Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          ewitab;
93     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128           dummy_mask,cutoff_mask;
98     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
99     __m128           one     = _mm_set1_ps(1.0);
100     __m128           two     = _mm_set1_ps(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_ps(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
119
120     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121     rcutoff_scalar   = fr->rcoulomb;
122     rcutoff          = _mm_set1_ps(rcutoff_scalar);
123     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
124
125     rswitch_scalar   = fr->rcoulomb_switch;
126     rswitch          = _mm_set1_ps(rswitch_scalar);
127     /* Setup switch parameters */
128     d_scalar         = rcutoff_scalar-rswitch_scalar;
129     d                = _mm_set1_ps(d_scalar);
130     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
131     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
132     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
133     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
134     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = jnrC = jnrD = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141     j_coord_offsetC = 0;
142     j_coord_offsetD = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }  
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
168         
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172
173         /* Load parameters for i particles */
174         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
181         {
182
183             /* Get j neighbor index, and coordinate index */
184             jnrA             = jjnr[jidx];
185             jnrB             = jjnr[jidx+1];
186             jnrC             = jjnr[jidx+2];
187             jnrD             = jjnr[jidx+3];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190             j_coord_offsetC  = DIM*jnrC;
191             j_coord_offsetD  = DIM*jnrD;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               x+j_coord_offsetC,x+j_coord_offsetD,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_ps(ix0,jx0);
200             dy00             = _mm_sub_ps(iy0,jy0);
201             dz00             = _mm_sub_ps(iz0,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205
206             rinv00           = gmx_mm_invsqrt_ps(rsq00);
207
208             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
212                                                               charge+jnrC+0,charge+jnrD+0);
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             if (gmx_mm_any_lt(rsq00,rcutoff2))
219             {
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = _mm_mul_ps(r00,ewtabscale);
230             ewitab           = _mm_cvttps_epi32(ewrt);
231             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
232             ewitab           = _mm_slli_epi32(ewitab,2);
233             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
234             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
235             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
236             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
237             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
238             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
239             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
240             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
241             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
242
243             d                = _mm_sub_ps(r00,rswitch);
244             d                = _mm_max_ps(d,_mm_setzero_ps());
245             d2               = _mm_mul_ps(d,d);
246             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
247
248             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
249
250             /* Evaluate switch function */
251             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
252             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
253             velec            = _mm_mul_ps(velec,sw);
254             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velec            = _mm_and_ps(velec,cutoff_mask);
258             velecsum         = _mm_add_ps(velecsum,velec);
259
260             fscal            = felec;
261
262             fscal            = _mm_and_ps(fscal,cutoff_mask);
263
264             /* Calculate temporary vectorial force */
265             tx               = _mm_mul_ps(fscal,dx00);
266             ty               = _mm_mul_ps(fscal,dy00);
267             tz               = _mm_mul_ps(fscal,dz00);
268
269             /* Update vectorial force */
270             fix0             = _mm_add_ps(fix0,tx);
271             fiy0             = _mm_add_ps(fiy0,ty);
272             fiz0             = _mm_add_ps(fiz0,tz);
273
274             fjptrA             = f+j_coord_offsetA;
275             fjptrB             = f+j_coord_offsetB;
276             fjptrC             = f+j_coord_offsetC;
277             fjptrD             = f+j_coord_offsetD;
278             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
279             
280             }
281
282             /* Inner loop uses 65 flops */
283         }
284
285         if(jidx<j_index_end)
286         {
287
288             /* Get j neighbor index, and coordinate index */
289             jnrlistA         = jjnr[jidx];
290             jnrlistB         = jjnr[jidx+1];
291             jnrlistC         = jjnr[jidx+2];
292             jnrlistD         = jjnr[jidx+3];
293             /* Sign of each element will be negative for non-real atoms.
294              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
295              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
296              */
297             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
298             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
299             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
300             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
301             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
302             j_coord_offsetA  = DIM*jnrA;
303             j_coord_offsetB  = DIM*jnrB;
304             j_coord_offsetC  = DIM*jnrC;
305             j_coord_offsetD  = DIM*jnrD;
306
307             /* load j atom coordinates */
308             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
309                                               x+j_coord_offsetC,x+j_coord_offsetD,
310                                               &jx0,&jy0,&jz0);
311
312             /* Calculate displacement vector */
313             dx00             = _mm_sub_ps(ix0,jx0);
314             dy00             = _mm_sub_ps(iy0,jy0);
315             dz00             = _mm_sub_ps(iz0,jz0);
316
317             /* Calculate squared distance and things based on it */
318             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
319
320             rinv00           = gmx_mm_invsqrt_ps(rsq00);
321
322             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
323
324             /* Load parameters for j particles */
325             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
326                                                               charge+jnrC+0,charge+jnrD+0);
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (gmx_mm_any_lt(rsq00,rcutoff2))
333             {
334
335             r00              = _mm_mul_ps(rsq00,rinv00);
336             r00              = _mm_andnot_ps(dummy_mask,r00);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq00             = _mm_mul_ps(iq0,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm_mul_ps(r00,ewtabscale);
345             ewitab           = _mm_cvttps_epi32(ewrt);
346             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
350             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
351             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
352             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
353             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
354             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
355             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
356             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
357
358             d                = _mm_sub_ps(r00,rswitch);
359             d                = _mm_max_ps(d,_mm_setzero_ps());
360             d2               = _mm_mul_ps(d,d);
361             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
362
363             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
364
365             /* Evaluate switch function */
366             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
367             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
368             velec            = _mm_mul_ps(velec,sw);
369             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velec            = _mm_andnot_ps(dummy_mask,velec);
374             velecsum         = _mm_add_ps(velecsum,velec);
375
376             fscal            = felec;
377
378             fscal            = _mm_and_ps(fscal,cutoff_mask);
379
380             fscal            = _mm_andnot_ps(dummy_mask,fscal);
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm_mul_ps(fscal,dx00);
384             ty               = _mm_mul_ps(fscal,dy00);
385             tz               = _mm_mul_ps(fscal,dz00);
386
387             /* Update vectorial force */
388             fix0             = _mm_add_ps(fix0,tx);
389             fiy0             = _mm_add_ps(fiy0,ty);
390             fiz0             = _mm_add_ps(fiz0,tz);
391
392             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
393             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
394             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
395             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
396             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
397             
398             }
399
400             /* Inner loop uses 66 flops */
401         }
402
403         /* End of innermost loop */
404
405         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
406                                               f+i_coord_offset,fshift+i_shift_offset);
407
408         ggid                        = gid[iidx];
409         /* Update potential energies */
410         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 8 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
427  * Electrostatics interaction: Ewald
428  * VdW interaction:            None
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
434                     (t_nblist                    * gmx_restrict       nlist,
435                      rvec                        * gmx_restrict          xx,
436                      rvec                        * gmx_restrict          ff,
437                      t_forcerec                  * gmx_restrict          fr,
438                      t_mdatoms                   * gmx_restrict     mdatoms,
439                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
440                      t_nrnb                      * gmx_restrict        nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
443      * just 0 for non-waters.
444      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB,jnrC,jnrD;
450     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
451     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
452     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
453     real             rcutoff_scalar;
454     real             *shiftvec,*fshift,*x,*f;
455     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
456     real             scratch[4*DIM];
457     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
458     int              vdwioffset0;
459     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
460     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
461     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
463     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
464     real             *charge;
465     __m128i          ewitab;
466     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
467     real             *ewtab;
468     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
469     real             rswitch_scalar,d_scalar;
470     __m128           dummy_mask,cutoff_mask;
471     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
472     __m128           one     = _mm_set1_ps(1.0);
473     __m128           two     = _mm_set1_ps(2.0);
474     x                = xx[0];
475     f                = ff[0];
476
477     nri              = nlist->nri;
478     iinr             = nlist->iinr;
479     jindex           = nlist->jindex;
480     jjnr             = nlist->jjnr;
481     shiftidx         = nlist->shift;
482     gid              = nlist->gid;
483     shiftvec         = fr->shift_vec[0];
484     fshift           = fr->fshift[0];
485     facel            = _mm_set1_ps(fr->epsfac);
486     charge           = mdatoms->chargeA;
487
488     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
489     ewtab            = fr->ic->tabq_coul_FDV0;
490     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
491     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
492
493     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
494     rcutoff_scalar   = fr->rcoulomb;
495     rcutoff          = _mm_set1_ps(rcutoff_scalar);
496     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
497
498     rswitch_scalar   = fr->rcoulomb_switch;
499     rswitch          = _mm_set1_ps(rswitch_scalar);
500     /* Setup switch parameters */
501     d_scalar         = rcutoff_scalar-rswitch_scalar;
502     d                = _mm_set1_ps(d_scalar);
503     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
504     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
505     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
506     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
507     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
508     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
509
510     /* Avoid stupid compiler warnings */
511     jnrA = jnrB = jnrC = jnrD = 0;
512     j_coord_offsetA = 0;
513     j_coord_offsetB = 0;
514     j_coord_offsetC = 0;
515     j_coord_offsetD = 0;
516
517     outeriter        = 0;
518     inneriter        = 0;
519
520     for(iidx=0;iidx<4*DIM;iidx++)
521     {
522         scratch[iidx] = 0.0;
523     }  
524
525     /* Start outer loop over neighborlists */
526     for(iidx=0; iidx<nri; iidx++)
527     {
528         /* Load shift vector for this list */
529         i_shift_offset   = DIM*shiftidx[iidx];
530
531         /* Load limits for loop over neighbors */
532         j_index_start    = jindex[iidx];
533         j_index_end      = jindex[iidx+1];
534
535         /* Get outer coordinate index */
536         inr              = iinr[iidx];
537         i_coord_offset   = DIM*inr;
538
539         /* Load i particle coords and add shift vector */
540         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
541         
542         fix0             = _mm_setzero_ps();
543         fiy0             = _mm_setzero_ps();
544         fiz0             = _mm_setzero_ps();
545
546         /* Load parameters for i particles */
547         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
548
549         /* Start inner kernel loop */
550         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
551         {
552
553             /* Get j neighbor index, and coordinate index */
554             jnrA             = jjnr[jidx];
555             jnrB             = jjnr[jidx+1];
556             jnrC             = jjnr[jidx+2];
557             jnrD             = jjnr[jidx+3];
558             j_coord_offsetA  = DIM*jnrA;
559             j_coord_offsetB  = DIM*jnrB;
560             j_coord_offsetC  = DIM*jnrC;
561             j_coord_offsetD  = DIM*jnrD;
562
563             /* load j atom coordinates */
564             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
565                                               x+j_coord_offsetC,x+j_coord_offsetD,
566                                               &jx0,&jy0,&jz0);
567
568             /* Calculate displacement vector */
569             dx00             = _mm_sub_ps(ix0,jx0);
570             dy00             = _mm_sub_ps(iy0,jy0);
571             dz00             = _mm_sub_ps(iz0,jz0);
572
573             /* Calculate squared distance and things based on it */
574             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
575
576             rinv00           = gmx_mm_invsqrt_ps(rsq00);
577
578             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582                                                               charge+jnrC+0,charge+jnrD+0);
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (gmx_mm_any_lt(rsq00,rcutoff2))
589             {
590
591             r00              = _mm_mul_ps(rsq00,rinv00);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq00             = _mm_mul_ps(iq0,jq0);
595
596             /* EWALD ELECTROSTATICS */
597
598             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
599             ewrt             = _mm_mul_ps(r00,ewtabscale);
600             ewitab           = _mm_cvttps_epi32(ewrt);
601             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
602             ewitab           = _mm_slli_epi32(ewitab,2);
603             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
604             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
605             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
606             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
607             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
608             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
609             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
610             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
611             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
612
613             d                = _mm_sub_ps(r00,rswitch);
614             d                = _mm_max_ps(d,_mm_setzero_ps());
615             d2               = _mm_mul_ps(d,d);
616             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
617
618             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
619
620             /* Evaluate switch function */
621             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
622             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
623             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
624
625             fscal            = felec;
626
627             fscal            = _mm_and_ps(fscal,cutoff_mask);
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_ps(fscal,dx00);
631             ty               = _mm_mul_ps(fscal,dy00);
632             tz               = _mm_mul_ps(fscal,dz00);
633
634             /* Update vectorial force */
635             fix0             = _mm_add_ps(fix0,tx);
636             fiy0             = _mm_add_ps(fiy0,ty);
637             fiz0             = _mm_add_ps(fiz0,tz);
638
639             fjptrA             = f+j_coord_offsetA;
640             fjptrB             = f+j_coord_offsetB;
641             fjptrC             = f+j_coord_offsetC;
642             fjptrD             = f+j_coord_offsetD;
643             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
644             
645             }
646
647             /* Inner loop uses 62 flops */
648         }
649
650         if(jidx<j_index_end)
651         {
652
653             /* Get j neighbor index, and coordinate index */
654             jnrlistA         = jjnr[jidx];
655             jnrlistB         = jjnr[jidx+1];
656             jnrlistC         = jjnr[jidx+2];
657             jnrlistD         = jjnr[jidx+3];
658             /* Sign of each element will be negative for non-real atoms.
659              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
660              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
661              */
662             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
663             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
664             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
665             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
666             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
667             j_coord_offsetA  = DIM*jnrA;
668             j_coord_offsetB  = DIM*jnrB;
669             j_coord_offsetC  = DIM*jnrC;
670             j_coord_offsetD  = DIM*jnrD;
671
672             /* load j atom coordinates */
673             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
674                                               x+j_coord_offsetC,x+j_coord_offsetD,
675                                               &jx0,&jy0,&jz0);
676
677             /* Calculate displacement vector */
678             dx00             = _mm_sub_ps(ix0,jx0);
679             dy00             = _mm_sub_ps(iy0,jy0);
680             dz00             = _mm_sub_ps(iz0,jz0);
681
682             /* Calculate squared distance and things based on it */
683             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
684
685             rinv00           = gmx_mm_invsqrt_ps(rsq00);
686
687             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
688
689             /* Load parameters for j particles */
690             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
691                                                               charge+jnrC+0,charge+jnrD+0);
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             if (gmx_mm_any_lt(rsq00,rcutoff2))
698             {
699
700             r00              = _mm_mul_ps(rsq00,rinv00);
701             r00              = _mm_andnot_ps(dummy_mask,r00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq00             = _mm_mul_ps(iq0,jq0);
705
706             /* EWALD ELECTROSTATICS */
707
708             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
709             ewrt             = _mm_mul_ps(r00,ewtabscale);
710             ewitab           = _mm_cvttps_epi32(ewrt);
711             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
712             ewitab           = _mm_slli_epi32(ewitab,2);
713             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
714             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
715             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
716             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
717             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
718             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
719             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
720             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
721             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
722
723             d                = _mm_sub_ps(r00,rswitch);
724             d                = _mm_max_ps(d,_mm_setzero_ps());
725             d2               = _mm_mul_ps(d,d);
726             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
727
728             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
729
730             /* Evaluate switch function */
731             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
732             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
733             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
734
735             fscal            = felec;
736
737             fscal            = _mm_and_ps(fscal,cutoff_mask);
738
739             fscal            = _mm_andnot_ps(dummy_mask,fscal);
740
741             /* Calculate temporary vectorial force */
742             tx               = _mm_mul_ps(fscal,dx00);
743             ty               = _mm_mul_ps(fscal,dy00);
744             tz               = _mm_mul_ps(fscal,dz00);
745
746             /* Update vectorial force */
747             fix0             = _mm_add_ps(fix0,tx);
748             fiy0             = _mm_add_ps(fiy0,ty);
749             fiz0             = _mm_add_ps(fiz0,tz);
750
751             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
752             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
753             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
754             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
755             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
756             
757             }
758
759             /* Inner loop uses 63 flops */
760         }
761
762         /* End of innermost loop */
763
764         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
765                                               f+i_coord_offset,fshift+i_shift_offset);
766
767         /* Increment number of inner iterations */
768         inneriter                  += j_index_end - j_index_start;
769
770         /* Outer loop uses 7 flops */
771     }
772
773     /* Increment number of outer iterations */
774     outeriter        += nri;
775
776     /* Update outer/inner flops */
777
778     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
779 }