980f076796da2a549840b93765622029f487b9a8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128i          ewitab;
101     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
128     ewtab            = fr->ic->tabq_coul_FDV0;
129     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
130     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }  
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163         
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202
203             rinv00           = gmx_mm_invsqrt_ps(rsq00);
204
205             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
209                                                               charge+jnrC+0,charge+jnrD+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212             vdwjidx0C        = 2*vdwtype[jnrC+0];
213             vdwjidx0D        = 2*vdwtype[jnrD+0];
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             r00              = _mm_mul_ps(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_ps(iq0,jq0);
223             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
224                                          vdwparam+vdwioffset0+vdwjidx0B,
225                                          vdwparam+vdwioffset0+vdwjidx0C,
226                                          vdwparam+vdwioffset0+vdwjidx0D,
227                                          &c6_00,&c12_00);
228
229             /* Calculate table index by multiplying r with table scale and truncate to integer */
230             rt               = _mm_mul_ps(r00,vftabscale);
231             vfitab           = _mm_cvttps_epi32(rt);
232             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
233             vfitab           = _mm_slli_epi32(vfitab,3);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _mm_mul_ps(r00,ewtabscale);
239             ewitab           = _mm_cvttps_epi32(ewrt);
240             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
241             ewitab           = _mm_slli_epi32(ewitab,2);
242             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
243             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
244             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
245             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
246             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
247             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
248             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
249             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
250             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
255             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
256             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
257             _MM_TRANSPOSE4_PS(Y,F,G,H);
258             Heps             = _mm_mul_ps(vfeps,H);
259             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
260             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
261             vvdw6            = _mm_mul_ps(c6_00,VV);
262             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
263             fvdw6            = _mm_mul_ps(c6_00,FF);
264
265             /* CUBIC SPLINE TABLE REPULSION */
266             vfitab           = _mm_add_epi32(vfitab,ifour);
267             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
268             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
269             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
270             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
271             _MM_TRANSPOSE4_PS(Y,F,G,H);
272             Heps             = _mm_mul_ps(vfeps,H);
273             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
274             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
275             vvdw12           = _mm_mul_ps(c12_00,VV);
276             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
277             fvdw12           = _mm_mul_ps(c12_00,FF);
278             vvdw             = _mm_add_ps(vvdw12,vvdw6);
279             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_ps(velecsum,velec);
283             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
284
285             fscal            = _mm_add_ps(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_ps(fscal,dx00);
289             ty               = _mm_mul_ps(fscal,dy00);
290             tz               = _mm_mul_ps(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_ps(fix0,tx);
294             fiy0             = _mm_add_ps(fiy0,ty);
295             fiz0             = _mm_add_ps(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302             
303             /* Inner loop uses 75 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317              */
318             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
320             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
321             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
322             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
323             j_coord_offsetA  = DIM*jnrA;
324             j_coord_offsetB  = DIM*jnrB;
325             j_coord_offsetC  = DIM*jnrC;
326             j_coord_offsetD  = DIM*jnrD;
327
328             /* load j atom coordinates */
329             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
330                                               x+j_coord_offsetC,x+j_coord_offsetD,
331                                               &jx0,&jy0,&jz0);
332
333             /* Calculate displacement vector */
334             dx00             = _mm_sub_ps(ix0,jx0);
335             dy00             = _mm_sub_ps(iy0,jy0);
336             dz00             = _mm_sub_ps(iz0,jz0);
337
338             /* Calculate squared distance and things based on it */
339             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
340
341             rinv00           = gmx_mm_invsqrt_ps(rsq00);
342
343             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
344
345             /* Load parameters for j particles */
346             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
347                                                               charge+jnrC+0,charge+jnrD+0);
348             vdwjidx0A        = 2*vdwtype[jnrA+0];
349             vdwjidx0B        = 2*vdwtype[jnrB+0];
350             vdwjidx0C        = 2*vdwtype[jnrC+0];
351             vdwjidx0D        = 2*vdwtype[jnrD+0];
352
353             /**************************
354              * CALCULATE INTERACTIONS *
355              **************************/
356
357             r00              = _mm_mul_ps(rsq00,rinv00);
358             r00              = _mm_andnot_ps(dummy_mask,r00);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq00             = _mm_mul_ps(iq0,jq0);
362             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
363                                          vdwparam+vdwioffset0+vdwjidx0B,
364                                          vdwparam+vdwioffset0+vdwjidx0C,
365                                          vdwparam+vdwioffset0+vdwjidx0D,
366                                          &c6_00,&c12_00);
367
368             /* Calculate table index by multiplying r with table scale and truncate to integer */
369             rt               = _mm_mul_ps(r00,vftabscale);
370             vfitab           = _mm_cvttps_epi32(rt);
371             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
372             vfitab           = _mm_slli_epi32(vfitab,3);
373
374             /* EWALD ELECTROSTATICS */
375
376             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377             ewrt             = _mm_mul_ps(r00,ewtabscale);
378             ewitab           = _mm_cvttps_epi32(ewrt);
379             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
380             ewitab           = _mm_slli_epi32(ewitab,2);
381             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
382             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
383             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
384             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
385             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
386             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
387             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
388             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
389             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
390
391             /* CUBIC SPLINE TABLE DISPERSION */
392             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
393             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
394             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
395             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
396             _MM_TRANSPOSE4_PS(Y,F,G,H);
397             Heps             = _mm_mul_ps(vfeps,H);
398             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
399             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
400             vvdw6            = _mm_mul_ps(c6_00,VV);
401             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
402             fvdw6            = _mm_mul_ps(c6_00,FF);
403
404             /* CUBIC SPLINE TABLE REPULSION */
405             vfitab           = _mm_add_epi32(vfitab,ifour);
406             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
407             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
408             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
409             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
410             _MM_TRANSPOSE4_PS(Y,F,G,H);
411             Heps             = _mm_mul_ps(vfeps,H);
412             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
413             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
414             vvdw12           = _mm_mul_ps(c12_00,VV);
415             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
416             fvdw12           = _mm_mul_ps(c12_00,FF);
417             vvdw             = _mm_add_ps(vvdw12,vvdw6);
418             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_andnot_ps(dummy_mask,velec);
422             velecsum         = _mm_add_ps(velecsum,velec);
423             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
424             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
425
426             fscal            = _mm_add_ps(felec,fvdw);
427
428             fscal            = _mm_andnot_ps(dummy_mask,fscal);
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm_mul_ps(fscal,dx00);
432             ty               = _mm_mul_ps(fscal,dy00);
433             tz               = _mm_mul_ps(fscal,dz00);
434
435             /* Update vectorial force */
436             fix0             = _mm_add_ps(fix0,tx);
437             fiy0             = _mm_add_ps(fiy0,ty);
438             fiz0             = _mm_add_ps(fiz0,tz);
439
440             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
441             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
442             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
443             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
444             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
445             
446             /* Inner loop uses 76 flops */
447         }
448
449         /* End of innermost loop */
450
451         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
452                                               f+i_coord_offset,fshift+i_shift_offset);
453
454         ggid                        = gid[iidx];
455         /* Update potential energies */
456         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
457         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
458
459         /* Increment number of inner iterations */
460         inneriter                  += j_index_end - j_index_start;
461
462         /* Outer loop uses 9 flops */
463     }
464
465     /* Increment number of outer iterations */
466     outeriter        += nri;
467
468     /* Update outer/inner flops */
469
470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
471 }
472 /*
473  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse2_single
474  * Electrostatics interaction: Ewald
475  * VdW interaction:            CubicSplineTable
476  * Geometry:                   Particle-Particle
477  * Calculate force/pot:        Force
478  */
479 void
480 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_sse2_single
481                     (t_nblist                    * gmx_restrict       nlist,
482                      rvec                        * gmx_restrict          xx,
483                      rvec                        * gmx_restrict          ff,
484                      t_forcerec                  * gmx_restrict          fr,
485                      t_mdatoms                   * gmx_restrict     mdatoms,
486                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
487                      t_nrnb                      * gmx_restrict        nrnb)
488 {
489     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
490      * just 0 for non-waters.
491      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
492      * jnr indices corresponding to data put in the four positions in the SIMD register.
493      */
494     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
495     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496     int              jnrA,jnrB,jnrC,jnrD;
497     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
498     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
500     real             rcutoff_scalar;
501     real             *shiftvec,*fshift,*x,*f;
502     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
503     real             scratch[4*DIM];
504     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
505     int              vdwioffset0;
506     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
507     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
508     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
509     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
510     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
511     real             *charge;
512     int              nvdwtype;
513     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
514     int              *vdwtype;
515     real             *vdwparam;
516     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
517     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
518     __m128i          vfitab;
519     __m128i          ifour       = _mm_set1_epi32(4);
520     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
521     real             *vftab;
522     __m128i          ewitab;
523     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
524     real             *ewtab;
525     __m128           dummy_mask,cutoff_mask;
526     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
527     __m128           one     = _mm_set1_ps(1.0);
528     __m128           two     = _mm_set1_ps(2.0);
529     x                = xx[0];
530     f                = ff[0];
531
532     nri              = nlist->nri;
533     iinr             = nlist->iinr;
534     jindex           = nlist->jindex;
535     jjnr             = nlist->jjnr;
536     shiftidx         = nlist->shift;
537     gid              = nlist->gid;
538     shiftvec         = fr->shift_vec[0];
539     fshift           = fr->fshift[0];
540     facel            = _mm_set1_ps(fr->epsfac);
541     charge           = mdatoms->chargeA;
542     nvdwtype         = fr->ntype;
543     vdwparam         = fr->nbfp;
544     vdwtype          = mdatoms->typeA;
545
546     vftab            = kernel_data->table_vdw->data;
547     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
548
549     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
550     ewtab            = fr->ic->tabq_coul_F;
551     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
552     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
553
554     /* Avoid stupid compiler warnings */
555     jnrA = jnrB = jnrC = jnrD = 0;
556     j_coord_offsetA = 0;
557     j_coord_offsetB = 0;
558     j_coord_offsetC = 0;
559     j_coord_offsetD = 0;
560
561     outeriter        = 0;
562     inneriter        = 0;
563
564     for(iidx=0;iidx<4*DIM;iidx++)
565     {
566         scratch[iidx] = 0.0;
567     }  
568
569     /* Start outer loop over neighborlists */
570     for(iidx=0; iidx<nri; iidx++)
571     {
572         /* Load shift vector for this list */
573         i_shift_offset   = DIM*shiftidx[iidx];
574
575         /* Load limits for loop over neighbors */
576         j_index_start    = jindex[iidx];
577         j_index_end      = jindex[iidx+1];
578
579         /* Get outer coordinate index */
580         inr              = iinr[iidx];
581         i_coord_offset   = DIM*inr;
582
583         /* Load i particle coords and add shift vector */
584         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
585         
586         fix0             = _mm_setzero_ps();
587         fiy0             = _mm_setzero_ps();
588         fiz0             = _mm_setzero_ps();
589
590         /* Load parameters for i particles */
591         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
592         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
593
594         /* Start inner kernel loop */
595         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
596         {
597
598             /* Get j neighbor index, and coordinate index */
599             jnrA             = jjnr[jidx];
600             jnrB             = jjnr[jidx+1];
601             jnrC             = jjnr[jidx+2];
602             jnrD             = jjnr[jidx+3];
603             j_coord_offsetA  = DIM*jnrA;
604             j_coord_offsetB  = DIM*jnrB;
605             j_coord_offsetC  = DIM*jnrC;
606             j_coord_offsetD  = DIM*jnrD;
607
608             /* load j atom coordinates */
609             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
610                                               x+j_coord_offsetC,x+j_coord_offsetD,
611                                               &jx0,&jy0,&jz0);
612
613             /* Calculate displacement vector */
614             dx00             = _mm_sub_ps(ix0,jx0);
615             dy00             = _mm_sub_ps(iy0,jy0);
616             dz00             = _mm_sub_ps(iz0,jz0);
617
618             /* Calculate squared distance and things based on it */
619             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
620
621             rinv00           = gmx_mm_invsqrt_ps(rsq00);
622
623             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
624
625             /* Load parameters for j particles */
626             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
627                                                               charge+jnrC+0,charge+jnrD+0);
628             vdwjidx0A        = 2*vdwtype[jnrA+0];
629             vdwjidx0B        = 2*vdwtype[jnrB+0];
630             vdwjidx0C        = 2*vdwtype[jnrC+0];
631             vdwjidx0D        = 2*vdwtype[jnrD+0];
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             r00              = _mm_mul_ps(rsq00,rinv00);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq00             = _mm_mul_ps(iq0,jq0);
641             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
642                                          vdwparam+vdwioffset0+vdwjidx0B,
643                                          vdwparam+vdwioffset0+vdwjidx0C,
644                                          vdwparam+vdwioffset0+vdwjidx0D,
645                                          &c6_00,&c12_00);
646
647             /* Calculate table index by multiplying r with table scale and truncate to integer */
648             rt               = _mm_mul_ps(r00,vftabscale);
649             vfitab           = _mm_cvttps_epi32(rt);
650             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
651             vfitab           = _mm_slli_epi32(vfitab,3);
652
653             /* EWALD ELECTROSTATICS */
654
655             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656             ewrt             = _mm_mul_ps(r00,ewtabscale);
657             ewitab           = _mm_cvttps_epi32(ewrt);
658             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
659             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
660                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
661                                          &ewtabF,&ewtabFn);
662             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
663             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
664
665             /* CUBIC SPLINE TABLE DISPERSION */
666             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
667             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
668             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
669             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
670             _MM_TRANSPOSE4_PS(Y,F,G,H);
671             Heps             = _mm_mul_ps(vfeps,H);
672             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
673             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
674             fvdw6            = _mm_mul_ps(c6_00,FF);
675
676             /* CUBIC SPLINE TABLE REPULSION */
677             vfitab           = _mm_add_epi32(vfitab,ifour);
678             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
679             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
680             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
681             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
682             _MM_TRANSPOSE4_PS(Y,F,G,H);
683             Heps             = _mm_mul_ps(vfeps,H);
684             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
685             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
686             fvdw12           = _mm_mul_ps(c12_00,FF);
687             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
688
689             fscal            = _mm_add_ps(felec,fvdw);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_ps(fscal,dx00);
693             ty               = _mm_mul_ps(fscal,dy00);
694             tz               = _mm_mul_ps(fscal,dz00);
695
696             /* Update vectorial force */
697             fix0             = _mm_add_ps(fix0,tx);
698             fiy0             = _mm_add_ps(fiy0,ty);
699             fiz0             = _mm_add_ps(fiz0,tz);
700
701             fjptrA             = f+j_coord_offsetA;
702             fjptrB             = f+j_coord_offsetB;
703             fjptrC             = f+j_coord_offsetC;
704             fjptrD             = f+j_coord_offsetD;
705             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
706             
707             /* Inner loop uses 62 flops */
708         }
709
710         if(jidx<j_index_end)
711         {
712
713             /* Get j neighbor index, and coordinate index */
714             jnrlistA         = jjnr[jidx];
715             jnrlistB         = jjnr[jidx+1];
716             jnrlistC         = jjnr[jidx+2];
717             jnrlistD         = jjnr[jidx+3];
718             /* Sign of each element will be negative for non-real atoms.
719              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
720              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
721              */
722             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
723             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
724             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
725             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
726             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
727             j_coord_offsetA  = DIM*jnrA;
728             j_coord_offsetB  = DIM*jnrB;
729             j_coord_offsetC  = DIM*jnrC;
730             j_coord_offsetD  = DIM*jnrD;
731
732             /* load j atom coordinates */
733             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
734                                               x+j_coord_offsetC,x+j_coord_offsetD,
735                                               &jx0,&jy0,&jz0);
736
737             /* Calculate displacement vector */
738             dx00             = _mm_sub_ps(ix0,jx0);
739             dy00             = _mm_sub_ps(iy0,jy0);
740             dz00             = _mm_sub_ps(iz0,jz0);
741
742             /* Calculate squared distance and things based on it */
743             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
744
745             rinv00           = gmx_mm_invsqrt_ps(rsq00);
746
747             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
748
749             /* Load parameters for j particles */
750             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
751                                                               charge+jnrC+0,charge+jnrD+0);
752             vdwjidx0A        = 2*vdwtype[jnrA+0];
753             vdwjidx0B        = 2*vdwtype[jnrB+0];
754             vdwjidx0C        = 2*vdwtype[jnrC+0];
755             vdwjidx0D        = 2*vdwtype[jnrD+0];
756
757             /**************************
758              * CALCULATE INTERACTIONS *
759              **************************/
760
761             r00              = _mm_mul_ps(rsq00,rinv00);
762             r00              = _mm_andnot_ps(dummy_mask,r00);
763
764             /* Compute parameters for interactions between i and j atoms */
765             qq00             = _mm_mul_ps(iq0,jq0);
766             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
767                                          vdwparam+vdwioffset0+vdwjidx0B,
768                                          vdwparam+vdwioffset0+vdwjidx0C,
769                                          vdwparam+vdwioffset0+vdwjidx0D,
770                                          &c6_00,&c12_00);
771
772             /* Calculate table index by multiplying r with table scale and truncate to integer */
773             rt               = _mm_mul_ps(r00,vftabscale);
774             vfitab           = _mm_cvttps_epi32(rt);
775             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
776             vfitab           = _mm_slli_epi32(vfitab,3);
777
778             /* EWALD ELECTROSTATICS */
779
780             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
781             ewrt             = _mm_mul_ps(r00,ewtabscale);
782             ewitab           = _mm_cvttps_epi32(ewrt);
783             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
784             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
785                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
786                                          &ewtabF,&ewtabFn);
787             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
788             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
789
790             /* CUBIC SPLINE TABLE DISPERSION */
791             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
792             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
793             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
794             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
795             _MM_TRANSPOSE4_PS(Y,F,G,H);
796             Heps             = _mm_mul_ps(vfeps,H);
797             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
798             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
799             fvdw6            = _mm_mul_ps(c6_00,FF);
800
801             /* CUBIC SPLINE TABLE REPULSION */
802             vfitab           = _mm_add_epi32(vfitab,ifour);
803             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
804             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
805             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
806             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
807             _MM_TRANSPOSE4_PS(Y,F,G,H);
808             Heps             = _mm_mul_ps(vfeps,H);
809             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
810             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
811             fvdw12           = _mm_mul_ps(c12_00,FF);
812             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
813
814             fscal            = _mm_add_ps(felec,fvdw);
815
816             fscal            = _mm_andnot_ps(dummy_mask,fscal);
817
818             /* Calculate temporary vectorial force */
819             tx               = _mm_mul_ps(fscal,dx00);
820             ty               = _mm_mul_ps(fscal,dy00);
821             tz               = _mm_mul_ps(fscal,dz00);
822
823             /* Update vectorial force */
824             fix0             = _mm_add_ps(fix0,tx);
825             fiy0             = _mm_add_ps(fiy0,ty);
826             fiz0             = _mm_add_ps(fiz0,tz);
827
828             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
829             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
830             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
831             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
832             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
833             
834             /* Inner loop uses 63 flops */
835         }
836
837         /* End of innermost loop */
838
839         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
840                                               f+i_coord_offset,fshift+i_shift_offset);
841
842         /* Increment number of inner iterations */
843         inneriter                  += j_index_end - j_index_start;
844
845         /* Outer loop uses 7 flops */
846     }
847
848     /* Increment number of outer iterations */
849     outeriter        += nri;
850
851     /* Update outer/inner flops */
852
853     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
854 }