Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          ewitab;
99     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     rswitch_scalar   = fr->rcoulomb_switch;
135     rswitch          = _mm_set1_ps(rswitch_scalar);
136     /* Setup switch parameters */
137     d_scalar         = rcutoff_scalar-rswitch_scalar;
138     d                = _mm_set1_ps(d_scalar);
139     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
140     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
141     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
142     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
143     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = jnrC = jnrD = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150     j_coord_offsetC = 0;
151     j_coord_offsetD = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     for(iidx=0;iidx<4*DIM;iidx++)
157     {
158         scratch[iidx] = 0.0;
159     }  
160
161     /* Start outer loop over neighborlists */
162     for(iidx=0; iidx<nri; iidx++)
163     {
164         /* Load shift vector for this list */
165         i_shift_offset   = DIM*shiftidx[iidx];
166
167         /* Load limits for loop over neighbors */
168         j_index_start    = jindex[iidx];
169         j_index_end      = jindex[iidx+1];
170
171         /* Get outer coordinate index */
172         inr              = iinr[iidx];
173         i_coord_offset   = DIM*inr;
174
175         /* Load i particle coords and add shift vector */
176         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
177         
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181
182         /* Load parameters for i particles */
183         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
184         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218
219             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
223                                                               charge+jnrC+0,charge+jnrD+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226             vdwjidx0C        = 2*vdwtype[jnrC+0];
227             vdwjidx0D        = 2*vdwtype[jnrD+0];
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             r00              = _mm_mul_ps(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_ps(iq0,jq0);
240             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,
242                                          vdwparam+vdwioffset0+vdwjidx0C,
243                                          vdwparam+vdwioffset0+vdwjidx0D,
244                                          &c6_00,&c12_00);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_ps(r00,ewtabscale);
250             ewitab           = _mm_cvttps_epi32(ewrt);
251             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
252             ewitab           = _mm_slli_epi32(ewitab,2);
253             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
254             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
255             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
256             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
257             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
258             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
259             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
260             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
261             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
267             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
268             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
269             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
270
271             d                = _mm_sub_ps(r00,rswitch);
272             d                = _mm_max_ps(d,_mm_setzero_ps());
273             d2               = _mm_mul_ps(d,d);
274             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
275
276             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
277
278             /* Evaluate switch function */
279             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
280             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
281             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
282             velec            = _mm_mul_ps(velec,sw);
283             vvdw             = _mm_mul_ps(vvdw,sw);
284             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm_and_ps(velec,cutoff_mask);
288             velecsum         = _mm_add_ps(velecsum,velec);
289             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
290             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
291
292             fscal            = _mm_add_ps(felec,fvdw);
293
294             fscal            = _mm_and_ps(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_ps(fscal,dx00);
298             ty               = _mm_mul_ps(fscal,dy00);
299             tz               = _mm_mul_ps(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm_add_ps(fix0,tx);
303             fiy0             = _mm_add_ps(fiy0,ty);
304             fiz0             = _mm_add_ps(fiz0,tz);
305
306             fjptrA             = f+j_coord_offsetA;
307             fjptrB             = f+j_coord_offsetB;
308             fjptrC             = f+j_coord_offsetC;
309             fjptrD             = f+j_coord_offsetD;
310             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
311             
312             }
313
314             /* Inner loop uses 83 flops */
315         }
316
317         if(jidx<j_index_end)
318         {
319
320             /* Get j neighbor index, and coordinate index */
321             jnrlistA         = jjnr[jidx];
322             jnrlistB         = jjnr[jidx+1];
323             jnrlistC         = jjnr[jidx+2];
324             jnrlistD         = jjnr[jidx+3];
325             /* Sign of each element will be negative for non-real atoms.
326              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
327              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
328              */
329             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
330             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
331             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
332             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
333             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
334             j_coord_offsetA  = DIM*jnrA;
335             j_coord_offsetB  = DIM*jnrB;
336             j_coord_offsetC  = DIM*jnrC;
337             j_coord_offsetD  = DIM*jnrD;
338
339             /* load j atom coordinates */
340             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
341                                               x+j_coord_offsetC,x+j_coord_offsetD,
342                                               &jx0,&jy0,&jz0);
343
344             /* Calculate displacement vector */
345             dx00             = _mm_sub_ps(ix0,jx0);
346             dy00             = _mm_sub_ps(iy0,jy0);
347             dz00             = _mm_sub_ps(iz0,jz0);
348
349             /* Calculate squared distance and things based on it */
350             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
351
352             rinv00           = gmx_mm_invsqrt_ps(rsq00);
353
354             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
355
356             /* Load parameters for j particles */
357             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
358                                                               charge+jnrC+0,charge+jnrD+0);
359             vdwjidx0A        = 2*vdwtype[jnrA+0];
360             vdwjidx0B        = 2*vdwtype[jnrB+0];
361             vdwjidx0C        = 2*vdwtype[jnrC+0];
362             vdwjidx0D        = 2*vdwtype[jnrD+0];
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq00,rcutoff2))
369             {
370
371             r00              = _mm_mul_ps(rsq00,rinv00);
372             r00              = _mm_andnot_ps(dummy_mask,r00);
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq00             = _mm_mul_ps(iq0,jq0);
376             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
377                                          vdwparam+vdwioffset0+vdwjidx0B,
378                                          vdwparam+vdwioffset0+vdwjidx0C,
379                                          vdwparam+vdwioffset0+vdwjidx0D,
380                                          &c6_00,&c12_00);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm_mul_ps(r00,ewtabscale);
386             ewitab           = _mm_cvttps_epi32(ewrt);
387             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
391             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
392             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
393             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
394             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
395             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
396             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
397             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
398
399             /* LENNARD-JONES DISPERSION/REPULSION */
400
401             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
402             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
403             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
404             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
405             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
406
407             d                = _mm_sub_ps(r00,rswitch);
408             d                = _mm_max_ps(d,_mm_setzero_ps());
409             d2               = _mm_mul_ps(d,d);
410             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
411
412             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
413
414             /* Evaluate switch function */
415             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
416             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
417             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
418             velec            = _mm_mul_ps(velec,sw);
419             vvdw             = _mm_mul_ps(vvdw,sw);
420             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm_and_ps(velec,cutoff_mask);
424             velec            = _mm_andnot_ps(dummy_mask,velec);
425             velecsum         = _mm_add_ps(velecsum,velec);
426             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
427             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
428             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
429
430             fscal            = _mm_add_ps(felec,fvdw);
431
432             fscal            = _mm_and_ps(fscal,cutoff_mask);
433
434             fscal            = _mm_andnot_ps(dummy_mask,fscal);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm_mul_ps(fscal,dx00);
438             ty               = _mm_mul_ps(fscal,dy00);
439             tz               = _mm_mul_ps(fscal,dz00);
440
441             /* Update vectorial force */
442             fix0             = _mm_add_ps(fix0,tx);
443             fiy0             = _mm_add_ps(fiy0,ty);
444             fiz0             = _mm_add_ps(fiz0,tz);
445
446             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
447             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
448             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
449             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
450             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
451             
452             }
453
454             /* Inner loop uses 84 flops */
455         }
456
457         /* End of innermost loop */
458
459         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
460                                               f+i_coord_offset,fshift+i_shift_offset);
461
462         ggid                        = gid[iidx];
463         /* Update potential energies */
464         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
465         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
466
467         /* Increment number of inner iterations */
468         inneriter                  += j_index_end - j_index_start;
469
470         /* Outer loop uses 9 flops */
471     }
472
473     /* Increment number of outer iterations */
474     outeriter        += nri;
475
476     /* Update outer/inner flops */
477
478     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*84);
479 }
480 /*
481  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_single
482  * Electrostatics interaction: Ewald
483  * VdW interaction:            LennardJones
484  * Geometry:                   Particle-Particle
485  * Calculate force/pot:        Force
486  */
487 void
488 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_sse2_single
489                     (t_nblist                    * gmx_restrict       nlist,
490                      rvec                        * gmx_restrict          xx,
491                      rvec                        * gmx_restrict          ff,
492                      t_forcerec                  * gmx_restrict          fr,
493                      t_mdatoms                   * gmx_restrict     mdatoms,
494                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
495                      t_nrnb                      * gmx_restrict        nrnb)
496 {
497     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
498      * just 0 for non-waters.
499      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
500      * jnr indices corresponding to data put in the four positions in the SIMD register.
501      */
502     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
503     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
504     int              jnrA,jnrB,jnrC,jnrD;
505     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
506     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
507     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
508     real             rcutoff_scalar;
509     real             *shiftvec,*fshift,*x,*f;
510     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
511     real             scratch[4*DIM];
512     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
513     int              vdwioffset0;
514     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
515     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
516     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
517     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
518     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
519     real             *charge;
520     int              nvdwtype;
521     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
522     int              *vdwtype;
523     real             *vdwparam;
524     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
525     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
526     __m128i          ewitab;
527     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
528     real             *ewtab;
529     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
530     real             rswitch_scalar,d_scalar;
531     __m128           dummy_mask,cutoff_mask;
532     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
533     __m128           one     = _mm_set1_ps(1.0);
534     __m128           two     = _mm_set1_ps(2.0);
535     x                = xx[0];
536     f                = ff[0];
537
538     nri              = nlist->nri;
539     iinr             = nlist->iinr;
540     jindex           = nlist->jindex;
541     jjnr             = nlist->jjnr;
542     shiftidx         = nlist->shift;
543     gid              = nlist->gid;
544     shiftvec         = fr->shift_vec[0];
545     fshift           = fr->fshift[0];
546     facel            = _mm_set1_ps(fr->epsfac);
547     charge           = mdatoms->chargeA;
548     nvdwtype         = fr->ntype;
549     vdwparam         = fr->nbfp;
550     vdwtype          = mdatoms->typeA;
551
552     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
553     ewtab            = fr->ic->tabq_coul_FDV0;
554     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
555     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
556
557     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
558     rcutoff_scalar   = fr->rcoulomb;
559     rcutoff          = _mm_set1_ps(rcutoff_scalar);
560     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
561
562     rswitch_scalar   = fr->rcoulomb_switch;
563     rswitch          = _mm_set1_ps(rswitch_scalar);
564     /* Setup switch parameters */
565     d_scalar         = rcutoff_scalar-rswitch_scalar;
566     d                = _mm_set1_ps(d_scalar);
567     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
568     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
569     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
570     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
571     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
572     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
573
574     /* Avoid stupid compiler warnings */
575     jnrA = jnrB = jnrC = jnrD = 0;
576     j_coord_offsetA = 0;
577     j_coord_offsetB = 0;
578     j_coord_offsetC = 0;
579     j_coord_offsetD = 0;
580
581     outeriter        = 0;
582     inneriter        = 0;
583
584     for(iidx=0;iidx<4*DIM;iidx++)
585     {
586         scratch[iidx] = 0.0;
587     }  
588
589     /* Start outer loop over neighborlists */
590     for(iidx=0; iidx<nri; iidx++)
591     {
592         /* Load shift vector for this list */
593         i_shift_offset   = DIM*shiftidx[iidx];
594
595         /* Load limits for loop over neighbors */
596         j_index_start    = jindex[iidx];
597         j_index_end      = jindex[iidx+1];
598
599         /* Get outer coordinate index */
600         inr              = iinr[iidx];
601         i_coord_offset   = DIM*inr;
602
603         /* Load i particle coords and add shift vector */
604         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
605         
606         fix0             = _mm_setzero_ps();
607         fiy0             = _mm_setzero_ps();
608         fiz0             = _mm_setzero_ps();
609
610         /* Load parameters for i particles */
611         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
612         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
613
614         /* Start inner kernel loop */
615         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
616         {
617
618             /* Get j neighbor index, and coordinate index */
619             jnrA             = jjnr[jidx];
620             jnrB             = jjnr[jidx+1];
621             jnrC             = jjnr[jidx+2];
622             jnrD             = jjnr[jidx+3];
623             j_coord_offsetA  = DIM*jnrA;
624             j_coord_offsetB  = DIM*jnrB;
625             j_coord_offsetC  = DIM*jnrC;
626             j_coord_offsetD  = DIM*jnrD;
627
628             /* load j atom coordinates */
629             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
630                                               x+j_coord_offsetC,x+j_coord_offsetD,
631                                               &jx0,&jy0,&jz0);
632
633             /* Calculate displacement vector */
634             dx00             = _mm_sub_ps(ix0,jx0);
635             dy00             = _mm_sub_ps(iy0,jy0);
636             dz00             = _mm_sub_ps(iz0,jz0);
637
638             /* Calculate squared distance and things based on it */
639             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
640
641             rinv00           = gmx_mm_invsqrt_ps(rsq00);
642
643             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
644
645             /* Load parameters for j particles */
646             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
647                                                               charge+jnrC+0,charge+jnrD+0);
648             vdwjidx0A        = 2*vdwtype[jnrA+0];
649             vdwjidx0B        = 2*vdwtype[jnrB+0];
650             vdwjidx0C        = 2*vdwtype[jnrC+0];
651             vdwjidx0D        = 2*vdwtype[jnrD+0];
652
653             /**************************
654              * CALCULATE INTERACTIONS *
655              **************************/
656
657             if (gmx_mm_any_lt(rsq00,rcutoff2))
658             {
659
660             r00              = _mm_mul_ps(rsq00,rinv00);
661
662             /* Compute parameters for interactions between i and j atoms */
663             qq00             = _mm_mul_ps(iq0,jq0);
664             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
665                                          vdwparam+vdwioffset0+vdwjidx0B,
666                                          vdwparam+vdwioffset0+vdwjidx0C,
667                                          vdwparam+vdwioffset0+vdwjidx0D,
668                                          &c6_00,&c12_00);
669
670             /* EWALD ELECTROSTATICS */
671
672             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
673             ewrt             = _mm_mul_ps(r00,ewtabscale);
674             ewitab           = _mm_cvttps_epi32(ewrt);
675             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
676             ewitab           = _mm_slli_epi32(ewitab,2);
677             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
678             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
679             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
680             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
681             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
682             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
683             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
684             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
685             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
686
687             /* LENNARD-JONES DISPERSION/REPULSION */
688
689             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
690             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
691             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
692             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
693             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
694
695             d                = _mm_sub_ps(r00,rswitch);
696             d                = _mm_max_ps(d,_mm_setzero_ps());
697             d2               = _mm_mul_ps(d,d);
698             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
699
700             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
701
702             /* Evaluate switch function */
703             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
704             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
705             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
706             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
707
708             fscal            = _mm_add_ps(felec,fvdw);
709
710             fscal            = _mm_and_ps(fscal,cutoff_mask);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm_mul_ps(fscal,dx00);
714             ty               = _mm_mul_ps(fscal,dy00);
715             tz               = _mm_mul_ps(fscal,dz00);
716
717             /* Update vectorial force */
718             fix0             = _mm_add_ps(fix0,tx);
719             fiy0             = _mm_add_ps(fiy0,ty);
720             fiz0             = _mm_add_ps(fiz0,tz);
721
722             fjptrA             = f+j_coord_offsetA;
723             fjptrB             = f+j_coord_offsetB;
724             fjptrC             = f+j_coord_offsetC;
725             fjptrD             = f+j_coord_offsetD;
726             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
727             
728             }
729
730             /* Inner loop uses 77 flops */
731         }
732
733         if(jidx<j_index_end)
734         {
735
736             /* Get j neighbor index, and coordinate index */
737             jnrlistA         = jjnr[jidx];
738             jnrlistB         = jjnr[jidx+1];
739             jnrlistC         = jjnr[jidx+2];
740             jnrlistD         = jjnr[jidx+3];
741             /* Sign of each element will be negative for non-real atoms.
742              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
743              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
744              */
745             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
746             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
747             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
748             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
749             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
750             j_coord_offsetA  = DIM*jnrA;
751             j_coord_offsetB  = DIM*jnrB;
752             j_coord_offsetC  = DIM*jnrC;
753             j_coord_offsetD  = DIM*jnrD;
754
755             /* load j atom coordinates */
756             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
757                                               x+j_coord_offsetC,x+j_coord_offsetD,
758                                               &jx0,&jy0,&jz0);
759
760             /* Calculate displacement vector */
761             dx00             = _mm_sub_ps(ix0,jx0);
762             dy00             = _mm_sub_ps(iy0,jy0);
763             dz00             = _mm_sub_ps(iz0,jz0);
764
765             /* Calculate squared distance and things based on it */
766             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
767
768             rinv00           = gmx_mm_invsqrt_ps(rsq00);
769
770             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
771
772             /* Load parameters for j particles */
773             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
774                                                               charge+jnrC+0,charge+jnrD+0);
775             vdwjidx0A        = 2*vdwtype[jnrA+0];
776             vdwjidx0B        = 2*vdwtype[jnrB+0];
777             vdwjidx0C        = 2*vdwtype[jnrC+0];
778             vdwjidx0D        = 2*vdwtype[jnrD+0];
779
780             /**************************
781              * CALCULATE INTERACTIONS *
782              **************************/
783
784             if (gmx_mm_any_lt(rsq00,rcutoff2))
785             {
786
787             r00              = _mm_mul_ps(rsq00,rinv00);
788             r00              = _mm_andnot_ps(dummy_mask,r00);
789
790             /* Compute parameters for interactions between i and j atoms */
791             qq00             = _mm_mul_ps(iq0,jq0);
792             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
793                                          vdwparam+vdwioffset0+vdwjidx0B,
794                                          vdwparam+vdwioffset0+vdwjidx0C,
795                                          vdwparam+vdwioffset0+vdwjidx0D,
796                                          &c6_00,&c12_00);
797
798             /* EWALD ELECTROSTATICS */
799
800             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
801             ewrt             = _mm_mul_ps(r00,ewtabscale);
802             ewitab           = _mm_cvttps_epi32(ewrt);
803             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
804             ewitab           = _mm_slli_epi32(ewitab,2);
805             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
806             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
807             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
808             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
809             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
810             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
811             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
812             velec            = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
813             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
814
815             /* LENNARD-JONES DISPERSION/REPULSION */
816
817             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
818             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
819             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
820             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
821             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
822
823             d                = _mm_sub_ps(r00,rswitch);
824             d                = _mm_max_ps(d,_mm_setzero_ps());
825             d2               = _mm_mul_ps(d,d);
826             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
827
828             dsw              = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
829
830             /* Evaluate switch function */
831             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
832             felec            = _mm_sub_ps( _mm_mul_ps(felec,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(velec,dsw)) );
833             fvdw             = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
834             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
835
836             fscal            = _mm_add_ps(felec,fvdw);
837
838             fscal            = _mm_and_ps(fscal,cutoff_mask);
839
840             fscal            = _mm_andnot_ps(dummy_mask,fscal);
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm_mul_ps(fscal,dx00);
844             ty               = _mm_mul_ps(fscal,dy00);
845             tz               = _mm_mul_ps(fscal,dz00);
846
847             /* Update vectorial force */
848             fix0             = _mm_add_ps(fix0,tx);
849             fiy0             = _mm_add_ps(fiy0,ty);
850             fiz0             = _mm_add_ps(fiz0,tz);
851
852             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
853             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
854             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
855             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
856             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
857             
858             }
859
860             /* Inner loop uses 78 flops */
861         }
862
863         /* End of innermost loop */
864
865         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
866                                               f+i_coord_offset,fshift+i_shift_offset);
867
868         /* Increment number of inner iterations */
869         inneriter                  += j_index_end - j_index_start;
870
871         /* Outer loop uses 7 flops */
872     }
873
874     /* Increment number of outer iterations */
875     outeriter        += nri;
876
877     /* Update outer/inner flops */
878
879     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*78);
880 }