Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->epsfac);
119     charge           = mdatoms->chargeA;
120
121     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
129     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
130     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->rcoulomb;
134     rcutoff          = _mm_set1_ps(rcutoff_scalar);
135     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
136
137     rswitch_scalar   = fr->rcoulomb_switch;
138     rswitch          = _mm_set1_ps(rswitch_scalar);
139     /* Setup switch parameters */
140     d_scalar         = rcutoff_scalar-rswitch_scalar;
141     d                = _mm_set1_ps(d_scalar);
142     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
143     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
146     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
147     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = jnrC = jnrD = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153     j_coord_offsetC = 0;
154     j_coord_offsetD = 0;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     for(iidx=0;iidx<4*DIM;iidx++)
160     {
161         scratch[iidx] = 0.0;
162     }  
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169
170         /* Load limits for loop over neighbors */
171         j_index_start    = jindex[iidx];
172         j_index_end      = jindex[iidx+1];
173
174         /* Get outer coordinate index */
175         inr              = iinr[iidx];
176         i_coord_offset   = DIM*inr;
177
178         /* Load i particle coords and add shift vector */
179         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
180                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
181         
182         fix1             = _mm_setzero_ps();
183         fiy1             = _mm_setzero_ps();
184         fiz1             = _mm_setzero_ps();
185         fix2             = _mm_setzero_ps();
186         fiy2             = _mm_setzero_ps();
187         fiz2             = _mm_setzero_ps();
188         fix3             = _mm_setzero_ps();
189         fiy3             = _mm_setzero_ps();
190         fiz3             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221             dx30             = _mm_sub_ps(ix3,jx0);
222             dy30             = _mm_sub_ps(iy3,jy0);
223             dz30             = _mm_sub_ps(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
229
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
240                                                               charge+jnrC+0,charge+jnrD+0);
241
242             fjx0             = _mm_setzero_ps();
243             fjy0             = _mm_setzero_ps();
244             fjz0             = _mm_setzero_ps();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             if (gmx_mm_any_lt(rsq10,rcutoff2))
251             {
252
253             r10              = _mm_mul_ps(rsq10,rinv10);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq10             = _mm_mul_ps(iq1,jq0);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm_mul_ps(r10,ewtabscale);
262             ewitab           = _mm_cvttps_epi32(ewrt);
263             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
267             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
268             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
269             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
270             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
271             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
272             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
273             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
274
275             d                = _mm_sub_ps(r10,rswitch);
276             d                = _mm_max_ps(d,_mm_setzero_ps());
277             d2               = _mm_mul_ps(d,d);
278             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
279
280             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
281
282             /* Evaluate switch function */
283             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
284             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
285             velec            = _mm_mul_ps(velec,sw);
286             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
287
288             /* Update potential sum for this i atom from the interaction with this j atom. */
289             velec            = _mm_and_ps(velec,cutoff_mask);
290             velecsum         = _mm_add_ps(velecsum,velec);
291
292             fscal            = felec;
293
294             fscal            = _mm_and_ps(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_ps(fscal,dx10);
298             ty               = _mm_mul_ps(fscal,dy10);
299             tz               = _mm_mul_ps(fscal,dz10);
300
301             /* Update vectorial force */
302             fix1             = _mm_add_ps(fix1,tx);
303             fiy1             = _mm_add_ps(fiy1,ty);
304             fiz1             = _mm_add_ps(fiz1,tz);
305
306             fjx0             = _mm_add_ps(fjx0,tx);
307             fjy0             = _mm_add_ps(fjy0,ty);
308             fjz0             = _mm_add_ps(fjz0,tz);
309             
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq20,rcutoff2))
317             {
318
319             r20              = _mm_mul_ps(rsq20,rinv20);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq20             = _mm_mul_ps(iq2,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm_mul_ps(r20,ewtabscale);
328             ewitab           = _mm_cvttps_epi32(ewrt);
329             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
333             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
334             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
335             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
336             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
337             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
338             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
339             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
340
341             d                = _mm_sub_ps(r20,rswitch);
342             d                = _mm_max_ps(d,_mm_setzero_ps());
343             d2               = _mm_mul_ps(d,d);
344             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
345
346             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
347
348             /* Evaluate switch function */
349             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
350             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
351             velec            = _mm_mul_ps(velec,sw);
352             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm_and_ps(velec,cutoff_mask);
356             velecsum         = _mm_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm_and_ps(fscal,cutoff_mask);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_ps(fscal,dx20);
364             ty               = _mm_mul_ps(fscal,dy20);
365             tz               = _mm_mul_ps(fscal,dz20);
366
367             /* Update vectorial force */
368             fix2             = _mm_add_ps(fix2,tx);
369             fiy2             = _mm_add_ps(fiy2,ty);
370             fiz2             = _mm_add_ps(fiz2,tz);
371
372             fjx0             = _mm_add_ps(fjx0,tx);
373             fjy0             = _mm_add_ps(fjy0,ty);
374             fjz0             = _mm_add_ps(fjz0,tz);
375             
376             }
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             if (gmx_mm_any_lt(rsq30,rcutoff2))
383             {
384
385             r30              = _mm_mul_ps(rsq30,rinv30);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq30             = _mm_mul_ps(iq3,jq0);
389
390             /* EWALD ELECTROSTATICS */
391
392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393             ewrt             = _mm_mul_ps(r30,ewtabscale);
394             ewitab           = _mm_cvttps_epi32(ewrt);
395             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
396             ewitab           = _mm_slli_epi32(ewitab,2);
397             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
398             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
399             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
400             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
401             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
402             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
403             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
404             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
405             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
406
407             d                = _mm_sub_ps(r30,rswitch);
408             d                = _mm_max_ps(d,_mm_setzero_ps());
409             d2               = _mm_mul_ps(d,d);
410             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
411
412             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
413
414             /* Evaluate switch function */
415             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
416             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
417             velec            = _mm_mul_ps(velec,sw);
418             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             velec            = _mm_and_ps(velec,cutoff_mask);
422             velecsum         = _mm_add_ps(velecsum,velec);
423
424             fscal            = felec;
425
426             fscal            = _mm_and_ps(fscal,cutoff_mask);
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_ps(fscal,dx30);
430             ty               = _mm_mul_ps(fscal,dy30);
431             tz               = _mm_mul_ps(fscal,dz30);
432
433             /* Update vectorial force */
434             fix3             = _mm_add_ps(fix3,tx);
435             fiy3             = _mm_add_ps(fiy3,ty);
436             fiz3             = _mm_add_ps(fiz3,tz);
437
438             fjx0             = _mm_add_ps(fjx0,tx);
439             fjy0             = _mm_add_ps(fjy0,ty);
440             fjz0             = _mm_add_ps(fjz0,tz);
441             
442             }
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448
449             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
450
451             /* Inner loop uses 195 flops */
452         }
453
454         if(jidx<j_index_end)
455         {
456
457             /* Get j neighbor index, and coordinate index */
458             jnrlistA         = jjnr[jidx];
459             jnrlistB         = jjnr[jidx+1];
460             jnrlistC         = jjnr[jidx+2];
461             jnrlistD         = jjnr[jidx+3];
462             /* Sign of each element will be negative for non-real atoms.
463              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
464              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
465              */
466             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
467             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
468             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
469             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
470             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473             j_coord_offsetC  = DIM*jnrC;
474             j_coord_offsetD  = DIM*jnrD;
475
476             /* load j atom coordinates */
477             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
478                                               x+j_coord_offsetC,x+j_coord_offsetD,
479                                               &jx0,&jy0,&jz0);
480
481             /* Calculate displacement vector */
482             dx10             = _mm_sub_ps(ix1,jx0);
483             dy10             = _mm_sub_ps(iy1,jy0);
484             dz10             = _mm_sub_ps(iz1,jz0);
485             dx20             = _mm_sub_ps(ix2,jx0);
486             dy20             = _mm_sub_ps(iy2,jy0);
487             dz20             = _mm_sub_ps(iz2,jz0);
488             dx30             = _mm_sub_ps(ix3,jx0);
489             dy30             = _mm_sub_ps(iy3,jy0);
490             dz30             = _mm_sub_ps(iz3,jz0);
491
492             /* Calculate squared distance and things based on it */
493             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
494             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
495             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
496
497             rinv10           = gmx_mm_invsqrt_ps(rsq10);
498             rinv20           = gmx_mm_invsqrt_ps(rsq20);
499             rinv30           = gmx_mm_invsqrt_ps(rsq30);
500
501             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
502             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
503             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
504
505             /* Load parameters for j particles */
506             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
507                                                               charge+jnrC+0,charge+jnrD+0);
508
509             fjx0             = _mm_setzero_ps();
510             fjy0             = _mm_setzero_ps();
511             fjz0             = _mm_setzero_ps();
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             if (gmx_mm_any_lt(rsq10,rcutoff2))
518             {
519
520             r10              = _mm_mul_ps(rsq10,rinv10);
521             r10              = _mm_andnot_ps(dummy_mask,r10);
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq10             = _mm_mul_ps(iq1,jq0);
525
526             /* EWALD ELECTROSTATICS */
527
528             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
529             ewrt             = _mm_mul_ps(r10,ewtabscale);
530             ewitab           = _mm_cvttps_epi32(ewrt);
531             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
532             ewitab           = _mm_slli_epi32(ewitab,2);
533             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
534             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
535             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
536             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
537             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
538             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
539             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
540             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
541             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
542
543             d                = _mm_sub_ps(r10,rswitch);
544             d                = _mm_max_ps(d,_mm_setzero_ps());
545             d2               = _mm_mul_ps(d,d);
546             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
547
548             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
549
550             /* Evaluate switch function */
551             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
552             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
553             velec            = _mm_mul_ps(velec,sw);
554             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
555
556             /* Update potential sum for this i atom from the interaction with this j atom. */
557             velec            = _mm_and_ps(velec,cutoff_mask);
558             velec            = _mm_andnot_ps(dummy_mask,velec);
559             velecsum         = _mm_add_ps(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_and_ps(fscal,cutoff_mask);
564
565             fscal            = _mm_andnot_ps(dummy_mask,fscal);
566
567             /* Calculate temporary vectorial force */
568             tx               = _mm_mul_ps(fscal,dx10);
569             ty               = _mm_mul_ps(fscal,dy10);
570             tz               = _mm_mul_ps(fscal,dz10);
571
572             /* Update vectorial force */
573             fix1             = _mm_add_ps(fix1,tx);
574             fiy1             = _mm_add_ps(fiy1,ty);
575             fiz1             = _mm_add_ps(fiz1,tz);
576
577             fjx0             = _mm_add_ps(fjx0,tx);
578             fjy0             = _mm_add_ps(fjy0,ty);
579             fjz0             = _mm_add_ps(fjz0,tz);
580             
581             }
582
583             /**************************
584              * CALCULATE INTERACTIONS *
585              **************************/
586
587             if (gmx_mm_any_lt(rsq20,rcutoff2))
588             {
589
590             r20              = _mm_mul_ps(rsq20,rinv20);
591             r20              = _mm_andnot_ps(dummy_mask,r20);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq20             = _mm_mul_ps(iq2,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_ps(r20,ewtabscale);
600             ewitab           = _mm_cvttps_epi32(ewrt);
601             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
606             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
607             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
608             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
611             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
612
613             d                = _mm_sub_ps(r20,rswitch);
614             d                = _mm_max_ps(d,_mm_setzero_ps());
615             d2               = _mm_mul_ps(d,d);
616             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
617
618             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
619
620             /* Evaluate switch function */
621             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
622             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
623             velec            = _mm_mul_ps(velec,sw);
624             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             velec            = _mm_and_ps(velec,cutoff_mask);
628             velec            = _mm_andnot_ps(dummy_mask,velec);
629             velecsum         = _mm_add_ps(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm_and_ps(fscal,cutoff_mask);
634
635             fscal            = _mm_andnot_ps(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm_mul_ps(fscal,dx20);
639             ty               = _mm_mul_ps(fscal,dy20);
640             tz               = _mm_mul_ps(fscal,dz20);
641
642             /* Update vectorial force */
643             fix2             = _mm_add_ps(fix2,tx);
644             fiy2             = _mm_add_ps(fiy2,ty);
645             fiz2             = _mm_add_ps(fiz2,tz);
646
647             fjx0             = _mm_add_ps(fjx0,tx);
648             fjy0             = _mm_add_ps(fjy0,ty);
649             fjz0             = _mm_add_ps(fjz0,tz);
650             
651             }
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             if (gmx_mm_any_lt(rsq30,rcutoff2))
658             {
659
660             r30              = _mm_mul_ps(rsq30,rinv30);
661             r30              = _mm_andnot_ps(dummy_mask,r30);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq30             = _mm_mul_ps(iq3,jq0);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
669             ewrt             = _mm_mul_ps(r30,ewtabscale);
670             ewitab           = _mm_cvttps_epi32(ewrt);
671             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
672             ewitab           = _mm_slli_epi32(ewitab,2);
673             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
674             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
675             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
676             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
677             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
678             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
679             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
680             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
681             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
682
683             d                = _mm_sub_ps(r30,rswitch);
684             d                = _mm_max_ps(d,_mm_setzero_ps());
685             d2               = _mm_mul_ps(d,d);
686             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
687
688             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
689
690             /* Evaluate switch function */
691             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
692             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
693             velec            = _mm_mul_ps(velec,sw);
694             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
695
696             /* Update potential sum for this i atom from the interaction with this j atom. */
697             velec            = _mm_and_ps(velec,cutoff_mask);
698             velec            = _mm_andnot_ps(dummy_mask,velec);
699             velecsum         = _mm_add_ps(velecsum,velec);
700
701             fscal            = felec;
702
703             fscal            = _mm_and_ps(fscal,cutoff_mask);
704
705             fscal            = _mm_andnot_ps(dummy_mask,fscal);
706
707             /* Calculate temporary vectorial force */
708             tx               = _mm_mul_ps(fscal,dx30);
709             ty               = _mm_mul_ps(fscal,dy30);
710             tz               = _mm_mul_ps(fscal,dz30);
711
712             /* Update vectorial force */
713             fix3             = _mm_add_ps(fix3,tx);
714             fiy3             = _mm_add_ps(fiy3,ty);
715             fiz3             = _mm_add_ps(fiz3,tz);
716
717             fjx0             = _mm_add_ps(fjx0,tx);
718             fjy0             = _mm_add_ps(fjy0,ty);
719             fjz0             = _mm_add_ps(fjz0,tz);
720             
721             }
722
723             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
724             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
725             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
726             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
727
728             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
729
730             /* Inner loop uses 198 flops */
731         }
732
733         /* End of innermost loop */
734
735         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
736                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
737
738         ggid                        = gid[iidx];
739         /* Update potential energies */
740         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
741
742         /* Increment number of inner iterations */
743         inneriter                  += j_index_end - j_index_start;
744
745         /* Outer loop uses 19 flops */
746     }
747
748     /* Increment number of outer iterations */
749     outeriter        += nri;
750
751     /* Update outer/inner flops */
752
753     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*198);
754 }
755 /*
756  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
757  * Electrostatics interaction: Ewald
758  * VdW interaction:            None
759  * Geometry:                   Water4-Particle
760  * Calculate force/pot:        Force
761  */
762 void
763 nb_kernel_ElecEwSw_VdwNone_GeomW4P1_F_sse2_single
764                     (t_nblist                    * gmx_restrict       nlist,
765                      rvec                        * gmx_restrict          xx,
766                      rvec                        * gmx_restrict          ff,
767                      t_forcerec                  * gmx_restrict          fr,
768                      t_mdatoms                   * gmx_restrict     mdatoms,
769                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
770                      t_nrnb                      * gmx_restrict        nrnb)
771 {
772     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
773      * just 0 for non-waters.
774      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
775      * jnr indices corresponding to data put in the four positions in the SIMD register.
776      */
777     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
778     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
779     int              jnrA,jnrB,jnrC,jnrD;
780     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
781     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
782     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
783     real             rcutoff_scalar;
784     real             *shiftvec,*fshift,*x,*f;
785     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
786     real             scratch[4*DIM];
787     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
788     int              vdwioffset1;
789     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
790     int              vdwioffset2;
791     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
792     int              vdwioffset3;
793     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
794     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
795     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
796     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
797     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
798     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
799     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
800     real             *charge;
801     __m128i          ewitab;
802     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
803     real             *ewtab;
804     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
805     real             rswitch_scalar,d_scalar;
806     __m128           dummy_mask,cutoff_mask;
807     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
808     __m128           one     = _mm_set1_ps(1.0);
809     __m128           two     = _mm_set1_ps(2.0);
810     x                = xx[0];
811     f                = ff[0];
812
813     nri              = nlist->nri;
814     iinr             = nlist->iinr;
815     jindex           = nlist->jindex;
816     jjnr             = nlist->jjnr;
817     shiftidx         = nlist->shift;
818     gid              = nlist->gid;
819     shiftvec         = fr->shift_vec[0];
820     fshift           = fr->fshift[0];
821     facel            = _mm_set1_ps(fr->epsfac);
822     charge           = mdatoms->chargeA;
823
824     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
825     ewtab            = fr->ic->tabq_coul_FDV0;
826     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
827     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
828
829     /* Setup water-specific parameters */
830     inr              = nlist->iinr[0];
831     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
832     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
833     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
834
835     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
836     rcutoff_scalar   = fr->rcoulomb;
837     rcutoff          = _mm_set1_ps(rcutoff_scalar);
838     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
839
840     rswitch_scalar   = fr->rcoulomb_switch;
841     rswitch          = _mm_set1_ps(rswitch_scalar);
842     /* Setup switch parameters */
843     d_scalar         = rcutoff_scalar-rswitch_scalar;
844     d                = _mm_set1_ps(d_scalar);
845     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
846     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
847     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
848     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
849     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
850     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
851
852     /* Avoid stupid compiler warnings */
853     jnrA = jnrB = jnrC = jnrD = 0;
854     j_coord_offsetA = 0;
855     j_coord_offsetB = 0;
856     j_coord_offsetC = 0;
857     j_coord_offsetD = 0;
858
859     outeriter        = 0;
860     inneriter        = 0;
861
862     for(iidx=0;iidx<4*DIM;iidx++)
863     {
864         scratch[iidx] = 0.0;
865     }  
866
867     /* Start outer loop over neighborlists */
868     for(iidx=0; iidx<nri; iidx++)
869     {
870         /* Load shift vector for this list */
871         i_shift_offset   = DIM*shiftidx[iidx];
872
873         /* Load limits for loop over neighbors */
874         j_index_start    = jindex[iidx];
875         j_index_end      = jindex[iidx+1];
876
877         /* Get outer coordinate index */
878         inr              = iinr[iidx];
879         i_coord_offset   = DIM*inr;
880
881         /* Load i particle coords and add shift vector */
882         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
883                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
884         
885         fix1             = _mm_setzero_ps();
886         fiy1             = _mm_setzero_ps();
887         fiz1             = _mm_setzero_ps();
888         fix2             = _mm_setzero_ps();
889         fiy2             = _mm_setzero_ps();
890         fiz2             = _mm_setzero_ps();
891         fix3             = _mm_setzero_ps();
892         fiy3             = _mm_setzero_ps();
893         fiz3             = _mm_setzero_ps();
894
895         /* Start inner kernel loop */
896         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
897         {
898
899             /* Get j neighbor index, and coordinate index */
900             jnrA             = jjnr[jidx];
901             jnrB             = jjnr[jidx+1];
902             jnrC             = jjnr[jidx+2];
903             jnrD             = jjnr[jidx+3];
904             j_coord_offsetA  = DIM*jnrA;
905             j_coord_offsetB  = DIM*jnrB;
906             j_coord_offsetC  = DIM*jnrC;
907             j_coord_offsetD  = DIM*jnrD;
908
909             /* load j atom coordinates */
910             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
911                                               x+j_coord_offsetC,x+j_coord_offsetD,
912                                               &jx0,&jy0,&jz0);
913
914             /* Calculate displacement vector */
915             dx10             = _mm_sub_ps(ix1,jx0);
916             dy10             = _mm_sub_ps(iy1,jy0);
917             dz10             = _mm_sub_ps(iz1,jz0);
918             dx20             = _mm_sub_ps(ix2,jx0);
919             dy20             = _mm_sub_ps(iy2,jy0);
920             dz20             = _mm_sub_ps(iz2,jz0);
921             dx30             = _mm_sub_ps(ix3,jx0);
922             dy30             = _mm_sub_ps(iy3,jy0);
923             dz30             = _mm_sub_ps(iz3,jz0);
924
925             /* Calculate squared distance and things based on it */
926             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
927             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
928             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
929
930             rinv10           = gmx_mm_invsqrt_ps(rsq10);
931             rinv20           = gmx_mm_invsqrt_ps(rsq20);
932             rinv30           = gmx_mm_invsqrt_ps(rsq30);
933
934             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
935             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
936             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
937
938             /* Load parameters for j particles */
939             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
940                                                               charge+jnrC+0,charge+jnrD+0);
941
942             fjx0             = _mm_setzero_ps();
943             fjy0             = _mm_setzero_ps();
944             fjz0             = _mm_setzero_ps();
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             if (gmx_mm_any_lt(rsq10,rcutoff2))
951             {
952
953             r10              = _mm_mul_ps(rsq10,rinv10);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm_mul_ps(iq1,jq0);
957
958             /* EWALD ELECTROSTATICS */
959
960             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
961             ewrt             = _mm_mul_ps(r10,ewtabscale);
962             ewitab           = _mm_cvttps_epi32(ewrt);
963             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
964             ewitab           = _mm_slli_epi32(ewitab,2);
965             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
966             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
967             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
968             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
969             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
970             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
971             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
972             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
973             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
974
975             d                = _mm_sub_ps(r10,rswitch);
976             d                = _mm_max_ps(d,_mm_setzero_ps());
977             d2               = _mm_mul_ps(d,d);
978             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
979
980             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
981
982             /* Evaluate switch function */
983             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
984             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
985             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
986
987             fscal            = felec;
988
989             fscal            = _mm_and_ps(fscal,cutoff_mask);
990
991             /* Calculate temporary vectorial force */
992             tx               = _mm_mul_ps(fscal,dx10);
993             ty               = _mm_mul_ps(fscal,dy10);
994             tz               = _mm_mul_ps(fscal,dz10);
995
996             /* Update vectorial force */
997             fix1             = _mm_add_ps(fix1,tx);
998             fiy1             = _mm_add_ps(fiy1,ty);
999             fiz1             = _mm_add_ps(fiz1,tz);
1000
1001             fjx0             = _mm_add_ps(fjx0,tx);
1002             fjy0             = _mm_add_ps(fjy0,ty);
1003             fjz0             = _mm_add_ps(fjz0,tz);
1004             
1005             }
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             if (gmx_mm_any_lt(rsq20,rcutoff2))
1012             {
1013
1014             r20              = _mm_mul_ps(rsq20,rinv20);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq20             = _mm_mul_ps(iq2,jq0);
1018
1019             /* EWALD ELECTROSTATICS */
1020
1021             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022             ewrt             = _mm_mul_ps(r20,ewtabscale);
1023             ewitab           = _mm_cvttps_epi32(ewrt);
1024             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1025             ewitab           = _mm_slli_epi32(ewitab,2);
1026             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1027             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1028             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1029             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1030             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1031             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1032             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1033             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1034             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1035
1036             d                = _mm_sub_ps(r20,rswitch);
1037             d                = _mm_max_ps(d,_mm_setzero_ps());
1038             d2               = _mm_mul_ps(d,d);
1039             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1040
1041             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1042
1043             /* Evaluate switch function */
1044             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1045             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1046             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_and_ps(fscal,cutoff_mask);
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = _mm_mul_ps(fscal,dx20);
1054             ty               = _mm_mul_ps(fscal,dy20);
1055             tz               = _mm_mul_ps(fscal,dz20);
1056
1057             /* Update vectorial force */
1058             fix2             = _mm_add_ps(fix2,tx);
1059             fiy2             = _mm_add_ps(fiy2,ty);
1060             fiz2             = _mm_add_ps(fiz2,tz);
1061
1062             fjx0             = _mm_add_ps(fjx0,tx);
1063             fjy0             = _mm_add_ps(fjy0,ty);
1064             fjz0             = _mm_add_ps(fjz0,tz);
1065             
1066             }
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             if (gmx_mm_any_lt(rsq30,rcutoff2))
1073             {
1074
1075             r30              = _mm_mul_ps(rsq30,rinv30);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq30             = _mm_mul_ps(iq3,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm_mul_ps(r30,ewtabscale);
1084             ewitab           = _mm_cvttps_epi32(ewrt);
1085             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1086             ewitab           = _mm_slli_epi32(ewitab,2);
1087             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1088             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1089             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1090             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1091             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1092             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1093             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1094             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1095             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1096
1097             d                = _mm_sub_ps(r30,rswitch);
1098             d                = _mm_max_ps(d,_mm_setzero_ps());
1099             d2               = _mm_mul_ps(d,d);
1100             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1101
1102             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1103
1104             /* Evaluate switch function */
1105             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1106             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1107             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_and_ps(fscal,cutoff_mask);
1112
1113             /* Calculate temporary vectorial force */
1114             tx               = _mm_mul_ps(fscal,dx30);
1115             ty               = _mm_mul_ps(fscal,dy30);
1116             tz               = _mm_mul_ps(fscal,dz30);
1117
1118             /* Update vectorial force */
1119             fix3             = _mm_add_ps(fix3,tx);
1120             fiy3             = _mm_add_ps(fiy3,ty);
1121             fiz3             = _mm_add_ps(fiz3,tz);
1122
1123             fjx0             = _mm_add_ps(fjx0,tx);
1124             fjy0             = _mm_add_ps(fjy0,ty);
1125             fjz0             = _mm_add_ps(fjz0,tz);
1126             
1127             }
1128
1129             fjptrA             = f+j_coord_offsetA;
1130             fjptrB             = f+j_coord_offsetB;
1131             fjptrC             = f+j_coord_offsetC;
1132             fjptrD             = f+j_coord_offsetD;
1133
1134             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1135
1136             /* Inner loop uses 186 flops */
1137         }
1138
1139         if(jidx<j_index_end)
1140         {
1141
1142             /* Get j neighbor index, and coordinate index */
1143             jnrlistA         = jjnr[jidx];
1144             jnrlistB         = jjnr[jidx+1];
1145             jnrlistC         = jjnr[jidx+2];
1146             jnrlistD         = jjnr[jidx+3];
1147             /* Sign of each element will be negative for non-real atoms.
1148              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1149              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1150              */
1151             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1152             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1153             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1154             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1155             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1156             j_coord_offsetA  = DIM*jnrA;
1157             j_coord_offsetB  = DIM*jnrB;
1158             j_coord_offsetC  = DIM*jnrC;
1159             j_coord_offsetD  = DIM*jnrD;
1160
1161             /* load j atom coordinates */
1162             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1163                                               x+j_coord_offsetC,x+j_coord_offsetD,
1164                                               &jx0,&jy0,&jz0);
1165
1166             /* Calculate displacement vector */
1167             dx10             = _mm_sub_ps(ix1,jx0);
1168             dy10             = _mm_sub_ps(iy1,jy0);
1169             dz10             = _mm_sub_ps(iz1,jz0);
1170             dx20             = _mm_sub_ps(ix2,jx0);
1171             dy20             = _mm_sub_ps(iy2,jy0);
1172             dz20             = _mm_sub_ps(iz2,jz0);
1173             dx30             = _mm_sub_ps(ix3,jx0);
1174             dy30             = _mm_sub_ps(iy3,jy0);
1175             dz30             = _mm_sub_ps(iz3,jz0);
1176
1177             /* Calculate squared distance and things based on it */
1178             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1179             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1180             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1181
1182             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1183             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1184             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1185
1186             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1188             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1189
1190             /* Load parameters for j particles */
1191             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1192                                                               charge+jnrC+0,charge+jnrD+0);
1193
1194             fjx0             = _mm_setzero_ps();
1195             fjy0             = _mm_setzero_ps();
1196             fjz0             = _mm_setzero_ps();
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             if (gmx_mm_any_lt(rsq10,rcutoff2))
1203             {
1204
1205             r10              = _mm_mul_ps(rsq10,rinv10);
1206             r10              = _mm_andnot_ps(dummy_mask,r10);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq10             = _mm_mul_ps(iq1,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_ps(r10,ewtabscale);
1215             ewitab           = _mm_cvttps_epi32(ewrt);
1216             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1217             ewitab           = _mm_slli_epi32(ewitab,2);
1218             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1219             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1220             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1221             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1222             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1223             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1224             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1225             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1226             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1227
1228             d                = _mm_sub_ps(r10,rswitch);
1229             d                = _mm_max_ps(d,_mm_setzero_ps());
1230             d2               = _mm_mul_ps(d,d);
1231             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1232
1233             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1234
1235             /* Evaluate switch function */
1236             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1237             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1238             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1239
1240             fscal            = felec;
1241
1242             fscal            = _mm_and_ps(fscal,cutoff_mask);
1243
1244             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1245
1246             /* Calculate temporary vectorial force */
1247             tx               = _mm_mul_ps(fscal,dx10);
1248             ty               = _mm_mul_ps(fscal,dy10);
1249             tz               = _mm_mul_ps(fscal,dz10);
1250
1251             /* Update vectorial force */
1252             fix1             = _mm_add_ps(fix1,tx);
1253             fiy1             = _mm_add_ps(fiy1,ty);
1254             fiz1             = _mm_add_ps(fiz1,tz);
1255
1256             fjx0             = _mm_add_ps(fjx0,tx);
1257             fjy0             = _mm_add_ps(fjy0,ty);
1258             fjz0             = _mm_add_ps(fjz0,tz);
1259             
1260             }
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             if (gmx_mm_any_lt(rsq20,rcutoff2))
1267             {
1268
1269             r20              = _mm_mul_ps(rsq20,rinv20);
1270             r20              = _mm_andnot_ps(dummy_mask,r20);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq20             = _mm_mul_ps(iq2,jq0);
1274
1275             /* EWALD ELECTROSTATICS */
1276
1277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278             ewrt             = _mm_mul_ps(r20,ewtabscale);
1279             ewitab           = _mm_cvttps_epi32(ewrt);
1280             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1281             ewitab           = _mm_slli_epi32(ewitab,2);
1282             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1283             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1284             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1285             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1286             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1287             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1288             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1289             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1290             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1291
1292             d                = _mm_sub_ps(r20,rswitch);
1293             d                = _mm_max_ps(d,_mm_setzero_ps());
1294             d2               = _mm_mul_ps(d,d);
1295             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1296
1297             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1298
1299             /* Evaluate switch function */
1300             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1301             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1302             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1303
1304             fscal            = felec;
1305
1306             fscal            = _mm_and_ps(fscal,cutoff_mask);
1307
1308             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1309
1310             /* Calculate temporary vectorial force */
1311             tx               = _mm_mul_ps(fscal,dx20);
1312             ty               = _mm_mul_ps(fscal,dy20);
1313             tz               = _mm_mul_ps(fscal,dz20);
1314
1315             /* Update vectorial force */
1316             fix2             = _mm_add_ps(fix2,tx);
1317             fiy2             = _mm_add_ps(fiy2,ty);
1318             fiz2             = _mm_add_ps(fiz2,tz);
1319
1320             fjx0             = _mm_add_ps(fjx0,tx);
1321             fjy0             = _mm_add_ps(fjy0,ty);
1322             fjz0             = _mm_add_ps(fjz0,tz);
1323             
1324             }
1325
1326             /**************************
1327              * CALCULATE INTERACTIONS *
1328              **************************/
1329
1330             if (gmx_mm_any_lt(rsq30,rcutoff2))
1331             {
1332
1333             r30              = _mm_mul_ps(rsq30,rinv30);
1334             r30              = _mm_andnot_ps(dummy_mask,r30);
1335
1336             /* Compute parameters for interactions between i and j atoms */
1337             qq30             = _mm_mul_ps(iq3,jq0);
1338
1339             /* EWALD ELECTROSTATICS */
1340
1341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342             ewrt             = _mm_mul_ps(r30,ewtabscale);
1343             ewitab           = _mm_cvttps_epi32(ewrt);
1344             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1345             ewitab           = _mm_slli_epi32(ewitab,2);
1346             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1347             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1348             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1349             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1350             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1351             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1352             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1353             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1354             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1355
1356             d                = _mm_sub_ps(r30,rswitch);
1357             d                = _mm_max_ps(d,_mm_setzero_ps());
1358             d2               = _mm_mul_ps(d,d);
1359             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1360
1361             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1362
1363             /* Evaluate switch function */
1364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1365             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1366             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1367
1368             fscal            = felec;
1369
1370             fscal            = _mm_and_ps(fscal,cutoff_mask);
1371
1372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1373
1374             /* Calculate temporary vectorial force */
1375             tx               = _mm_mul_ps(fscal,dx30);
1376             ty               = _mm_mul_ps(fscal,dy30);
1377             tz               = _mm_mul_ps(fscal,dz30);
1378
1379             /* Update vectorial force */
1380             fix3             = _mm_add_ps(fix3,tx);
1381             fiy3             = _mm_add_ps(fiy3,ty);
1382             fiz3             = _mm_add_ps(fiz3,tz);
1383
1384             fjx0             = _mm_add_ps(fjx0,tx);
1385             fjy0             = _mm_add_ps(fjy0,ty);
1386             fjz0             = _mm_add_ps(fjz0,tz);
1387             
1388             }
1389
1390             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1391             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1392             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1393             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1394
1395             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1396
1397             /* Inner loop uses 189 flops */
1398         }
1399
1400         /* End of innermost loop */
1401
1402         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1403                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1404
1405         /* Increment number of inner iterations */
1406         inneriter                  += j_index_end - j_index_start;
1407
1408         /* Outer loop uses 18 flops */
1409     }
1410
1411     /* Increment number of outer iterations */
1412     outeriter        += nri;
1413
1414     /* Update outer/inner flops */
1415
1416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*189);
1417 }