ps(felec,fvdw);
1188
1189             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = _mm_mul_ps(fscal,dx00);
1193             ty               = _mm_mul_ps(fscal,dy00);
1194             tz               = _mm_mul_ps(fscal,dz00);
1195
1196             /* Update vectorial force */
1197             fix0             = _mm_add_ps(fix0,tx);
1198             fiy0             = _mm_add_ps(fiy0,ty);
1199             fiz0             = _mm_add_ps(fiz0,tz);
1200
1201             fjx0             = _mm_add_ps(fjx0,tx);
1202             fjy0             = _mm_add_ps(fjy0,ty);
1203             fjz0             = _mm_add_ps(fjz0,tz);
1204             
1205             /**************************
1206              * CALCULATE INTERACTIONS *
1207              **************************/
1208
1209             r10              = _mm_mul_ps(rsq10,rinv10);
1210             r10              = _mm_andnot_ps(dummy_mask,r10);
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq10             = _mm_mul_ps(iq1,jq0);
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1218             ewrt             = _mm_mul_ps(r10,ewtabscale);
1219             ewitab           = _mm_cvttps_epi32(ewrt);
1220             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1221             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1222                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1223                                          &ewtabF,&ewtabFn);
1224             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1225             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = _mm_mul_ps(fscal,dx10);
1233             ty               = _mm_mul_ps(fscal,dy10);
1234             tz               = _mm_mul_ps(fscal,dz10);
1235
1236             /* Update vectorial force */
1237             fix1             = _mm_add_ps(fix1,tx);
1238             fiy1             = _mm_add_ps(fiy1,ty);
1239             fiz1             = _mm_add_ps(fiz1,tz);
1240
1241             fjx0             = _mm_add_ps(fjx0,tx);
1242             fjy0             = _mm_add_ps(fjy0,ty);
1243             fjz0             = _mm_add_ps(fjz0,tz);
1244             
1245             /**************************
1246              * CALCULATE INTERACTIONS *
1247              **************************/
1248
1249             r20              = _mm_mul_ps(rsq20,rinv20);
1250             r20              = _mm_andnot_ps(dummy_mask,r20);
1251
1252             /* Compute parameters for interactions between i and j atoms */
1253             qq20             = _mm_mul_ps(iq2,jq0);
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = _mm_mul_ps(r20,ewtabscale);
1259             ewitab           = _mm_cvttps_epi32(ewrt);
1260             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1261             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1262                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1263                                          &ewtabF,&ewtabFn);
1264             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1265             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1266
1267             fscal            = felec;
1268
1269             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_ps(fscal,dx20);
1273             ty               = _mm_mul_ps(fscal,dy20);
1274             tz               = _mm_mul_ps(fscal,dz20);
1275
1276             /* Update vectorial force */
1277             fix2             = _mm_add_ps(fix2,tx);
1278             fiy2             = _mm_add_ps(fiy2,ty);
1279             fiz2             = _mm_add_ps(fiz2,tz);
1280
1281             fjx0             = _mm_add_ps(fjx0,tx);
1282             fjy0             = _mm_add_ps(fjy0,ty);
1283             fjz0             = _mm_add_ps(fjz0,tz);
1284             
1285             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1286             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1287             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1288             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1289
1290             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1291
1292             /* Inner loop uses 137 flops */
1293         }
1294
1295         /* End of innermost loop */
1296
1297         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1298                                               f+i_coord_offset,fshift+i_shift_offset);
1299
1300         /* Increment number of inner iterations */
1301         inneriter                  += j_index_end - j_index_start;
1302
1303         /* Outer loop uses 18 flops */
1304     }
1305
1306     /* Increment number of outer iterations */
1307     outeriter        += nri;
1308
1309     /* Update outer/inner flops */
1310
1311     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1312 }