Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     __m128i          ewitab;
91     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
92     real             *ewtab;
93     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
94     real             rswitch_scalar,d_scalar;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->rcoulomb;
120     rcutoff          = _mm_set1_ps(rcutoff_scalar);
121     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
122
123     rswitch_scalar   = fr->rcoulomb_switch;
124     rswitch          = _mm_set1_ps(rswitch_scalar);
125     /* Setup switch parameters */
126     d_scalar         = rcutoff_scalar-rswitch_scalar;
127     d                = _mm_set1_ps(d_scalar);
128     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
129     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
132     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }  
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166         
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170
171         /* Load parameters for i particles */
172         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             jnrC             = jjnr[jidx+2];
185             jnrD             = jjnr[jidx+3];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               x+j_coord_offsetC,x+j_coord_offsetD,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_ps(ix0,jx0);
198             dy00             = _mm_sub_ps(iy0,jy0);
199             dz00             = _mm_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = gmx_mm_invsqrt_ps(rsq00);
205
206             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm_any_lt(rsq00,rcutoff2))
217             {
218
219             r00              = _mm_mul_ps(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm_mul_ps(iq0,jq0);
223
224             /* EWALD ELECTROSTATICS */
225
226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
227             ewrt             = _mm_mul_ps(r00,ewtabscale);
228             ewitab           = _mm_cvttps_epi32(ewrt);
229             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
230             ewitab           = _mm_slli_epi32(ewitab,2);
231             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
232             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
233             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
234             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
235             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
236             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
237             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
238             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
239             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
240
241             d                = _mm_sub_ps(r00,rswitch);
242             d                = _mm_max_ps(d,_mm_setzero_ps());
243             d2               = _mm_mul_ps(d,d);
244             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
245
246             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
247
248             /* Evaluate switch function */
249             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
250             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
251             velec            = _mm_mul_ps(velec,sw);
252             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
253
254             /* Update potential sum for this i atom from the interaction with this j atom. */
255             velec            = _mm_and_ps(velec,cutoff_mask);
256             velecsum         = _mm_add_ps(velecsum,velec);
257
258             fscal            = felec;
259
260             fscal            = _mm_and_ps(fscal,cutoff_mask);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm_mul_ps(fscal,dx00);
264             ty               = _mm_mul_ps(fscal,dy00);
265             tz               = _mm_mul_ps(fscal,dz00);
266
267             /* Update vectorial force */
268             fix0             = _mm_add_ps(fix0,tx);
269             fiy0             = _mm_add_ps(fiy0,ty);
270             fiz0             = _mm_add_ps(fiz0,tz);
271
272             fjptrA             = f+j_coord_offsetA;
273             fjptrB             = f+j_coord_offsetB;
274             fjptrC             = f+j_coord_offsetC;
275             fjptrD             = f+j_coord_offsetD;
276             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
277             
278             }
279
280             /* Inner loop uses 65 flops */
281         }
282
283         if(jidx<j_index_end)
284         {
285
286             /* Get j neighbor index, and coordinate index */
287             jnrlistA         = jjnr[jidx];
288             jnrlistB         = jjnr[jidx+1];
289             jnrlistC         = jjnr[jidx+2];
290             jnrlistD         = jjnr[jidx+3];
291             /* Sign of each element will be negative for non-real atoms.
292              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
293              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
294              */
295             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
296             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
297             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
298             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
299             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
300             j_coord_offsetA  = DIM*jnrA;
301             j_coord_offsetB  = DIM*jnrB;
302             j_coord_offsetC  = DIM*jnrC;
303             j_coord_offsetD  = DIM*jnrD;
304
305             /* load j atom coordinates */
306             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
307                                               x+j_coord_offsetC,x+j_coord_offsetD,
308                                               &jx0,&jy0,&jz0);
309
310             /* Calculate displacement vector */
311             dx00             = _mm_sub_ps(ix0,jx0);
312             dy00             = _mm_sub_ps(iy0,jy0);
313             dz00             = _mm_sub_ps(iz0,jz0);
314
315             /* Calculate squared distance and things based on it */
316             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
317
318             rinv00           = gmx_mm_invsqrt_ps(rsq00);
319
320             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
321
322             /* Load parameters for j particles */
323             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
324                                                               charge+jnrC+0,charge+jnrD+0);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             if (gmx_mm_any_lt(rsq00,rcutoff2))
331             {
332
333             r00              = _mm_mul_ps(rsq00,rinv00);
334             r00              = _mm_andnot_ps(dummy_mask,r00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm_mul_ps(iq0,jq0);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342             ewrt             = _mm_mul_ps(r00,ewtabscale);
343             ewitab           = _mm_cvttps_epi32(ewrt);
344             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
345             ewitab           = _mm_slli_epi32(ewitab,2);
346             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
347             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
348             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
349             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
350             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
351             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
352             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
353             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
354             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
355
356             d                = _mm_sub_ps(r00,rswitch);
357             d                = _mm_max_ps(d,_mm_setzero_ps());
358             d2               = _mm_mul_ps(d,d);
359             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
360
361             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
362
363             /* Evaluate switch function */
364             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
365             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
366             velec            = _mm_mul_ps(velec,sw);
367             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_ps(velec,cutoff_mask);
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm_and_ps(fscal,cutoff_mask);
377
378             fscal            = _mm_andnot_ps(dummy_mask,fscal);
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm_mul_ps(fscal,dx00);
382             ty               = _mm_mul_ps(fscal,dy00);
383             tz               = _mm_mul_ps(fscal,dz00);
384
385             /* Update vectorial force */
386             fix0             = _mm_add_ps(fix0,tx);
387             fiy0             = _mm_add_ps(fiy0,ty);
388             fiz0             = _mm_add_ps(fiz0,tz);
389
390             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
391             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
392             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
393             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
394             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
395             
396             }
397
398             /* Inner loop uses 66 flops */
399         }
400
401         /* End of innermost loop */
402
403         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
404                                               f+i_coord_offset,fshift+i_shift_offset);
405
406         ggid                        = gid[iidx];
407         /* Update potential energies */
408         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
409
410         /* Increment number of inner iterations */
411         inneriter                  += j_index_end - j_index_start;
412
413         /* Outer loop uses 8 flops */
414     }
415
416     /* Increment number of outer iterations */
417     outeriter        += nri;
418
419     /* Update outer/inner flops */
420
421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
422 }
423 /*
424  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
425  * Electrostatics interaction: Ewald
426  * VdW interaction:            None
427  * Geometry:                   Particle-Particle
428  * Calculate force/pot:        Force
429  */
430 void
431 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_sse2_single
432                     (t_nblist                    * gmx_restrict       nlist,
433                      rvec                        * gmx_restrict          xx,
434                      rvec                        * gmx_restrict          ff,
435                      t_forcerec                  * gmx_restrict          fr,
436                      t_mdatoms                   * gmx_restrict     mdatoms,
437                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
438                      t_nrnb                      * gmx_restrict        nrnb)
439 {
440     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
441      * just 0 for non-waters.
442      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
443      * jnr indices corresponding to data put in the four positions in the SIMD register.
444      */
445     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
446     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
447     int              jnrA,jnrB,jnrC,jnrD;
448     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
449     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
450     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
451     real             rcutoff_scalar;
452     real             *shiftvec,*fshift,*x,*f;
453     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
454     real             scratch[4*DIM];
455     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
456     int              vdwioffset0;
457     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
459     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
460     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
461     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
462     real             *charge;
463     __m128i          ewitab;
464     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
465     real             *ewtab;
466     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
467     real             rswitch_scalar,d_scalar;
468     __m128           dummy_mask,cutoff_mask;
469     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
470     __m128           one     = _mm_set1_ps(1.0);
471     __m128           two     = _mm_set1_ps(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     facel            = _mm_set1_ps(fr->epsfac);
484     charge           = mdatoms->chargeA;
485
486     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
487     ewtab            = fr->ic->tabq_coul_FDV0;
488     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
489     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
490
491     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
492     rcutoff_scalar   = fr->rcoulomb;
493     rcutoff          = _mm_set1_ps(rcutoff_scalar);
494     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
495
496     rswitch_scalar   = fr->rcoulomb_switch;
497     rswitch          = _mm_set1_ps(rswitch_scalar);
498     /* Setup switch parameters */
499     d_scalar         = rcutoff_scalar-rswitch_scalar;
500     d                = _mm_set1_ps(d_scalar);
501     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
502     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
503     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
504     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
505     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
506     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
507
508     /* Avoid stupid compiler warnings */
509     jnrA = jnrB = jnrC = jnrD = 0;
510     j_coord_offsetA = 0;
511     j_coord_offsetB = 0;
512     j_coord_offsetC = 0;
513     j_coord_offsetD = 0;
514
515     outeriter        = 0;
516     inneriter        = 0;
517
518     for(iidx=0;iidx<4*DIM;iidx++)
519     {
520         scratch[iidx] = 0.0;
521     }  
522
523     /* Start outer loop over neighborlists */
524     for(iidx=0; iidx<nri; iidx++)
525     {
526         /* Load shift vector for this list */
527         i_shift_offset   = DIM*shiftidx[iidx];
528
529         /* Load limits for loop over neighbors */
530         j_index_start    = jindex[iidx];
531         j_index_end      = jindex[iidx+1];
532
533         /* Get outer coordinate index */
534         inr              = iinr[iidx];
535         i_coord_offset   = DIM*inr;
536
537         /* Load i particle coords and add shift vector */
538         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
539         
540         fix0             = _mm_setzero_ps();
541         fiy0             = _mm_setzero_ps();
542         fiz0             = _mm_setzero_ps();
543
544         /* Load parameters for i particles */
545         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
546
547         /* Start inner kernel loop */
548         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
549         {
550
551             /* Get j neighbor index, and coordinate index */
552             jnrA             = jjnr[jidx];
553             jnrB             = jjnr[jidx+1];
554             jnrC             = jjnr[jidx+2];
555             jnrD             = jjnr[jidx+3];
556             j_coord_offsetA  = DIM*jnrA;
557             j_coord_offsetB  = DIM*jnrB;
558             j_coord_offsetC  = DIM*jnrC;
559             j_coord_offsetD  = DIM*jnrD;
560
561             /* load j atom coordinates */
562             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
563                                               x+j_coord_offsetC,x+j_coord_offsetD,
564                                               &jx0,&jy0,&jz0);
565
566             /* Calculate displacement vector */
567             dx00             = _mm_sub_ps(ix0,jx0);
568             dy00             = _mm_sub_ps(iy0,jy0);
569             dz00             = _mm_sub_ps(iz0,jz0);
570
571             /* Calculate squared distance and things based on it */
572             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
573
574             rinv00           = gmx_mm_invsqrt_ps(rsq00);
575
576             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
577
578             /* Load parameters for j particles */
579             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
580                                                               charge+jnrC+0,charge+jnrD+0);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (gmx_mm_any_lt(rsq00,rcutoff2))
587             {
588
589             r00              = _mm_mul_ps(rsq00,rinv00);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm_mul_ps(iq0,jq0);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_ps(r00,ewtabscale);
598             ewitab           = _mm_cvttps_epi32(ewrt);
599             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
600             ewitab           = _mm_slli_epi32(ewitab,2);
601             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
602             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
603             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
604             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
605             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
606             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
607             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
608             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
609             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
610
611             d                = _mm_sub_ps(r00,rswitch);
612             d                = _mm_max_ps(d,_mm_setzero_ps());
613             d2               = _mm_mul_ps(d,d);
614             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
615
616             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
617
618             /* Evaluate switch function */
619             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
620             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
621             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
622
623             fscal            = felec;
624
625             fscal            = _mm_and_ps(fscal,cutoff_mask);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_ps(fscal,dx00);
629             ty               = _mm_mul_ps(fscal,dy00);
630             tz               = _mm_mul_ps(fscal,dz00);
631
632             /* Update vectorial force */
633             fix0             = _mm_add_ps(fix0,tx);
634             fiy0             = _mm_add_ps(fiy0,ty);
635             fiz0             = _mm_add_ps(fiz0,tz);
636
637             fjptrA             = f+j_coord_offsetA;
638             fjptrB             = f+j_coord_offsetB;
639             fjptrC             = f+j_coord_offsetC;
640             fjptrD             = f+j_coord_offsetD;
641             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
642             
643             }
644
645             /* Inner loop uses 62 flops */
646         }
647
648         if(jidx<j_index_end)
649         {
650
651             /* Get j neighbor index, and coordinate index */
652             jnrlistA         = jjnr[jidx];
653             jnrlistB         = jjnr[jidx+1];
654             jnrlistC         = jjnr[jidx+2];
655             jnrlistD         = jjnr[jidx+3];
656             /* Sign of each element will be negative for non-real atoms.
657              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
658              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
659              */
660             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
661             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
662             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
663             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
664             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669
670             /* load j atom coordinates */
671             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
672                                               x+j_coord_offsetC,x+j_coord_offsetD,
673                                               &jx0,&jy0,&jz0);
674
675             /* Calculate displacement vector */
676             dx00             = _mm_sub_ps(ix0,jx0);
677             dy00             = _mm_sub_ps(iy0,jy0);
678             dz00             = _mm_sub_ps(iz0,jz0);
679
680             /* Calculate squared distance and things based on it */
681             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
682
683             rinv00           = gmx_mm_invsqrt_ps(rsq00);
684
685             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
686
687             /* Load parameters for j particles */
688             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
689                                                               charge+jnrC+0,charge+jnrD+0);
690
691             /**************************
692              * CALCULATE INTERACTIONS *
693              **************************/
694
695             if (gmx_mm_any_lt(rsq00,rcutoff2))
696             {
697
698             r00              = _mm_mul_ps(rsq00,rinv00);
699             r00              = _mm_andnot_ps(dummy_mask,r00);
700
701             /* Compute parameters for interactions between i and j atoms */
702             qq00             = _mm_mul_ps(iq0,jq0);
703
704             /* EWALD ELECTROSTATICS */
705
706             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
707             ewrt             = _mm_mul_ps(r00,ewtabscale);
708             ewitab           = _mm_cvttps_epi32(ewrt);
709             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
710             ewitab           = _mm_slli_epi32(ewitab,2);
711             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
712             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
713             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
714             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
715             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
716             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
717             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
718             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
719             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
720
721             d                = _mm_sub_ps(r00,rswitch);
722             d                = _mm_max_ps(d,_mm_setzero_ps());
723             d2               = _mm_mul_ps(d,d);
724             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
725
726             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
727
728             /* Evaluate switch function */
729             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
730             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
731             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
732
733             fscal            = felec;
734
735             fscal            = _mm_and_ps(fscal,cutoff_mask);
736
737             fscal            = _mm_andnot_ps(dummy_mask,fscal);
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm_mul_ps(fscal,dx00);
741             ty               = _mm_mul_ps(fscal,dy00);
742             tz               = _mm_mul_ps(fscal,dz00);
743
744             /* Update vectorial force */
745             fix0             = _mm_add_ps(fix0,tx);
746             fiy0             = _mm_add_ps(fiy0,ty);
747             fiz0             = _mm_add_ps(fiz0,tz);
748
749             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
750             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
751             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
752             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
753             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
754             
755             }
756
757             /* Inner loop uses 63 flops */
758         }
759
760         /* End of innermost loop */
761
762         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
763                                               f+i_coord_offset,fshift+i_shift_offset);
764
765         /* Increment number of inner iterations */
766         inneriter                  += j_index_end - j_index_start;
767
768         /* Outer loop uses 7 flops */
769     }
770
771     /* Increment number of outer iterations */
772     outeriter        += nri;
773
774     /* Update outer/inner flops */
775
776     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
777 }