Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
127     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
128     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }  
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163         
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167         fix1             = _mm_setzero_ps();
168         fiy1             = _mm_setzero_ps();
169         fiz1             = _mm_setzero_ps();
170         fix2             = _mm_setzero_ps();
171         fiy2             = _mm_setzero_ps();
172         fiz2             = _mm_setzero_ps();
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201             dx10             = _mm_sub_ps(ix1,jx0);
202             dy10             = _mm_sub_ps(iy1,jy0);
203             dz10             = _mm_sub_ps(iz1,jz0);
204             dx20             = _mm_sub_ps(ix2,jx0);
205             dy20             = _mm_sub_ps(iy2,jy0);
206             dz20             = _mm_sub_ps(iz2,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
212
213             rinv00           = gmx_mm_invsqrt_ps(rsq00);
214             rinv10           = gmx_mm_invsqrt_ps(rsq10);
215             rinv20           = gmx_mm_invsqrt_ps(rsq20);
216
217             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
218             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
219             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             r00              = _mm_mul_ps(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_ps(iq0,jq0);
237             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,
239                                          vdwparam+vdwioffset0+vdwjidx0C,
240                                          vdwparam+vdwioffset0+vdwjidx0D,
241                                          &c6_00,&c12_00);
242
243             /* Calculate table index by multiplying r with table scale and truncate to integer */
244             rt               = _mm_mul_ps(r00,vftabscale);
245             vfitab           = _mm_cvttps_epi32(rt);
246             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
247             vfitab           = _mm_slli_epi32(vfitab,3);
248
249             /* EWALD ELECTROSTATICS */
250
251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252             ewrt             = _mm_mul_ps(r00,ewtabscale);
253             ewitab           = _mm_cvttps_epi32(ewrt);
254             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
255             ewitab           = _mm_slli_epi32(ewitab,2);
256             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
257             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
258             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
259             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
260             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
261             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
262             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
263             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
264             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
265
266             /* CUBIC SPLINE TABLE DISPERSION */
267             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
270             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
271             _MM_TRANSPOSE4_PS(Y,F,G,H);
272             Heps             = _mm_mul_ps(vfeps,H);
273             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
274             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
275             vvdw6            = _mm_mul_ps(c6_00,VV);
276             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
277             fvdw6            = _mm_mul_ps(c6_00,FF);
278
279             /* CUBIC SPLINE TABLE REPULSION */
280             vfitab           = _mm_add_epi32(vfitab,ifour);
281             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
282             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
283             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
284             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
285             _MM_TRANSPOSE4_PS(Y,F,G,H);
286             Heps             = _mm_mul_ps(vfeps,H);
287             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
288             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
289             vvdw12           = _mm_mul_ps(c12_00,VV);
290             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
291             fvdw12           = _mm_mul_ps(c12_00,FF);
292             vvdw             = _mm_add_ps(vvdw12,vvdw6);
293             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_ps(velecsum,velec);
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = _mm_add_ps(felec,fvdw);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm_mul_ps(fscal,dx00);
303             ty               = _mm_mul_ps(fscal,dy00);
304             tz               = _mm_mul_ps(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm_add_ps(fix0,tx);
308             fiy0             = _mm_add_ps(fiy0,ty);
309             fiz0             = _mm_add_ps(fiz0,tz);
310
311             fjptrA             = f+j_coord_offsetA;
312             fjptrB             = f+j_coord_offsetB;
313             fjptrC             = f+j_coord_offsetC;
314             fjptrD             = f+j_coord_offsetD;
315             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
316             
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_ps(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_ps(r10,ewtabscale);
330             ewitab           = _mm_cvttps_epi32(ewrt);
331             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
332             ewitab           = _mm_slli_epi32(ewitab,2);
333             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
334             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
335             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
336             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
337             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
338             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
339             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
340             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
341             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_ps(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_ps(fscal,dx10);
350             ty               = _mm_mul_ps(fscal,dy10);
351             tz               = _mm_mul_ps(fscal,dz10);
352
353             /* Update vectorial force */
354             fix1             = _mm_add_ps(fix1,tx);
355             fiy1             = _mm_add_ps(fiy1,ty);
356             fiz1             = _mm_add_ps(fiz1,tz);
357
358             fjptrA             = f+j_coord_offsetA;
359             fjptrB             = f+j_coord_offsetB;
360             fjptrC             = f+j_coord_offsetC;
361             fjptrD             = f+j_coord_offsetD;
362             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
363             
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_ps(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_ps(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_ps(r20,ewtabscale);
377             ewitab           = _mm_cvttps_epi32(ewrt);
378             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
379             ewitab           = _mm_slli_epi32(ewitab,2);
380             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
381             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
382             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
383             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
384             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
385             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
386             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
387             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
388             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_ps(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm_mul_ps(fscal,dx20);
397             ty               = _mm_mul_ps(fscal,dy20);
398             tz               = _mm_mul_ps(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm_add_ps(fix2,tx);
402             fiy2             = _mm_add_ps(fiy2,ty);
403             fiz2             = _mm_add_ps(fiz2,tz);
404
405             fjptrA             = f+j_coord_offsetA;
406             fjptrB             = f+j_coord_offsetB;
407             fjptrC             = f+j_coord_offsetC;
408             fjptrD             = f+j_coord_offsetD;
409             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
410             
411             /* Inner loop uses 157 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             /* Get j neighbor index, and coordinate index */
418             jnrlistA         = jjnr[jidx];
419             jnrlistB         = jjnr[jidx+1];
420             jnrlistC         = jjnr[jidx+2];
421             jnrlistD         = jjnr[jidx+3];
422             /* Sign of each element will be negative for non-real atoms.
423              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
424              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
425              */
426             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
427             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
428             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
429             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
430             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433             j_coord_offsetC  = DIM*jnrC;
434             j_coord_offsetD  = DIM*jnrD;
435
436             /* load j atom coordinates */
437             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
438                                               x+j_coord_offsetC,x+j_coord_offsetD,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_ps(ix0,jx0);
443             dy00             = _mm_sub_ps(iy0,jy0);
444             dz00             = _mm_sub_ps(iz0,jz0);
445             dx10             = _mm_sub_ps(ix1,jx0);
446             dy10             = _mm_sub_ps(iy1,jy0);
447             dz10             = _mm_sub_ps(iz1,jz0);
448             dx20             = _mm_sub_ps(ix2,jx0);
449             dy20             = _mm_sub_ps(iy2,jy0);
450             dz20             = _mm_sub_ps(iz2,jz0);
451
452             /* Calculate squared distance and things based on it */
453             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
454             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
455             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
456
457             rinv00           = gmx_mm_invsqrt_ps(rsq00);
458             rinv10           = gmx_mm_invsqrt_ps(rsq10);
459             rinv20           = gmx_mm_invsqrt_ps(rsq20);
460
461             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
462             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
463             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
464
465             /* Load parameters for j particles */
466             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
467                                                               charge+jnrC+0,charge+jnrD+0);
468             vdwjidx0A        = 2*vdwtype[jnrA+0];
469             vdwjidx0B        = 2*vdwtype[jnrB+0];
470             vdwjidx0C        = 2*vdwtype[jnrC+0];
471             vdwjidx0D        = 2*vdwtype[jnrD+0];
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             r00              = _mm_mul_ps(rsq00,rinv00);
478             r00              = _mm_andnot_ps(dummy_mask,r00);
479
480             /* Compute parameters for interactions between i and j atoms */
481             qq00             = _mm_mul_ps(iq0,jq0);
482             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
483                                          vdwparam+vdwioffset0+vdwjidx0B,
484                                          vdwparam+vdwioffset0+vdwjidx0C,
485                                          vdwparam+vdwioffset0+vdwjidx0D,
486                                          &c6_00,&c12_00);
487
488             /* Calculate table index by multiplying r with table scale and truncate to integer */
489             rt               = _mm_mul_ps(r00,vftabscale);
490             vfitab           = _mm_cvttps_epi32(rt);
491             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
492             vfitab           = _mm_slli_epi32(vfitab,3);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_ps(r00,ewtabscale);
498             ewitab           = _mm_cvttps_epi32(ewrt);
499             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
503             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
504             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
505             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
506             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
507             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
508             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
509             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
510
511             /* CUBIC SPLINE TABLE DISPERSION */
512             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
513             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
514             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
515             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
516             _MM_TRANSPOSE4_PS(Y,F,G,H);
517             Heps             = _mm_mul_ps(vfeps,H);
518             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
519             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
520             vvdw6            = _mm_mul_ps(c6_00,VV);
521             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
522             fvdw6            = _mm_mul_ps(c6_00,FF);
523
524             /* CUBIC SPLINE TABLE REPULSION */
525             vfitab           = _mm_add_epi32(vfitab,ifour);
526             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
527             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
528             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
529             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
530             _MM_TRANSPOSE4_PS(Y,F,G,H);
531             Heps             = _mm_mul_ps(vfeps,H);
532             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
533             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
534             vvdw12           = _mm_mul_ps(c12_00,VV);
535             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
536             fvdw12           = _mm_mul_ps(c12_00,FF);
537             vvdw             = _mm_add_ps(vvdw12,vvdw6);
538             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
539
540             /* Update potential sum for this i atom from the interaction with this j atom. */
541             velec            = _mm_andnot_ps(dummy_mask,velec);
542             velecsum         = _mm_add_ps(velecsum,velec);
543             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
544             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
545
546             fscal            = _mm_add_ps(felec,fvdw);
547
548             fscal            = _mm_andnot_ps(dummy_mask,fscal);
549
550             /* Calculate temporary vectorial force */
551             tx               = _mm_mul_ps(fscal,dx00);
552             ty               = _mm_mul_ps(fscal,dy00);
553             tz               = _mm_mul_ps(fscal,dz00);
554
555             /* Update vectorial force */
556             fix0             = _mm_add_ps(fix0,tx);
557             fiy0             = _mm_add_ps(fiy0,ty);
558             fiz0             = _mm_add_ps(fiz0,tz);
559
560             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
561             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
562             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
563             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
564             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
565             
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r10              = _mm_mul_ps(rsq10,rinv10);
571             r10              = _mm_andnot_ps(dummy_mask,r10);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq10             = _mm_mul_ps(iq1,jq0);
575
576             /* EWALD ELECTROSTATICS */
577
578             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
579             ewrt             = _mm_mul_ps(r10,ewtabscale);
580             ewitab           = _mm_cvttps_epi32(ewrt);
581             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
582             ewitab           = _mm_slli_epi32(ewitab,2);
583             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
584             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
585             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
586             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
587             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
588             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
589             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
590             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
591             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
592
593             /* Update potential sum for this i atom from the interaction with this j atom. */
594             velec            = _mm_andnot_ps(dummy_mask,velec);
595             velecsum         = _mm_add_ps(velecsum,velec);
596
597             fscal            = felec;
598
599             fscal            = _mm_andnot_ps(dummy_mask,fscal);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_ps(fscal,dx10);
603             ty               = _mm_mul_ps(fscal,dy10);
604             tz               = _mm_mul_ps(fscal,dz10);
605
606             /* Update vectorial force */
607             fix1             = _mm_add_ps(fix1,tx);
608             fiy1             = _mm_add_ps(fiy1,ty);
609             fiz1             = _mm_add_ps(fiz1,tz);
610
611             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
612             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
613             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
614             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
615             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
616             
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r20              = _mm_mul_ps(rsq20,rinv20);
622             r20              = _mm_andnot_ps(dummy_mask,r20);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq20             = _mm_mul_ps(iq2,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_ps(r20,ewtabscale);
631             ewitab           = _mm_cvttps_epi32(ewrt);
632             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
636             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
637             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
638             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
639             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
640             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
641             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
642             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
643
644             /* Update potential sum for this i atom from the interaction with this j atom. */
645             velec            = _mm_andnot_ps(dummy_mask,velec);
646             velecsum         = _mm_add_ps(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_andnot_ps(dummy_mask,fscal);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm_mul_ps(fscal,dx20);
654             ty               = _mm_mul_ps(fscal,dy20);
655             tz               = _mm_mul_ps(fscal,dz20);
656
657             /* Update vectorial force */
658             fix2             = _mm_add_ps(fix2,tx);
659             fiy2             = _mm_add_ps(fiy2,ty);
660             fiz2             = _mm_add_ps(fiz2,tz);
661
662             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
663             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
664             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
665             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
666             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
667             
668             /* Inner loop uses 160 flops */
669         }
670
671         /* End of innermost loop */
672
673         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
674                                               f+i_coord_offset,fshift+i_shift_offset);
675
676         ggid                        = gid[iidx];
677         /* Update potential energies */
678         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
679         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 20 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
693 }
694 /*
695  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
696  * Electrostatics interaction: Ewald
697  * VdW interaction:            CubicSplineTable
698  * Geometry:                   Water3-Particle
699  * Calculate force/pot:        Force
700  */
701 void
702 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_single
703                     (t_nblist * gmx_restrict                nlist,
704                      rvec * gmx_restrict                    xx,
705                      rvec * gmx_restrict                    ff,
706                      t_forcerec * gmx_restrict              fr,
707                      t_mdatoms * gmx_restrict               mdatoms,
708                      nb_kernel_data_t * gmx_restrict        kernel_data,
709                      t_nrnb * gmx_restrict                  nrnb)
710 {
711     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
712      * just 0 for non-waters.
713      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
714      * jnr indices corresponding to data put in the four positions in the SIMD register.
715      */
716     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
717     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
718     int              jnrA,jnrB,jnrC,jnrD;
719     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
720     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
725     real             scratch[4*DIM];
726     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
727     int              vdwioffset0;
728     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
729     int              vdwioffset1;
730     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
731     int              vdwioffset2;
732     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
733     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
734     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
739     real             *charge;
740     int              nvdwtype;
741     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
742     int              *vdwtype;
743     real             *vdwparam;
744     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
745     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
746     __m128i          vfitab;
747     __m128i          ifour       = _mm_set1_epi32(4);
748     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
749     real             *vftab;
750     __m128i          ewitab;
751     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
752     real             *ewtab;
753     __m128           dummy_mask,cutoff_mask;
754     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
755     __m128           one     = _mm_set1_ps(1.0);
756     __m128           two     = _mm_set1_ps(2.0);
757     x                = xx[0];
758     f                = ff[0];
759
760     nri              = nlist->nri;
761     iinr             = nlist->iinr;
762     jindex           = nlist->jindex;
763     jjnr             = nlist->jjnr;
764     shiftidx         = nlist->shift;
765     gid              = nlist->gid;
766     shiftvec         = fr->shift_vec[0];
767     fshift           = fr->fshift[0];
768     facel            = _mm_set1_ps(fr->epsfac);
769     charge           = mdatoms->chargeA;
770     nvdwtype         = fr->ntype;
771     vdwparam         = fr->nbfp;
772     vdwtype          = mdatoms->typeA;
773
774     vftab            = kernel_data->table_vdw->data;
775     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
776
777     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
778     ewtab            = fr->ic->tabq_coul_F;
779     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
780     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
781
782     /* Setup water-specific parameters */
783     inr              = nlist->iinr[0];
784     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
785     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
786     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
787     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
788
789     /* Avoid stupid compiler warnings */
790     jnrA = jnrB = jnrC = jnrD = 0;
791     j_coord_offsetA = 0;
792     j_coord_offsetB = 0;
793     j_coord_offsetC = 0;
794     j_coord_offsetD = 0;
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     for(iidx=0;iidx<4*DIM;iidx++)
800     {
801         scratch[iidx] = 0.0;
802     }  
803
804     /* Start outer loop over neighborlists */
805     for(iidx=0; iidx<nri; iidx++)
806     {
807         /* Load shift vector for this list */
808         i_shift_offset   = DIM*shiftidx[iidx];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
820                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
821         
822         fix0             = _mm_setzero_ps();
823         fiy0             = _mm_setzero_ps();
824         fiz0             = _mm_setzero_ps();
825         fix1             = _mm_setzero_ps();
826         fiy1             = _mm_setzero_ps();
827         fiz1             = _mm_setzero_ps();
828         fix2             = _mm_setzero_ps();
829         fiy2             = _mm_setzero_ps();
830         fiz2             = _mm_setzero_ps();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             jnrC             = jjnr[jidx+2];
840             jnrD             = jjnr[jidx+3];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843             j_coord_offsetC  = DIM*jnrC;
844             j_coord_offsetD  = DIM*jnrD;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               x+j_coord_offsetC,x+j_coord_offsetD,
849                                               &jx0,&jy0,&jz0);
850
851             /* Calculate displacement vector */
852             dx00             = _mm_sub_ps(ix0,jx0);
853             dy00             = _mm_sub_ps(iy0,jy0);
854             dz00             = _mm_sub_ps(iz0,jz0);
855             dx10             = _mm_sub_ps(ix1,jx0);
856             dy10             = _mm_sub_ps(iy1,jy0);
857             dz10             = _mm_sub_ps(iz1,jz0);
858             dx20             = _mm_sub_ps(ix2,jx0);
859             dy20             = _mm_sub_ps(iy2,jy0);
860             dz20             = _mm_sub_ps(iz2,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
866
867             rinv00           = gmx_mm_invsqrt_ps(rsq00);
868             rinv10           = gmx_mm_invsqrt_ps(rsq10);
869             rinv20           = gmx_mm_invsqrt_ps(rsq20);
870
871             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
872             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
873             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
877                                                               charge+jnrC+0,charge+jnrD+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880             vdwjidx0C        = 2*vdwtype[jnrC+0];
881             vdwjidx0D        = 2*vdwtype[jnrD+0];
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r00              = _mm_mul_ps(rsq00,rinv00);
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq00             = _mm_mul_ps(iq0,jq0);
891             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
892                                          vdwparam+vdwioffset0+vdwjidx0B,
893                                          vdwparam+vdwioffset0+vdwjidx0C,
894                                          vdwparam+vdwioffset0+vdwjidx0D,
895                                          &c6_00,&c12_00);
896
897             /* Calculate table index by multiplying r with table scale and truncate to integer */
898             rt               = _mm_mul_ps(r00,vftabscale);
899             vfitab           = _mm_cvttps_epi32(rt);
900             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
901             vfitab           = _mm_slli_epi32(vfitab,3);
902
903             /* EWALD ELECTROSTATICS */
904
905             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906             ewrt             = _mm_mul_ps(r00,ewtabscale);
907             ewitab           = _mm_cvttps_epi32(ewrt);
908             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
909             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
910                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
911                                          &ewtabF,&ewtabFn);
912             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
913             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
914
915             /* CUBIC SPLINE TABLE DISPERSION */
916             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
917             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
918             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
919             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
920             _MM_TRANSPOSE4_PS(Y,F,G,H);
921             Heps             = _mm_mul_ps(vfeps,H);
922             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
923             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
924             fvdw6            = _mm_mul_ps(c6_00,FF);
925
926             /* CUBIC SPLINE TABLE REPULSION */
927             vfitab           = _mm_add_epi32(vfitab,ifour);
928             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
929             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
930             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
931             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
932             _MM_TRANSPOSE4_PS(Y,F,G,H);
933             Heps             = _mm_mul_ps(vfeps,H);
934             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
935             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
936             fvdw12           = _mm_mul_ps(c12_00,FF);
937             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
938
939             fscal            = _mm_add_ps(felec,fvdw);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm_mul_ps(fscal,dx00);
943             ty               = _mm_mul_ps(fscal,dy00);
944             tz               = _mm_mul_ps(fscal,dz00);
945
946             /* Update vectorial force */
947             fix0             = _mm_add_ps(fix0,tx);
948             fiy0             = _mm_add_ps(fiy0,ty);
949             fiz0             = _mm_add_ps(fiz0,tz);
950
951             fjptrA             = f+j_coord_offsetA;
952             fjptrB             = f+j_coord_offsetB;
953             fjptrC             = f+j_coord_offsetC;
954             fjptrD             = f+j_coord_offsetD;
955             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
956             
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r10              = _mm_mul_ps(rsq10,rinv10);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq10             = _mm_mul_ps(iq1,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm_mul_ps(r10,ewtabscale);
970             ewitab           = _mm_cvttps_epi32(ewrt);
971             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
972             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
973                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
974                                          &ewtabF,&ewtabFn);
975             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
976             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
977
978             fscal            = felec;
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm_mul_ps(fscal,dx10);
982             ty               = _mm_mul_ps(fscal,dy10);
983             tz               = _mm_mul_ps(fscal,dz10);
984
985             /* Update vectorial force */
986             fix1             = _mm_add_ps(fix1,tx);
987             fiy1             = _mm_add_ps(fiy1,ty);
988             fiz1             = _mm_add_ps(fiz1,tz);
989
990             fjptrA             = f+j_coord_offsetA;
991             fjptrB             = f+j_coord_offsetB;
992             fjptrC             = f+j_coord_offsetC;
993             fjptrD             = f+j_coord_offsetD;
994             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
995             
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             r20              = _mm_mul_ps(rsq20,rinv20);
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq20             = _mm_mul_ps(iq2,jq0);
1004
1005             /* EWALD ELECTROSTATICS */
1006
1007             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1008             ewrt             = _mm_mul_ps(r20,ewtabscale);
1009             ewitab           = _mm_cvttps_epi32(ewrt);
1010             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1011             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1012                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1013                                          &ewtabF,&ewtabFn);
1014             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1015             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1016
1017             fscal            = felec;
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm_mul_ps(fscal,dx20);
1021             ty               = _mm_mul_ps(fscal,dy20);
1022             tz               = _mm_mul_ps(fscal,dz20);
1023
1024             /* Update vectorial force */
1025             fix2             = _mm_add_ps(fix2,tx);
1026             fiy2             = _mm_add_ps(fiy2,ty);
1027             fiz2             = _mm_add_ps(fiz2,tz);
1028
1029             fjptrA             = f+j_coord_offsetA;
1030             fjptrB             = f+j_coord_offsetB;
1031             fjptrC             = f+j_coord_offsetC;
1032             fjptrD             = f+j_coord_offsetD;
1033             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1034             
1035             /* Inner loop uses 134 flops */
1036         }
1037
1038         if(jidx<j_index_end)
1039         {
1040
1041             /* Get j neighbor index, and coordinate index */
1042             jnrlistA         = jjnr[jidx];
1043             jnrlistB         = jjnr[jidx+1];
1044             jnrlistC         = jjnr[jidx+2];
1045             jnrlistD         = jjnr[jidx+3];
1046             /* Sign of each element will be negative for non-real atoms.
1047              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1048              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1049              */
1050             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1051             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1052             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1053             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1054             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1055             j_coord_offsetA  = DIM*jnrA;
1056             j_coord_offsetB  = DIM*jnrB;
1057             j_coord_offsetC  = DIM*jnrC;
1058             j_coord_offsetD  = DIM*jnrD;
1059
1060             /* load j atom coordinates */
1061             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1062                                               x+j_coord_offsetC,x+j_coord_offsetD,
1063                                               &jx0,&jy0,&jz0);
1064
1065             /* Calculate displacement vector */
1066             dx00             = _mm_sub_ps(ix0,jx0);
1067             dy00             = _mm_sub_ps(iy0,jy0);
1068             dz00             = _mm_sub_ps(iz0,jz0);
1069             dx10             = _mm_sub_ps(ix1,jx0);
1070             dy10             = _mm_sub_ps(iy1,jy0);
1071             dz10             = _mm_sub_ps(iz1,jz0);
1072             dx20             = _mm_sub_ps(ix2,jx0);
1073             dy20             = _mm_sub_ps(iy2,jy0);
1074             dz20             = _mm_sub_ps(iz2,jz0);
1075
1076             /* Calculate squared distance and things based on it */
1077             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1078             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1079             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1080
1081             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1082             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1083             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1084
1085             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1086             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1087             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1088
1089             /* Load parameters for j particles */
1090             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1091                                                               charge+jnrC+0,charge+jnrD+0);
1092             vdwjidx0A        = 2*vdwtype[jnrA+0];
1093             vdwjidx0B        = 2*vdwtype[jnrB+0];
1094             vdwjidx0C        = 2*vdwtype[jnrC+0];
1095             vdwjidx0D        = 2*vdwtype[jnrD+0];
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r00              = _mm_mul_ps(rsq00,rinv00);
1102             r00              = _mm_andnot_ps(dummy_mask,r00);
1103
1104             /* Compute parameters for interactions between i and j atoms */
1105             qq00             = _mm_mul_ps(iq0,jq0);
1106             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1107                                          vdwparam+vdwioffset0+vdwjidx0B,
1108                                          vdwparam+vdwioffset0+vdwjidx0C,
1109                                          vdwparam+vdwioffset0+vdwjidx0D,
1110                                          &c6_00,&c12_00);
1111
1112             /* Calculate table index by multiplying r with table scale and truncate to integer */
1113             rt               = _mm_mul_ps(r00,vftabscale);
1114             vfitab           = _mm_cvttps_epi32(rt);
1115             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1116             vfitab           = _mm_slli_epi32(vfitab,3);
1117
1118             /* EWALD ELECTROSTATICS */
1119
1120             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1121             ewrt             = _mm_mul_ps(r00,ewtabscale);
1122             ewitab           = _mm_cvttps_epi32(ewrt);
1123             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1124             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1125                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1126                                          &ewtabF,&ewtabFn);
1127             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1128             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1129
1130             /* CUBIC SPLINE TABLE DISPERSION */
1131             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1132             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1133             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1134             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1135             _MM_TRANSPOSE4_PS(Y,F,G,H);
1136             Heps             = _mm_mul_ps(vfeps,H);
1137             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1138             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1139             fvdw6            = _mm_mul_ps(c6_00,FF);
1140
1141             /* CUBIC SPLINE TABLE REPULSION */
1142             vfitab           = _mm_add_epi32(vfitab,ifour);
1143             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1144             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1145             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1146             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1147             _MM_TRANSPOSE4_PS(Y,F,G,H);
1148             Heps             = _mm_mul_ps(vfeps,H);
1149             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1150             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1151             fvdw12           = _mm_mul_ps(c12_00,FF);
1152             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1153
1154             fscal            = _mm_add_ps(felec,fvdw);
1155
1156             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1157
1158             /* Calculate temporary vectorial force */
1159             tx               = _mm_mul_ps(fscal,dx00);
1160             ty               = _mm_mul_ps(fscal,dy00);
1161             tz               = _mm_mul_ps(fscal,dz00);
1162
1163             /* Update vectorial force */
1164             fix0             = _mm_add_ps(fix0,tx);
1165             fiy0             = _mm_add_ps(fiy0,ty);
1166             fiz0             = _mm_add_ps(fiz0,tz);
1167
1168             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1169             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1170             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1171             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1172             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1173             
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             r10              = _mm_mul_ps(rsq10,rinv10);
1179             r10              = _mm_andnot_ps(dummy_mask,r10);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq10             = _mm_mul_ps(iq1,jq0);
1183
1184             /* EWALD ELECTROSTATICS */
1185
1186             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1187             ewrt             = _mm_mul_ps(r10,ewtabscale);
1188             ewitab           = _mm_cvttps_epi32(ewrt);
1189             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1190             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1191                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1192                                          &ewtabF,&ewtabFn);
1193             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1194             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1195
1196             fscal            = felec;
1197
1198             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1199
1200             /* Calculate temporary vectorial force */
1201             tx               = _mm_mul_ps(fscal,dx10);
1202             ty               = _mm_mul_ps(fscal,dy10);
1203             tz               = _mm_mul_ps(fscal,dz10);
1204
1205             /* Update vectorial force */
1206             fix1             = _mm_add_ps(fix1,tx);
1207             fiy1             = _mm_add_ps(fiy1,ty);
1208             fiz1             = _mm_add_ps(fiz1,tz);
1209
1210             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1211             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1212             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1213             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1214             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1215             
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             r20              = _mm_mul_ps(rsq20,rinv20);
1221             r20              = _mm_andnot_ps(dummy_mask,r20);
1222
1223             /* Compute parameters for interactions between i and j atoms */
1224             qq20             = _mm_mul_ps(iq2,jq0);
1225
1226             /* EWALD ELECTROSTATICS */
1227
1228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1229             ewrt             = _mm_mul_ps(r20,ewtabscale);
1230             ewitab           = _mm_cvttps_epi32(ewrt);
1231             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1232             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1233                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1234                                          &ewtabF,&ewtabFn);
1235             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1236             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1237
1238             fscal            = felec;
1239
1240             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1241
1242             /* Calculate temporary vectorial force */
1243             tx               = _mm_mul_ps(fscal,dx20);
1244             ty               = _mm_mul_ps(fscal,dy20);
1245             tz               = _mm_mul_ps(fscal,dz20);
1246
1247             /* Update vectorial force */
1248             fix2             = _mm_add_ps(fix2,tx);
1249             fiy2             = _mm_add_ps(fiy2,ty);
1250             fiz2             = _mm_add_ps(fiz2,tz);
1251
1252             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1253             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1254             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1255             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1256             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1257             
1258             /* Inner loop uses 137 flops */
1259         }
1260
1261         /* End of innermost loop */
1262
1263         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1264                                               f+i_coord_offset,fshift+i_shift_offset);
1265
1266         /* Increment number of inner iterations */
1267         inneriter                  += j_index_end - j_index_start;
1268
1269         /* Outer loop uses 18 flops */
1270     }
1271
1272     /* Increment number of outer iterations */
1273     outeriter        += nri;
1274
1275     /* Update outer/inner flops */
1276
1277     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1278 }