Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          ewitab;
92     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     real             *ewtab;
94     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
95     real             rswitch_scalar,d_scalar;
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->rcoulomb_switch;
135     rswitch          = _mm_set1_ps(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm_set1_ps(d_scalar);
139     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }  
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
177                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
178         
179         fix0             = _mm_setzero_ps();
180         fiy0             = _mm_setzero_ps();
181         fiz0             = _mm_setzero_ps();
182         fix1             = _mm_setzero_ps();
183         fiy1             = _mm_setzero_ps();
184         fiz1             = _mm_setzero_ps();
185         fix2             = _mm_setzero_ps();
186         fiy2             = _mm_setzero_ps();
187         fiz2             = _mm_setzero_ps();
188         fix3             = _mm_setzero_ps();
189         fiy3             = _mm_setzero_ps();
190         fiz3             = _mm_setzero_ps();
191
192         /* Reset potential sums */
193         velecsum         = _mm_setzero_ps();
194         vvdwsum          = _mm_setzero_ps();
195
196         /* Start inner kernel loop */
197         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
198         {
199
200             /* Get j neighbor index, and coordinate index */
201             jnrA             = jjnr[jidx];
202             jnrB             = jjnr[jidx+1];
203             jnrC             = jjnr[jidx+2];
204             jnrD             = jjnr[jidx+3];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209
210             /* load j atom coordinates */
211             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
212                                               x+j_coord_offsetC,x+j_coord_offsetD,
213                                               &jx0,&jy0,&jz0);
214
215             /* Calculate displacement vector */
216             dx00             = _mm_sub_ps(ix0,jx0);
217             dy00             = _mm_sub_ps(iy0,jy0);
218             dz00             = _mm_sub_ps(iz0,jz0);
219             dx10             = _mm_sub_ps(ix1,jx0);
220             dy10             = _mm_sub_ps(iy1,jy0);
221             dz10             = _mm_sub_ps(iz1,jz0);
222             dx20             = _mm_sub_ps(ix2,jx0);
223             dy20             = _mm_sub_ps(iy2,jy0);
224             dz20             = _mm_sub_ps(iz2,jz0);
225             dx30             = _mm_sub_ps(ix3,jx0);
226             dy30             = _mm_sub_ps(iy3,jy0);
227             dz30             = _mm_sub_ps(iz3,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
233             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
234
235             rinv00           = gmx_mm_invsqrt_ps(rsq00);
236             rinv10           = gmx_mm_invsqrt_ps(rsq10);
237             rinv20           = gmx_mm_invsqrt_ps(rsq20);
238             rinv30           = gmx_mm_invsqrt_ps(rsq30);
239
240             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
241             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
243             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                               charge+jnrC+0,charge+jnrD+0);
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249             vdwjidx0B        = 2*vdwtype[jnrB+0];
250             vdwjidx0C        = 2*vdwtype[jnrC+0];
251             vdwjidx0D        = 2*vdwtype[jnrD+0];
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_ps(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
264                                          vdwparam+vdwioffset0+vdwjidx0B,
265                                          vdwparam+vdwioffset0+vdwjidx0C,
266                                          vdwparam+vdwioffset0+vdwjidx0D,
267                                          &c6_00,&c12_00);
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
273             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
274             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
275             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
276
277             d                = _mm_sub_ps(r00,rswitch);
278             d                = _mm_max_ps(d,_mm_setzero_ps());
279             d2               = _mm_mul_ps(d,d);
280             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
281
282             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
283
284             /* Evaluate switch function */
285             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
286             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
287             vvdw             = _mm_mul_ps(vvdw,sw);
288             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
292             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
293
294             fscal            = fvdw;
295
296             fscal            = _mm_and_ps(fscal,cutoff_mask);
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm_mul_ps(fscal,dx00);
300             ty               = _mm_mul_ps(fscal,dy00);
301             tz               = _mm_mul_ps(fscal,dz00);
302
303             /* Update vectorial force */
304             fix0             = _mm_add_ps(fix0,tx);
305             fiy0             = _mm_add_ps(fiy0,ty);
306             fiz0             = _mm_add_ps(fiz0,tz);
307
308             fjptrA             = f+j_coord_offsetA;
309             fjptrB             = f+j_coord_offsetB;
310             fjptrC             = f+j_coord_offsetC;
311             fjptrD             = f+j_coord_offsetD;
312             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
313             
314             }
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm_any_lt(rsq10,rcutoff2))
321             {
322
323             r10              = _mm_mul_ps(rsq10,rinv10);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq10             = _mm_mul_ps(iq1,jq0);
327
328             /* EWALD ELECTROSTATICS */
329
330             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
331             ewrt             = _mm_mul_ps(r10,ewtabscale);
332             ewitab           = _mm_cvttps_epi32(ewrt);
333             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
334             ewitab           = _mm_slli_epi32(ewitab,2);
335             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
336             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
337             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
338             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
339             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
340             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
341             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
342             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
343             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
344
345             d                = _mm_sub_ps(r10,rswitch);
346             d                = _mm_max_ps(d,_mm_setzero_ps());
347             d2               = _mm_mul_ps(d,d);
348             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
349
350             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
351
352             /* Evaluate switch function */
353             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
354             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
355             velec            = _mm_mul_ps(velec,sw);
356             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm_and_ps(velec,cutoff_mask);
360             velecsum         = _mm_add_ps(velecsum,velec);
361
362             fscal            = felec;
363
364             fscal            = _mm_and_ps(fscal,cutoff_mask);
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm_mul_ps(fscal,dx10);
368             ty               = _mm_mul_ps(fscal,dy10);
369             tz               = _mm_mul_ps(fscal,dz10);
370
371             /* Update vectorial force */
372             fix1             = _mm_add_ps(fix1,tx);
373             fiy1             = _mm_add_ps(fiy1,ty);
374             fiz1             = _mm_add_ps(fiz1,tz);
375
376             fjptrA             = f+j_coord_offsetA;
377             fjptrB             = f+j_coord_offsetB;
378             fjptrC             = f+j_coord_offsetC;
379             fjptrD             = f+j_coord_offsetD;
380             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
381             
382             }
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             if (gmx_mm_any_lt(rsq20,rcutoff2))
389             {
390
391             r20              = _mm_mul_ps(rsq20,rinv20);
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq20             = _mm_mul_ps(iq2,jq0);
395
396             /* EWALD ELECTROSTATICS */
397
398             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
399             ewrt             = _mm_mul_ps(r20,ewtabscale);
400             ewitab           = _mm_cvttps_epi32(ewrt);
401             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
402             ewitab           = _mm_slli_epi32(ewitab,2);
403             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
404             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
405             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
406             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
407             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
408             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
409             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
410             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
411             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
412
413             d                = _mm_sub_ps(r20,rswitch);
414             d                = _mm_max_ps(d,_mm_setzero_ps());
415             d2               = _mm_mul_ps(d,d);
416             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
417
418             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
419
420             /* Evaluate switch function */
421             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
422             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
423             velec            = _mm_mul_ps(velec,sw);
424             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm_and_ps(velec,cutoff_mask);
428             velecsum         = _mm_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             fscal            = _mm_and_ps(fscal,cutoff_mask);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx20);
436             ty               = _mm_mul_ps(fscal,dy20);
437             tz               = _mm_mul_ps(fscal,dz20);
438
439             /* Update vectorial force */
440             fix2             = _mm_add_ps(fix2,tx);
441             fiy2             = _mm_add_ps(fiy2,ty);
442             fiz2             = _mm_add_ps(fiz2,tz);
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
449             
450             }
451
452             /**************************
453              * CALCULATE INTERACTIONS *
454              **************************/
455
456             if (gmx_mm_any_lt(rsq30,rcutoff2))
457             {
458
459             r30              = _mm_mul_ps(rsq30,rinv30);
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq30             = _mm_mul_ps(iq3,jq0);
463
464             /* EWALD ELECTROSTATICS */
465
466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
467             ewrt             = _mm_mul_ps(r30,ewtabscale);
468             ewitab           = _mm_cvttps_epi32(ewrt);
469             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
470             ewitab           = _mm_slli_epi32(ewitab,2);
471             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
472             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
473             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
474             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
475             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
476             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
477             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
478             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
479             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
480
481             d                = _mm_sub_ps(r30,rswitch);
482             d                = _mm_max_ps(d,_mm_setzero_ps());
483             d2               = _mm_mul_ps(d,d);
484             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
485
486             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
487
488             /* Evaluate switch function */
489             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
490             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
491             velec            = _mm_mul_ps(velec,sw);
492             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
493
494             /* Update potential sum for this i atom from the interaction with this j atom. */
495             velec            = _mm_and_ps(velec,cutoff_mask);
496             velecsum         = _mm_add_ps(velecsum,velec);
497
498             fscal            = felec;
499
500             fscal            = _mm_and_ps(fscal,cutoff_mask);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm_mul_ps(fscal,dx30);
504             ty               = _mm_mul_ps(fscal,dy30);
505             tz               = _mm_mul_ps(fscal,dz30);
506
507             /* Update vectorial force */
508             fix3             = _mm_add_ps(fix3,tx);
509             fiy3             = _mm_add_ps(fiy3,ty);
510             fiz3             = _mm_add_ps(fiz3,tz);
511
512             fjptrA             = f+j_coord_offsetA;
513             fjptrB             = f+j_coord_offsetB;
514             fjptrC             = f+j_coord_offsetC;
515             fjptrD             = f+j_coord_offsetD;
516             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
517             
518             }
519
520             /* Inner loop uses 254 flops */
521         }
522
523         if(jidx<j_index_end)
524         {
525
526             /* Get j neighbor index, and coordinate index */
527             jnrlistA         = jjnr[jidx];
528             jnrlistB         = jjnr[jidx+1];
529             jnrlistC         = jjnr[jidx+2];
530             jnrlistD         = jjnr[jidx+3];
531             /* Sign of each element will be negative for non-real atoms.
532              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
533              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
534              */
535             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
536             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
537             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
538             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
539             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               x+j_coord_offsetC,x+j_coord_offsetD,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_ps(ix0,jx0);
552             dy00             = _mm_sub_ps(iy0,jy0);
553             dz00             = _mm_sub_ps(iz0,jz0);
554             dx10             = _mm_sub_ps(ix1,jx0);
555             dy10             = _mm_sub_ps(iy1,jy0);
556             dz10             = _mm_sub_ps(iz1,jz0);
557             dx20             = _mm_sub_ps(ix2,jx0);
558             dy20             = _mm_sub_ps(iy2,jy0);
559             dz20             = _mm_sub_ps(iz2,jz0);
560             dx30             = _mm_sub_ps(ix3,jx0);
561             dy30             = _mm_sub_ps(iy3,jy0);
562             dz30             = _mm_sub_ps(iz3,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
566             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
567             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
568             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
569
570             rinv00           = gmx_mm_invsqrt_ps(rsq00);
571             rinv10           = gmx_mm_invsqrt_ps(rsq10);
572             rinv20           = gmx_mm_invsqrt_ps(rsq20);
573             rinv30           = gmx_mm_invsqrt_ps(rsq30);
574
575             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
576             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
577             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
578             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582                                                               charge+jnrC+0,charge+jnrD+0);
583             vdwjidx0A        = 2*vdwtype[jnrA+0];
584             vdwjidx0B        = 2*vdwtype[jnrB+0];
585             vdwjidx0C        = 2*vdwtype[jnrC+0];
586             vdwjidx0D        = 2*vdwtype[jnrD+0];
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq00,rcutoff2))
593             {
594
595             r00              = _mm_mul_ps(rsq00,rinv00);
596             r00              = _mm_andnot_ps(dummy_mask,r00);
597
598             /* Compute parameters for interactions between i and j atoms */
599             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
600                                          vdwparam+vdwioffset0+vdwjidx0B,
601                                          vdwparam+vdwioffset0+vdwjidx0C,
602                                          vdwparam+vdwioffset0+vdwjidx0D,
603                                          &c6_00,&c12_00);
604
605             /* LENNARD-JONES DISPERSION/REPULSION */
606
607             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
608             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
609             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
610             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
611             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
612
613             d                = _mm_sub_ps(r00,rswitch);
614             d                = _mm_max_ps(d,_mm_setzero_ps());
615             d2               = _mm_mul_ps(d,d);
616             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
617
618             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
619
620             /* Evaluate switch function */
621             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
622             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
623             vvdw             = _mm_mul_ps(vvdw,sw);
624             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
625
626             /* Update potential sum for this i atom from the interaction with this j atom. */
627             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
628             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
629             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
630
631             fscal            = fvdw;
632
633             fscal            = _mm_and_ps(fscal,cutoff_mask);
634
635             fscal            = _mm_andnot_ps(dummy_mask,fscal);
636
637             /* Calculate temporary vectorial force */
638             tx               = _mm_mul_ps(fscal,dx00);
639             ty               = _mm_mul_ps(fscal,dy00);
640             tz               = _mm_mul_ps(fscal,dz00);
641
642             /* Update vectorial force */
643             fix0             = _mm_add_ps(fix0,tx);
644             fiy0             = _mm_add_ps(fiy0,ty);
645             fiz0             = _mm_add_ps(fiz0,tz);
646
647             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
648             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
649             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
650             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
651             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
652             
653             }
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             if (gmx_mm_any_lt(rsq10,rcutoff2))
660             {
661
662             r10              = _mm_mul_ps(rsq10,rinv10);
663             r10              = _mm_andnot_ps(dummy_mask,r10);
664
665             /* Compute parameters for interactions between i and j atoms */
666             qq10             = _mm_mul_ps(iq1,jq0);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_ps(r10,ewtabscale);
672             ewitab           = _mm_cvttps_epi32(ewrt);
673             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
674             ewitab           = _mm_slli_epi32(ewitab,2);
675             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
677             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
678             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
679             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
680             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
681             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
682             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
683             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
684
685             d                = _mm_sub_ps(r10,rswitch);
686             d                = _mm_max_ps(d,_mm_setzero_ps());
687             d2               = _mm_mul_ps(d,d);
688             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
689
690             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
691
692             /* Evaluate switch function */
693             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
694             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
695             velec            = _mm_mul_ps(velec,sw);
696             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
697
698             /* Update potential sum for this i atom from the interaction with this j atom. */
699             velec            = _mm_and_ps(velec,cutoff_mask);
700             velec            = _mm_andnot_ps(dummy_mask,velec);
701             velecsum         = _mm_add_ps(velecsum,velec);
702
703             fscal            = felec;
704
705             fscal            = _mm_and_ps(fscal,cutoff_mask);
706
707             fscal            = _mm_andnot_ps(dummy_mask,fscal);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm_mul_ps(fscal,dx10);
711             ty               = _mm_mul_ps(fscal,dy10);
712             tz               = _mm_mul_ps(fscal,dz10);
713
714             /* Update vectorial force */
715             fix1             = _mm_add_ps(fix1,tx);
716             fiy1             = _mm_add_ps(fiy1,ty);
717             fiz1             = _mm_add_ps(fiz1,tz);
718
719             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
720             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
721             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
722             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
723             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
724             
725             }
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             if (gmx_mm_any_lt(rsq20,rcutoff2))
732             {
733
734             r20              = _mm_mul_ps(rsq20,rinv20);
735             r20              = _mm_andnot_ps(dummy_mask,r20);
736
737             /* Compute parameters for interactions between i and j atoms */
738             qq20             = _mm_mul_ps(iq2,jq0);
739
740             /* EWALD ELECTROSTATICS */
741
742             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
743             ewrt             = _mm_mul_ps(r20,ewtabscale);
744             ewitab           = _mm_cvttps_epi32(ewrt);
745             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
746             ewitab           = _mm_slli_epi32(ewitab,2);
747             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
748             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
749             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
750             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
751             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
752             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
753             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
754             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
755             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
756
757             d                = _mm_sub_ps(r20,rswitch);
758             d                = _mm_max_ps(d,_mm_setzero_ps());
759             d2               = _mm_mul_ps(d,d);
760             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
761
762             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
763
764             /* Evaluate switch function */
765             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
766             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
767             velec            = _mm_mul_ps(velec,sw);
768             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
769
770             /* Update potential sum for this i atom from the interaction with this j atom. */
771             velec            = _mm_and_ps(velec,cutoff_mask);
772             velec            = _mm_andnot_ps(dummy_mask,velec);
773             velecsum         = _mm_add_ps(velecsum,velec);
774
775             fscal            = felec;
776
777             fscal            = _mm_and_ps(fscal,cutoff_mask);
778
779             fscal            = _mm_andnot_ps(dummy_mask,fscal);
780
781             /* Calculate temporary vectorial force */
782             tx               = _mm_mul_ps(fscal,dx20);
783             ty               = _mm_mul_ps(fscal,dy20);
784             tz               = _mm_mul_ps(fscal,dz20);
785
786             /* Update vectorial force */
787             fix2             = _mm_add_ps(fix2,tx);
788             fiy2             = _mm_add_ps(fiy2,ty);
789             fiz2             = _mm_add_ps(fiz2,tz);
790
791             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
792             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
793             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
794             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
795             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
796             
797             }
798
799             /**************************
800              * CALCULATE INTERACTIONS *
801              **************************/
802
803             if (gmx_mm_any_lt(rsq30,rcutoff2))
804             {
805
806             r30              = _mm_mul_ps(rsq30,rinv30);
807             r30              = _mm_andnot_ps(dummy_mask,r30);
808
809             /* Compute parameters for interactions between i and j atoms */
810             qq30             = _mm_mul_ps(iq3,jq0);
811
812             /* EWALD ELECTROSTATICS */
813
814             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
815             ewrt             = _mm_mul_ps(r30,ewtabscale);
816             ewitab           = _mm_cvttps_epi32(ewrt);
817             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
818             ewitab           = _mm_slli_epi32(ewitab,2);
819             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
820             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
821             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
822             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
823             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
824             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
825             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
826             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
827             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
828
829             d                = _mm_sub_ps(r30,rswitch);
830             d                = _mm_max_ps(d,_mm_setzero_ps());
831             d2               = _mm_mul_ps(d,d);
832             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
833
834             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
835
836             /* Evaluate switch function */
837             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
838             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
839             velec            = _mm_mul_ps(velec,sw);
840             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
841
842             /* Update potential sum for this i atom from the interaction with this j atom. */
843             velec            = _mm_and_ps(velec,cutoff_mask);
844             velec            = _mm_andnot_ps(dummy_mask,velec);
845             velecsum         = _mm_add_ps(velecsum,velec);
846
847             fscal            = felec;
848
849             fscal            = _mm_and_ps(fscal,cutoff_mask);
850
851             fscal            = _mm_andnot_ps(dummy_mask,fscal);
852
853             /* Calculate temporary vectorial force */
854             tx               = _mm_mul_ps(fscal,dx30);
855             ty               = _mm_mul_ps(fscal,dy30);
856             tz               = _mm_mul_ps(fscal,dz30);
857
858             /* Update vectorial force */
859             fix3             = _mm_add_ps(fix3,tx);
860             fiy3             = _mm_add_ps(fiy3,ty);
861             fiz3             = _mm_add_ps(fiz3,tz);
862
863             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
864             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
865             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
866             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
867             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
868             
869             }
870
871             /* Inner loop uses 258 flops */
872         }
873
874         /* End of innermost loop */
875
876         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
877                                               f+i_coord_offset,fshift+i_shift_offset);
878
879         ggid                        = gid[iidx];
880         /* Update potential energies */
881         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
882         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
883
884         /* Increment number of inner iterations */
885         inneriter                  += j_index_end - j_index_start;
886
887         /* Outer loop uses 26 flops */
888     }
889
890     /* Increment number of outer iterations */
891     outeriter        += nri;
892
893     /* Update outer/inner flops */
894
895     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*258);
896 }
897 /*
898  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_single
899  * Electrostatics interaction: Ewald
900  * VdW interaction:            LennardJones
901  * Geometry:                   Water4-Particle
902  * Calculate force/pot:        Force
903  */
904 void
905 nb_kernel_ElecEwSw_VdwLJSw_GeomW4P1_F_sse2_single
906                     (t_nblist * gmx_restrict                nlist,
907                      rvec * gmx_restrict                    xx,
908                      rvec * gmx_restrict                    ff,
909                      t_forcerec * gmx_restrict              fr,
910                      t_mdatoms * gmx_restrict               mdatoms,
911                      nb_kernel_data_t * gmx_restrict        kernel_data,
912                      t_nrnb * gmx_restrict                  nrnb)
913 {
914     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
915      * just 0 for non-waters.
916      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
917      * jnr indices corresponding to data put in the four positions in the SIMD register.
918      */
919     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
920     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
921     int              jnrA,jnrB,jnrC,jnrD;
922     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
923     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
924     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
925     real             rcutoff_scalar;
926     real             *shiftvec,*fshift,*x,*f;
927     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
928     real             scratch[4*DIM];
929     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
930     int              vdwioffset0;
931     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
932     int              vdwioffset1;
933     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
934     int              vdwioffset2;
935     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
936     int              vdwioffset3;
937     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
938     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
939     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
940     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
941     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
942     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
943     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
944     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
945     real             *charge;
946     int              nvdwtype;
947     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
948     int              *vdwtype;
949     real             *vdwparam;
950     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
951     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
952     __m128i          ewitab;
953     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
954     real             *ewtab;
955     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
956     real             rswitch_scalar,d_scalar;
957     __m128           dummy_mask,cutoff_mask;
958     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
959     __m128           one     = _mm_set1_ps(1.0);
960     __m128           two     = _mm_set1_ps(2.0);
961     x                = xx[0];
962     f                = ff[0];
963
964     nri              = nlist->nri;
965     iinr             = nlist->iinr;
966     jindex           = nlist->jindex;
967     jjnr             = nlist->jjnr;
968     shiftidx         = nlist->shift;
969     gid              = nlist->gid;
970     shiftvec         = fr->shift_vec[0];
971     fshift           = fr->fshift[0];
972     facel            = _mm_set1_ps(fr->epsfac);
973     charge           = mdatoms->chargeA;
974     nvdwtype         = fr->ntype;
975     vdwparam         = fr->nbfp;
976     vdwtype          = mdatoms->typeA;
977
978     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
979     ewtab            = fr->ic->tabq_coul_FDV0;
980     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
981     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
982
983     /* Setup water-specific parameters */
984     inr              = nlist->iinr[0];
985     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
986     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
987     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
988     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
989
990     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
991     rcutoff_scalar   = fr->rcoulomb;
992     rcutoff          = _mm_set1_ps(rcutoff_scalar);
993     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
994
995     rswitch_scalar   = fr->rcoulomb_switch;
996     rswitch          = _mm_set1_ps(rswitch_scalar);
997     /* Setup switch parameters */
998     d_scalar         = rcutoff_scalar-rswitch_scalar;
999     d                = _mm_set1_ps(d_scalar);
1000     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
1001     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1002     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1003     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
1004     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
1005     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
1006
1007     /* Avoid stupid compiler warnings */
1008     jnrA = jnrB = jnrC = jnrD = 0;
1009     j_coord_offsetA = 0;
1010     j_coord_offsetB = 0;
1011     j_coord_offsetC = 0;
1012     j_coord_offsetD = 0;
1013
1014     outeriter        = 0;
1015     inneriter        = 0;
1016
1017     for(iidx=0;iidx<4*DIM;iidx++)
1018     {
1019         scratch[iidx] = 0.0;
1020     }  
1021
1022     /* Start outer loop over neighborlists */
1023     for(iidx=0; iidx<nri; iidx++)
1024     {
1025         /* Load shift vector for this list */
1026         i_shift_offset   = DIM*shiftidx[iidx];
1027
1028         /* Load limits for loop over neighbors */
1029         j_index_start    = jindex[iidx];
1030         j_index_end      = jindex[iidx+1];
1031
1032         /* Get outer coordinate index */
1033         inr              = iinr[iidx];
1034         i_coord_offset   = DIM*inr;
1035
1036         /* Load i particle coords and add shift vector */
1037         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1038                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1039         
1040         fix0             = _mm_setzero_ps();
1041         fiy0             = _mm_setzero_ps();
1042         fiz0             = _mm_setzero_ps();
1043         fix1             = _mm_setzero_ps();
1044         fiy1             = _mm_setzero_ps();
1045         fiz1             = _mm_setzero_ps();
1046         fix2             = _mm_setzero_ps();
1047         fiy2             = _mm_setzero_ps();
1048         fiz2             = _mm_setzero_ps();
1049         fix3             = _mm_setzero_ps();
1050         fiy3             = _mm_setzero_ps();
1051         fiz3             = _mm_setzero_ps();
1052
1053         /* Start inner kernel loop */
1054         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1055         {
1056
1057             /* Get j neighbor index, and coordinate index */
1058             jnrA             = jjnr[jidx];
1059             jnrB             = jjnr[jidx+1];
1060             jnrC             = jjnr[jidx+2];
1061             jnrD             = jjnr[jidx+3];
1062             j_coord_offsetA  = DIM*jnrA;
1063             j_coord_offsetB  = DIM*jnrB;
1064             j_coord_offsetC  = DIM*jnrC;
1065             j_coord_offsetD  = DIM*jnrD;
1066
1067             /* load j atom coordinates */
1068             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1069                                               x+j_coord_offsetC,x+j_coord_offsetD,
1070                                               &jx0,&jy0,&jz0);
1071
1072             /* Calculate displacement vector */
1073             dx00             = _mm_sub_ps(ix0,jx0);
1074             dy00             = _mm_sub_ps(iy0,jy0);
1075             dz00             = _mm_sub_ps(iz0,jz0);
1076             dx10             = _mm_sub_ps(ix1,jx0);
1077             dy10             = _mm_sub_ps(iy1,jy0);
1078             dz10             = _mm_sub_ps(iz1,jz0);
1079             dx20             = _mm_sub_ps(ix2,jx0);
1080             dy20             = _mm_sub_ps(iy2,jy0);
1081             dz20             = _mm_sub_ps(iz2,jz0);
1082             dx30             = _mm_sub_ps(ix3,jx0);
1083             dy30             = _mm_sub_ps(iy3,jy0);
1084             dz30             = _mm_sub_ps(iz3,jz0);
1085
1086             /* Calculate squared distance and things based on it */
1087             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1088             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1089             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1090             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1091
1092             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1093             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1094             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1095             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1096
1097             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1098             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1099             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1100             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1101
1102             /* Load parameters for j particles */
1103             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1104                                                               charge+jnrC+0,charge+jnrD+0);
1105             vdwjidx0A        = 2*vdwtype[jnrA+0];
1106             vdwjidx0B        = 2*vdwtype[jnrB+0];
1107             vdwjidx0C        = 2*vdwtype[jnrC+0];
1108             vdwjidx0D        = 2*vdwtype[jnrD+0];
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm_any_lt(rsq00,rcutoff2))
1115             {
1116
1117             r00              = _mm_mul_ps(rsq00,rinv00);
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1121                                          vdwparam+vdwioffset0+vdwjidx0B,
1122                                          vdwparam+vdwioffset0+vdwjidx0C,
1123                                          vdwparam+vdwioffset0+vdwjidx0D,
1124                                          &c6_00,&c12_00);
1125
1126             /* LENNARD-JONES DISPERSION/REPULSION */
1127
1128             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1129             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1130             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1131             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1132             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1133
1134             d                = _mm_sub_ps(r00,rswitch);
1135             d                = _mm_max_ps(d,_mm_setzero_ps());
1136             d2               = _mm_mul_ps(d,d);
1137             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1138
1139             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1140
1141             /* Evaluate switch function */
1142             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1143             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1144             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1145
1146             fscal            = fvdw;
1147
1148             fscal            = _mm_and_ps(fscal,cutoff_mask);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm_mul_ps(fscal,dx00);
1152             ty               = _mm_mul_ps(fscal,dy00);
1153             tz               = _mm_mul_ps(fscal,dz00);
1154
1155             /* Update vectorial force */
1156             fix0             = _mm_add_ps(fix0,tx);
1157             fiy0             = _mm_add_ps(fiy0,ty);
1158             fiz0             = _mm_add_ps(fiz0,tz);
1159
1160             fjptrA             = f+j_coord_offsetA;
1161             fjptrB             = f+j_coord_offsetB;
1162             fjptrC             = f+j_coord_offsetC;
1163             fjptrD             = f+j_coord_offsetD;
1164             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1165             
1166             }
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             if (gmx_mm_any_lt(rsq10,rcutoff2))
1173             {
1174
1175             r10              = _mm_mul_ps(rsq10,rinv10);
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq10             = _mm_mul_ps(iq1,jq0);
1179
1180             /* EWALD ELECTROSTATICS */
1181
1182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1183             ewrt             = _mm_mul_ps(r10,ewtabscale);
1184             ewitab           = _mm_cvttps_epi32(ewrt);
1185             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1186             ewitab           = _mm_slli_epi32(ewitab,2);
1187             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1188             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1189             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1190             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1191             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1192             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1193             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1194             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1195             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1196
1197             d                = _mm_sub_ps(r10,rswitch);
1198             d                = _mm_max_ps(d,_mm_setzero_ps());
1199             d2               = _mm_mul_ps(d,d);
1200             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1201
1202             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1203
1204             /* Evaluate switch function */
1205             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1206             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1207             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1208
1209             fscal            = felec;
1210
1211             fscal            = _mm_and_ps(fscal,cutoff_mask);
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm_mul_ps(fscal,dx10);
1215             ty               = _mm_mul_ps(fscal,dy10);
1216             tz               = _mm_mul_ps(fscal,dz10);
1217
1218             /* Update vectorial force */
1219             fix1             = _mm_add_ps(fix1,tx);
1220             fiy1             = _mm_add_ps(fiy1,ty);
1221             fiz1             = _mm_add_ps(fiz1,tz);
1222
1223             fjptrA             = f+j_coord_offsetA;
1224             fjptrB             = f+j_coord_offsetB;
1225             fjptrC             = f+j_coord_offsetC;
1226             fjptrD             = f+j_coord_offsetD;
1227             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1228             
1229             }
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             if (gmx_mm_any_lt(rsq20,rcutoff2))
1236             {
1237
1238             r20              = _mm_mul_ps(rsq20,rinv20);
1239
1240             /* Compute parameters for interactions between i and j atoms */
1241             qq20             = _mm_mul_ps(iq2,jq0);
1242
1243             /* EWALD ELECTROSTATICS */
1244
1245             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1246             ewrt             = _mm_mul_ps(r20,ewtabscale);
1247             ewitab           = _mm_cvttps_epi32(ewrt);
1248             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1249             ewitab           = _mm_slli_epi32(ewitab,2);
1250             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1251             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1252             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1253             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1254             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1255             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1256             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1257             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1258             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1259
1260             d                = _mm_sub_ps(r20,rswitch);
1261             d                = _mm_max_ps(d,_mm_setzero_ps());
1262             d2               = _mm_mul_ps(d,d);
1263             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1264
1265             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1266
1267             /* Evaluate switch function */
1268             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1269             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1270             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1271
1272             fscal            = felec;
1273
1274             fscal            = _mm_and_ps(fscal,cutoff_mask);
1275
1276             /* Calculate temporary vectorial force */
1277             tx               = _mm_mul_ps(fscal,dx20);
1278             ty               = _mm_mul_ps(fscal,dy20);
1279             tz               = _mm_mul_ps(fscal,dz20);
1280
1281             /* Update vectorial force */
1282             fix2             = _mm_add_ps(fix2,tx);
1283             fiy2             = _mm_add_ps(fiy2,ty);
1284             fiz2             = _mm_add_ps(fiz2,tz);
1285
1286             fjptrA             = f+j_coord_offsetA;
1287             fjptrB             = f+j_coord_offsetB;
1288             fjptrC             = f+j_coord_offsetC;
1289             fjptrD             = f+j_coord_offsetD;
1290             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1291             
1292             }
1293
1294             /**************************
1295              * CALCULATE INTERACTIONS *
1296              **************************/
1297
1298             if (gmx_mm_any_lt(rsq30,rcutoff2))
1299             {
1300
1301             r30              = _mm_mul_ps(rsq30,rinv30);
1302
1303             /* Compute parameters for interactions between i and j atoms */
1304             qq30             = _mm_mul_ps(iq3,jq0);
1305
1306             /* EWALD ELECTROSTATICS */
1307
1308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1309             ewrt             = _mm_mul_ps(r30,ewtabscale);
1310             ewitab           = _mm_cvttps_epi32(ewrt);
1311             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1312             ewitab           = _mm_slli_epi32(ewitab,2);
1313             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1314             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1315             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1316             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1317             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1318             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1319             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1320             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1321             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1322
1323             d                = _mm_sub_ps(r30,rswitch);
1324             d                = _mm_max_ps(d,_mm_setzero_ps());
1325             d2               = _mm_mul_ps(d,d);
1326             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1327
1328             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1329
1330             /* Evaluate switch function */
1331             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1332             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1333             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1334
1335             fscal            = felec;
1336
1337             fscal            = _mm_and_ps(fscal,cutoff_mask);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm_mul_ps(fscal,dx30);
1341             ty               = _mm_mul_ps(fscal,dy30);
1342             tz               = _mm_mul_ps(fscal,dz30);
1343
1344             /* Update vectorial force */
1345             fix3             = _mm_add_ps(fix3,tx);
1346             fiy3             = _mm_add_ps(fiy3,ty);
1347             fiz3             = _mm_add_ps(fiz3,tz);
1348
1349             fjptrA             = f+j_coord_offsetA;
1350             fjptrB             = f+j_coord_offsetB;
1351             fjptrC             = f+j_coord_offsetC;
1352             fjptrD             = f+j_coord_offsetD;
1353             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1354             
1355             }
1356
1357             /* Inner loop uses 242 flops */
1358         }
1359
1360         if(jidx<j_index_end)
1361         {
1362
1363             /* Get j neighbor index, and coordinate index */
1364             jnrlistA         = jjnr[jidx];
1365             jnrlistB         = jjnr[jidx+1];
1366             jnrlistC         = jjnr[jidx+2];
1367             jnrlistD         = jjnr[jidx+3];
1368             /* Sign of each element will be negative for non-real atoms.
1369              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1370              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1371              */
1372             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1373             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1374             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1375             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1376             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1377             j_coord_offsetA  = DIM*jnrA;
1378             j_coord_offsetB  = DIM*jnrB;
1379             j_coord_offsetC  = DIM*jnrC;
1380             j_coord_offsetD  = DIM*jnrD;
1381
1382             /* load j atom coordinates */
1383             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1384                                               x+j_coord_offsetC,x+j_coord_offsetD,
1385                                               &jx0,&jy0,&jz0);
1386
1387             /* Calculate displacement vector */
1388             dx00             = _mm_sub_ps(ix0,jx0);
1389             dy00             = _mm_sub_ps(iy0,jy0);
1390             dz00             = _mm_sub_ps(iz0,jz0);
1391             dx10             = _mm_sub_ps(ix1,jx0);
1392             dy10             = _mm_sub_ps(iy1,jy0);
1393             dz10             = _mm_sub_ps(iz1,jz0);
1394             dx20             = _mm_sub_ps(ix2,jx0);
1395             dy20             = _mm_sub_ps(iy2,jy0);
1396             dz20             = _mm_sub_ps(iz2,jz0);
1397             dx30             = _mm_sub_ps(ix3,jx0);
1398             dy30             = _mm_sub_ps(iy3,jy0);
1399             dz30             = _mm_sub_ps(iz3,jz0);
1400
1401             /* Calculate squared distance and things based on it */
1402             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1403             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1404             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1405             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1406
1407             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1408             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1409             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1410             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1411
1412             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1413             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1414             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1415             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1416
1417             /* Load parameters for j particles */
1418             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1419                                                               charge+jnrC+0,charge+jnrD+0);
1420             vdwjidx0A        = 2*vdwtype[jnrA+0];
1421             vdwjidx0B        = 2*vdwtype[jnrB+0];
1422             vdwjidx0C        = 2*vdwtype[jnrC+0];
1423             vdwjidx0D        = 2*vdwtype[jnrD+0];
1424
1425             /**************************
1426              * CALCULATE INTERACTIONS *
1427              **************************/
1428
1429             if (gmx_mm_any_lt(rsq00,rcutoff2))
1430             {
1431
1432             r00              = _mm_mul_ps(rsq00,rinv00);
1433             r00              = _mm_andnot_ps(dummy_mask,r00);
1434
1435             /* Compute parameters for interactions between i and j atoms */
1436             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1437                                          vdwparam+vdwioffset0+vdwjidx0B,
1438                                          vdwparam+vdwioffset0+vdwjidx0C,
1439                                          vdwparam+vdwioffset0+vdwjidx0D,
1440                                          &c6_00,&c12_00);
1441
1442             /* LENNARD-JONES DISPERSION/REPULSION */
1443
1444             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1445             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1446             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1447             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1448             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1449
1450             d                = _mm_sub_ps(r00,rswitch);
1451             d                = _mm_max_ps(d,_mm_setzero_ps());
1452             d2               = _mm_mul_ps(d,d);
1453             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1454
1455             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1456
1457             /* Evaluate switch function */
1458             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1459             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1460             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1461
1462             fscal            = fvdw;
1463
1464             fscal            = _mm_and_ps(fscal,cutoff_mask);
1465
1466             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1467
1468             /* Calculate temporary vectorial force */
1469             tx               = _mm_mul_ps(fscal,dx00);
1470             ty               = _mm_mul_ps(fscal,dy00);
1471             tz               = _mm_mul_ps(fscal,dz00);
1472
1473             /* Update vectorial force */
1474             fix0             = _mm_add_ps(fix0,tx);
1475             fiy0             = _mm_add_ps(fiy0,ty);
1476             fiz0             = _mm_add_ps(fiz0,tz);
1477
1478             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1479             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1480             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1481             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1482             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1483             
1484             }
1485
1486             /**************************
1487              * CALCULATE INTERACTIONS *
1488              **************************/
1489
1490             if (gmx_mm_any_lt(rsq10,rcutoff2))
1491             {
1492
1493             r10              = _mm_mul_ps(rsq10,rinv10);
1494             r10              = _mm_andnot_ps(dummy_mask,r10);
1495
1496             /* Compute parameters for interactions between i and j atoms */
1497             qq10             = _mm_mul_ps(iq1,jq0);
1498
1499             /* EWALD ELECTROSTATICS */
1500
1501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1502             ewrt             = _mm_mul_ps(r10,ewtabscale);
1503             ewitab           = _mm_cvttps_epi32(ewrt);
1504             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1505             ewitab           = _mm_slli_epi32(ewitab,2);
1506             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1507             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1508             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1509             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1510             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1511             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1512             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1513             velec            = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
1514             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1515
1516             d                = _mm_sub_ps(r10,rswitch);
1517             d                = _mm_max_ps(d,_mm_setzero_ps());
1518             d2               = _mm_mul_ps(d,d);
1519             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1520
1521             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1522
1523             /* Evaluate switch function */
1524             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1525             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv10,_mm_mul_ps(velec,dsw)) );
1526             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1527
1528             fscal            = felec;
1529
1530             fscal            = _mm_and_ps(fscal,cutoff_mask);
1531
1532             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1533
1534             /* Calculate temporary vectorial force */
1535             tx               = _mm_mul_ps(fscal,dx10);
1536             ty               = _mm_mul_ps(fscal,dy10);
1537             tz               = _mm_mul_ps(fscal,dz10);
1538
1539             /* Update vectorial force */
1540             fix1             = _mm_add_ps(fix1,tx);
1541             fiy1             = _mm_add_ps(fiy1,ty);
1542             fiz1             = _mm_add_ps(fiz1,tz);
1543
1544             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1545             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1546             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1547             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1548             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1549             
1550             }
1551
1552             /**************************
1553              * CALCULATE INTERACTIONS *
1554              **************************/
1555
1556             if (gmx_mm_any_lt(rsq20,rcutoff2))
1557             {
1558
1559             r20              = _mm_mul_ps(rsq20,rinv20);
1560             r20              = _mm_andnot_ps(dummy_mask,r20);
1561
1562             /* Compute parameters for interactions between i and j atoms */
1563             qq20             = _mm_mul_ps(iq2,jq0);
1564
1565             /* EWALD ELECTROSTATICS */
1566
1567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1568             ewrt             = _mm_mul_ps(r20,ewtabscale);
1569             ewitab           = _mm_cvttps_epi32(ewrt);
1570             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1571             ewitab           = _mm_slli_epi32(ewitab,2);
1572             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1573             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1574             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1575             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1576             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1577             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1578             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1579             velec            = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
1580             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1581
1582             d                = _mm_sub_ps(r20,rswitch);
1583             d                = _mm_max_ps(d,_mm_setzero_ps());
1584             d2               = _mm_mul_ps(d,d);
1585             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1586
1587             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1588
1589             /* Evaluate switch function */
1590             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1591             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv20,_mm_mul_ps(velec,dsw)) );
1592             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1593
1594             fscal            = felec;
1595
1596             fscal            = _mm_and_ps(fscal,cutoff_mask);
1597
1598             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1599
1600             /* Calculate temporary vectorial force */
1601             tx               = _mm_mul_ps(fscal,dx20);
1602             ty               = _mm_mul_ps(fscal,dy20);
1603             tz               = _mm_mul_ps(fscal,dz20);
1604
1605             /* Update vectorial force */
1606             fix2             = _mm_add_ps(fix2,tx);
1607             fiy2             = _mm_add_ps(fiy2,ty);
1608             fiz2             = _mm_add_ps(fiz2,tz);
1609
1610             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1611             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1612             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1613             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1614             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1615             
1616             }
1617
1618             /**************************
1619              * CALCULATE INTERACTIONS *
1620              **************************/
1621
1622             if (gmx_mm_any_lt(rsq30,rcutoff2))
1623             {
1624
1625             r30              = _mm_mul_ps(rsq30,rinv30);
1626             r30              = _mm_andnot_ps(dummy_mask,r30);
1627
1628             /* Compute parameters for interactions between i and j atoms */
1629             qq30             = _mm_mul_ps(iq3,jq0);
1630
1631             /* EWALD ELECTROSTATICS */
1632
1633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1634             ewrt             = _mm_mul_ps(r30,ewtabscale);
1635             ewitab           = _mm_cvttps_epi32(ewrt);
1636             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1637             ewitab           = _mm_slli_epi32(ewitab,2);
1638             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1639             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1640             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1641             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1642             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1643             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1644             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1645             velec            = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
1646             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1647
1648             d                = _mm_sub_ps(r30,rswitch);
1649             d                = _mm_max_ps(d,_mm_setzero_ps());
1650             d2               = _mm_mul_ps(d,d);
1651             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1652
1653             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1654
1655             /* Evaluate switch function */
1656             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1657             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv30,_mm_mul_ps(velec,dsw)) );
1658             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1659
1660             fscal            = felec;
1661
1662             fscal            = _mm_and_ps(fscal,cutoff_mask);
1663
1664             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1665
1666             /* Calculate temporary vectorial force */
1667             tx               = _mm_mul_ps(fscal,dx30);
1668             ty               = _mm_mul_ps(fscal,dy30);
1669             tz               = _mm_mul_ps(fscal,dz30);
1670
1671             /* Update vectorial force */
1672             fix3             = _mm_add_ps(fix3,tx);
1673             fiy3             = _mm_add_ps(fiy3,ty);
1674             fiz3             = _mm_add_ps(fiz3,tz);
1675
1676             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1677             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1678             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1679             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1680             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
1681             
1682             }
1683
1684             /* Inner loop uses 246 flops */
1685         }
1686
1687         /* End of innermost loop */
1688
1689         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1690                                               f+i_coord_offset,fshift+i_shift_offset);
1691
1692         /* Increment number of inner iterations */
1693         inneriter                  += j_index_end - j_index_start;
1694
1695         /* Outer loop uses 24 flops */
1696     }
1697
1698     /* Increment number of outer iterations */
1699     outeriter        += nri;
1700
1701     /* Update outer/inner flops */
1702
1703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*246);
1704 }