Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwNone_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
108     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
109     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131         shX              = shiftvec[i_shift_offset+XX];
132         shY              = shiftvec[i_shift_offset+YY];
133         shZ              = shiftvec[i_shift_offset+ZZ];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
145         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
146         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
147         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
148         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
149         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
150         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
151         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
152         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
153
154         fix1             = _mm_setzero_ps();
155         fiy1             = _mm_setzero_ps();
156         fiz1             = _mm_setzero_ps();
157         fix2             = _mm_setzero_ps();
158         fiy2             = _mm_setzero_ps();
159         fiz2             = _mm_setzero_ps();
160         fix3             = _mm_setzero_ps();
161         fiy3             = _mm_setzero_ps();
162         fiz3             = _mm_setzero_ps();
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               x+j_coord_offsetC,x+j_coord_offsetD,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx10             = _mm_sub_ps(ix1,jx0);
189             dy10             = _mm_sub_ps(iy1,jy0);
190             dz10             = _mm_sub_ps(iz1,jz0);
191             dx20             = _mm_sub_ps(ix2,jx0);
192             dy20             = _mm_sub_ps(iy2,jy0);
193             dz20             = _mm_sub_ps(iz2,jz0);
194             dx30             = _mm_sub_ps(ix3,jx0);
195             dy30             = _mm_sub_ps(iy3,jy0);
196             dz30             = _mm_sub_ps(iz3,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
200             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
201             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
202
203             rinv10           = gmx_mm_invsqrt_ps(rsq10);
204             rinv20           = gmx_mm_invsqrt_ps(rsq20);
205             rinv30           = gmx_mm_invsqrt_ps(rsq30);
206
207             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
208             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
209             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq10,rcutoff2))
220             {
221
222             r10              = _mm_mul_ps(rsq10,rinv10);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq10             = _mm_mul_ps(iq1,jq0);
226
227             /* EWALD ELECTROSTATICS */
228
229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
230             ewrt             = _mm_mul_ps(r10,ewtabscale);
231             ewitab           = _mm_cvttps_epi32(ewrt);
232             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
233             ewitab           = _mm_slli_epi32(ewitab,2);
234             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
235             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
236             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
237             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
238             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
239             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
240             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
241             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
242             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
243
244             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velec            = _mm_and_ps(velec,cutoff_mask);
248             velecsum         = _mm_add_ps(velecsum,velec);
249
250             fscal            = felec;
251
252             fscal            = _mm_and_ps(fscal,cutoff_mask);
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm_mul_ps(fscal,dx10);
256             ty               = _mm_mul_ps(fscal,dy10);
257             tz               = _mm_mul_ps(fscal,dz10);
258
259             /* Update vectorial force */
260             fix1             = _mm_add_ps(fix1,tx);
261             fiy1             = _mm_add_ps(fiy1,ty);
262             fiz1             = _mm_add_ps(fiz1,tz);
263
264             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
265                                                    f+j_coord_offsetC,f+j_coord_offsetD,
266                                                    tx,ty,tz);
267
268             }
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (gmx_mm_any_lt(rsq20,rcutoff2))
275             {
276
277             r20              = _mm_mul_ps(rsq20,rinv20);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq20             = _mm_mul_ps(iq2,jq0);
281
282             /* EWALD ELECTROSTATICS */
283
284             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
285             ewrt             = _mm_mul_ps(r20,ewtabscale);
286             ewitab           = _mm_cvttps_epi32(ewrt);
287             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
288             ewitab           = _mm_slli_epi32(ewitab,2);
289             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
290             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
291             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
292             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
293             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
294             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
295             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
296             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
297             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
298
299             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velec            = _mm_and_ps(velec,cutoff_mask);
303             velecsum         = _mm_add_ps(velecsum,velec);
304
305             fscal            = felec;
306
307             fscal            = _mm_and_ps(fscal,cutoff_mask);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_ps(fscal,dx20);
311             ty               = _mm_mul_ps(fscal,dy20);
312             tz               = _mm_mul_ps(fscal,dz20);
313
314             /* Update vectorial force */
315             fix2             = _mm_add_ps(fix2,tx);
316             fiy2             = _mm_add_ps(fiy2,ty);
317             fiz2             = _mm_add_ps(fiz2,tz);
318
319             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
320                                                    f+j_coord_offsetC,f+j_coord_offsetD,
321                                                    tx,ty,tz);
322
323             }
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq30,rcutoff2))
330             {
331
332             r30              = _mm_mul_ps(rsq30,rinv30);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq30             = _mm_mul_ps(iq3,jq0);
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
340             ewrt             = _mm_mul_ps(r30,ewtabscale);
341             ewitab           = _mm_cvttps_epi32(ewrt);
342             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
343             ewitab           = _mm_slli_epi32(ewitab,2);
344             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
345             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
346             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
347             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
348             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
349             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
350             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
351             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
352             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
353
354             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_and_ps(velec,cutoff_mask);
358             velecsum         = _mm_add_ps(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_ps(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx30);
366             ty               = _mm_mul_ps(fscal,dy30);
367             tz               = _mm_mul_ps(fscal,dz30);
368
369             /* Update vectorial force */
370             fix3             = _mm_add_ps(fix3,tx);
371             fiy3             = _mm_add_ps(fiy3,ty);
372             fiz3             = _mm_add_ps(fiz3,tz);
373
374             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
375                                                    f+j_coord_offsetC,f+j_coord_offsetD,
376                                                    tx,ty,tz);
377
378             }
379
380             /* Inner loop uses 138 flops */
381         }
382
383         if(jidx<j_index_end)
384         {
385
386             /* Get j neighbor index, and coordinate index */
387             jnrA             = jjnr[jidx];
388             jnrB             = jjnr[jidx+1];
389             jnrC             = jjnr[jidx+2];
390             jnrD             = jjnr[jidx+3];
391
392             /* Sign of each element will be negative for non-real atoms.
393              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
394              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
395              */
396             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
397             jnrA       = (jnrA>=0) ? jnrA : 0;
398             jnrB       = (jnrB>=0) ? jnrB : 0;
399             jnrC       = (jnrC>=0) ? jnrC : 0;
400             jnrD       = (jnrD>=0) ? jnrD : 0;
401
402             j_coord_offsetA  = DIM*jnrA;
403             j_coord_offsetB  = DIM*jnrB;
404             j_coord_offsetC  = DIM*jnrC;
405             j_coord_offsetD  = DIM*jnrD;
406
407             /* load j atom coordinates */
408             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
409                                               x+j_coord_offsetC,x+j_coord_offsetD,
410                                               &jx0,&jy0,&jz0);
411
412             /* Calculate displacement vector */
413             dx10             = _mm_sub_ps(ix1,jx0);
414             dy10             = _mm_sub_ps(iy1,jy0);
415             dz10             = _mm_sub_ps(iz1,jz0);
416             dx20             = _mm_sub_ps(ix2,jx0);
417             dy20             = _mm_sub_ps(iy2,jy0);
418             dz20             = _mm_sub_ps(iz2,jz0);
419             dx30             = _mm_sub_ps(ix3,jx0);
420             dy30             = _mm_sub_ps(iy3,jy0);
421             dz30             = _mm_sub_ps(iz3,jz0);
422
423             /* Calculate squared distance and things based on it */
424             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
425             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
426             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
427
428             rinv10           = gmx_mm_invsqrt_ps(rsq10);
429             rinv20           = gmx_mm_invsqrt_ps(rsq20);
430             rinv30           = gmx_mm_invsqrt_ps(rsq30);
431
432             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
433             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
434             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
435
436             /* Load parameters for j particles */
437             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
438                                                               charge+jnrC+0,charge+jnrD+0);
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             if (gmx_mm_any_lt(rsq10,rcutoff2))
445             {
446
447             r10              = _mm_mul_ps(rsq10,rinv10);
448             r10              = _mm_andnot_ps(dummy_mask,r10);
449
450             /* Compute parameters for interactions between i and j atoms */
451             qq10             = _mm_mul_ps(iq1,jq0);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm_mul_ps(r10,ewtabscale);
457             ewitab           = _mm_cvttps_epi32(ewrt);
458             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
462             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
463             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
464             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
465             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
466             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
467             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
468             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
469
470             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm_and_ps(velec,cutoff_mask);
474             velec            = _mm_andnot_ps(dummy_mask,velec);
475             velecsum         = _mm_add_ps(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm_and_ps(fscal,cutoff_mask);
480
481             fscal            = _mm_andnot_ps(dummy_mask,fscal);
482
483             /* Calculate temporary vectorial force */
484             tx               = _mm_mul_ps(fscal,dx10);
485             ty               = _mm_mul_ps(fscal,dy10);
486             tz               = _mm_mul_ps(fscal,dz10);
487
488             /* Update vectorial force */
489             fix1             = _mm_add_ps(fix1,tx);
490             fiy1             = _mm_add_ps(fiy1,ty);
491             fiz1             = _mm_add_ps(fiz1,tz);
492
493             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
494                                                    f+j_coord_offsetC,f+j_coord_offsetD,
495                                                    tx,ty,tz);
496
497             }
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             if (gmx_mm_any_lt(rsq20,rcutoff2))
504             {
505
506             r20              = _mm_mul_ps(rsq20,rinv20);
507             r20              = _mm_andnot_ps(dummy_mask,r20);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq20             = _mm_mul_ps(iq2,jq0);
511
512             /* EWALD ELECTROSTATICS */
513
514             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
515             ewrt             = _mm_mul_ps(r20,ewtabscale);
516             ewitab           = _mm_cvttps_epi32(ewrt);
517             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
518             ewitab           = _mm_slli_epi32(ewitab,2);
519             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
520             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
521             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
522             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
523             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
524             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
525             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
526             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
527             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
528
529             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
530
531             /* Update potential sum for this i atom from the interaction with this j atom. */
532             velec            = _mm_and_ps(velec,cutoff_mask);
533             velec            = _mm_andnot_ps(dummy_mask,velec);
534             velecsum         = _mm_add_ps(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm_and_ps(fscal,cutoff_mask);
539
540             fscal            = _mm_andnot_ps(dummy_mask,fscal);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx20);
544             ty               = _mm_mul_ps(fscal,dy20);
545             tz               = _mm_mul_ps(fscal,dz20);
546
547             /* Update vectorial force */
548             fix2             = _mm_add_ps(fix2,tx);
549             fiy2             = _mm_add_ps(fiy2,ty);
550             fiz2             = _mm_add_ps(fiz2,tz);
551
552             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
553                                                    f+j_coord_offsetC,f+j_coord_offsetD,
554                                                    tx,ty,tz);
555
556             }
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             if (gmx_mm_any_lt(rsq30,rcutoff2))
563             {
564
565             r30              = _mm_mul_ps(rsq30,rinv30);
566             r30              = _mm_andnot_ps(dummy_mask,r30);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq30             = _mm_mul_ps(iq3,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = _mm_mul_ps(r30,ewtabscale);
575             ewitab           = _mm_cvttps_epi32(ewrt);
576             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
577             ewitab           = _mm_slli_epi32(ewitab,2);
578             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
579             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
580             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
581             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
582             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
583             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
584             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
585             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
586             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
587
588             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
589
590             /* Update potential sum for this i atom from the interaction with this j atom. */
591             velec            = _mm_and_ps(velec,cutoff_mask);
592             velec            = _mm_andnot_ps(dummy_mask,velec);
593             velecsum         = _mm_add_ps(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_and_ps(fscal,cutoff_mask);
598
599             fscal            = _mm_andnot_ps(dummy_mask,fscal);
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_ps(fscal,dx30);
603             ty               = _mm_mul_ps(fscal,dy30);
604             tz               = _mm_mul_ps(fscal,dz30);
605
606             /* Update vectorial force */
607             fix3             = _mm_add_ps(fix3,tx);
608             fiy3             = _mm_add_ps(fiy3,ty);
609             fiz3             = _mm_add_ps(fiz3,tz);
610
611             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
612                                                    f+j_coord_offsetC,f+j_coord_offsetD,
613                                                    tx,ty,tz);
614
615             }
616
617             /* Inner loop uses 141 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
623                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
624
625         ggid                        = gid[iidx];
626         /* Update potential energies */
627         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
628
629         /* Increment number of inner iterations */
630         inneriter                  += j_index_end - j_index_start;
631
632         /* Outer loop uses 28 flops */
633     }
634
635     /* Increment number of outer iterations */
636     outeriter        += nri;
637
638     /* Update outer/inner flops */
639
640     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*28 + inneriter*141);
641 }
642 /*
643  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse2_single
644  * Electrostatics interaction: Ewald
645  * VdW interaction:            None
646  * Geometry:                   Water4-Particle
647  * Calculate force/pot:        Force
648  */
649 void
650 nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse2_single
651                     (t_nblist * gmx_restrict                nlist,
652                      rvec * gmx_restrict                    xx,
653                      rvec * gmx_restrict                    ff,
654                      t_forcerec * gmx_restrict              fr,
655                      t_mdatoms * gmx_restrict               mdatoms,
656                      nb_kernel_data_t * gmx_restrict        kernel_data,
657                      t_nrnb * gmx_restrict                  nrnb)
658 {
659     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
660      * just 0 for non-waters.
661      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
662      * jnr indices corresponding to data put in the four positions in the SIMD register.
663      */
664     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
665     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
666     int              jnrA,jnrB,jnrC,jnrD;
667     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
668     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
669     real             shX,shY,shZ,rcutoff_scalar;
670     real             *shiftvec,*fshift,*x,*f;
671     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
672     int              vdwioffset1;
673     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
674     int              vdwioffset2;
675     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
676     int              vdwioffset3;
677     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
678     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
679     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
680     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
681     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
682     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
683     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
684     real             *charge;
685     __m128i          ewitab;
686     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
687     real             *ewtab;
688     __m128           dummy_mask,cutoff_mask;
689     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
690     __m128           one     = _mm_set1_ps(1.0);
691     __m128           two     = _mm_set1_ps(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm_set1_ps(fr->epsfac);
704     charge           = mdatoms->chargeA;
705
706     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
707     ewtab            = fr->ic->tabq_coul_F;
708     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
709     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
710
711     /* Setup water-specific parameters */
712     inr              = nlist->iinr[0];
713     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
714     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
715     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
716
717     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
718     rcutoff_scalar   = fr->rcoulomb;
719     rcutoff          = _mm_set1_ps(rcutoff_scalar);
720     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
721
722     /* Avoid stupid compiler warnings */
723     jnrA = jnrB = jnrC = jnrD = 0;
724     j_coord_offsetA = 0;
725     j_coord_offsetB = 0;
726     j_coord_offsetC = 0;
727     j_coord_offsetD = 0;
728
729     outeriter        = 0;
730     inneriter        = 0;
731
732     /* Start outer loop over neighborlists */
733     for(iidx=0; iidx<nri; iidx++)
734     {
735         /* Load shift vector for this list */
736         i_shift_offset   = DIM*shiftidx[iidx];
737         shX              = shiftvec[i_shift_offset+XX];
738         shY              = shiftvec[i_shift_offset+YY];
739         shZ              = shiftvec[i_shift_offset+ZZ];
740
741         /* Load limits for loop over neighbors */
742         j_index_start    = jindex[iidx];
743         j_index_end      = jindex[iidx+1];
744
745         /* Get outer coordinate index */
746         inr              = iinr[iidx];
747         i_coord_offset   = DIM*inr;
748
749         /* Load i particle coords and add shift vector */
750         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
751         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
752         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
753         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
754         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
755         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
756         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
757         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
758         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
759
760         fix1             = _mm_setzero_ps();
761         fiy1             = _mm_setzero_ps();
762         fiz1             = _mm_setzero_ps();
763         fix2             = _mm_setzero_ps();
764         fiy2             = _mm_setzero_ps();
765         fiz2             = _mm_setzero_ps();
766         fix3             = _mm_setzero_ps();
767         fiy3             = _mm_setzero_ps();
768         fiz3             = _mm_setzero_ps();
769
770         /* Start inner kernel loop */
771         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
772         {
773
774             /* Get j neighbor index, and coordinate index */
775             jnrA             = jjnr[jidx];
776             jnrB             = jjnr[jidx+1];
777             jnrC             = jjnr[jidx+2];
778             jnrD             = jjnr[jidx+3];
779
780             j_coord_offsetA  = DIM*jnrA;
781             j_coord_offsetB  = DIM*jnrB;
782             j_coord_offsetC  = DIM*jnrC;
783             j_coord_offsetD  = DIM*jnrD;
784
785             /* load j atom coordinates */
786             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
787                                               x+j_coord_offsetC,x+j_coord_offsetD,
788                                               &jx0,&jy0,&jz0);
789
790             /* Calculate displacement vector */
791             dx10             = _mm_sub_ps(ix1,jx0);
792             dy10             = _mm_sub_ps(iy1,jy0);
793             dz10             = _mm_sub_ps(iz1,jz0);
794             dx20             = _mm_sub_ps(ix2,jx0);
795             dy20             = _mm_sub_ps(iy2,jy0);
796             dz20             = _mm_sub_ps(iz2,jz0);
797             dx30             = _mm_sub_ps(ix3,jx0);
798             dy30             = _mm_sub_ps(iy3,jy0);
799             dz30             = _mm_sub_ps(iz3,jz0);
800
801             /* Calculate squared distance and things based on it */
802             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
803             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
804             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
805
806             rinv10           = gmx_mm_invsqrt_ps(rsq10);
807             rinv20           = gmx_mm_invsqrt_ps(rsq20);
808             rinv30           = gmx_mm_invsqrt_ps(rsq30);
809
810             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
811             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
812             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
813
814             /* Load parameters for j particles */
815             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
816                                                               charge+jnrC+0,charge+jnrD+0);
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             if (gmx_mm_any_lt(rsq10,rcutoff2))
823             {
824
825             r10              = _mm_mul_ps(rsq10,rinv10);
826
827             /* Compute parameters for interactions between i and j atoms */
828             qq10             = _mm_mul_ps(iq1,jq0);
829
830             /* EWALD ELECTROSTATICS */
831
832             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
833             ewrt             = _mm_mul_ps(r10,ewtabscale);
834             ewitab           = _mm_cvttps_epi32(ewrt);
835             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
836             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
837                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
838                                          &ewtabF,&ewtabFn);
839             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
840             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
841
842             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
843
844             fscal            = felec;
845
846             fscal            = _mm_and_ps(fscal,cutoff_mask);
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm_mul_ps(fscal,dx10);
850             ty               = _mm_mul_ps(fscal,dy10);
851             tz               = _mm_mul_ps(fscal,dz10);
852
853             /* Update vectorial force */
854             fix1             = _mm_add_ps(fix1,tx);
855             fiy1             = _mm_add_ps(fiy1,ty);
856             fiz1             = _mm_add_ps(fiz1,tz);
857
858             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
859                                                    f+j_coord_offsetC,f+j_coord_offsetD,
860                                                    tx,ty,tz);
861
862             }
863
864             /**************************
865              * CALCULATE INTERACTIONS *
866              **************************/
867
868             if (gmx_mm_any_lt(rsq20,rcutoff2))
869             {
870
871             r20              = _mm_mul_ps(rsq20,rinv20);
872
873             /* Compute parameters for interactions between i and j atoms */
874             qq20             = _mm_mul_ps(iq2,jq0);
875
876             /* EWALD ELECTROSTATICS */
877
878             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
879             ewrt             = _mm_mul_ps(r20,ewtabscale);
880             ewitab           = _mm_cvttps_epi32(ewrt);
881             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
882             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
883                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
884                                          &ewtabF,&ewtabFn);
885             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
886             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
887
888             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
889
890             fscal            = felec;
891
892             fscal            = _mm_and_ps(fscal,cutoff_mask);
893
894             /* Calculate temporary vectorial force */
895             tx               = _mm_mul_ps(fscal,dx20);
896             ty               = _mm_mul_ps(fscal,dy20);
897             tz               = _mm_mul_ps(fscal,dz20);
898
899             /* Update vectorial force */
900             fix2             = _mm_add_ps(fix2,tx);
901             fiy2             = _mm_add_ps(fiy2,ty);
902             fiz2             = _mm_add_ps(fiz2,tz);
903
904             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
905                                                    f+j_coord_offsetC,f+j_coord_offsetD,
906                                                    tx,ty,tz);
907
908             }
909
910             /**************************
911              * CALCULATE INTERACTIONS *
912              **************************/
913
914             if (gmx_mm_any_lt(rsq30,rcutoff2))
915             {
916
917             r30              = _mm_mul_ps(rsq30,rinv30);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq30             = _mm_mul_ps(iq3,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_ps(r30,ewtabscale);
926             ewitab           = _mm_cvttps_epi32(ewrt);
927             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
928             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
929                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
932             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
933
934             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
935
936             fscal            = felec;
937
938             fscal            = _mm_and_ps(fscal,cutoff_mask);
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm_mul_ps(fscal,dx30);
942             ty               = _mm_mul_ps(fscal,dy30);
943             tz               = _mm_mul_ps(fscal,dz30);
944
945             /* Update vectorial force */
946             fix3             = _mm_add_ps(fix3,tx);
947             fiy3             = _mm_add_ps(fiy3,ty);
948             fiz3             = _mm_add_ps(fiz3,tz);
949
950             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
951                                                    f+j_coord_offsetC,f+j_coord_offsetD,
952                                                    tx,ty,tz);
953
954             }
955
956             /* Inner loop uses 117 flops */
957         }
958
959         if(jidx<j_index_end)
960         {
961
962             /* Get j neighbor index, and coordinate index */
963             jnrA             = jjnr[jidx];
964             jnrB             = jjnr[jidx+1];
965             jnrC             = jjnr[jidx+2];
966             jnrD             = jjnr[jidx+3];
967
968             /* Sign of each element will be negative for non-real atoms.
969              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
970              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
971              */
972             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
973             jnrA       = (jnrA>=0) ? jnrA : 0;
974             jnrB       = (jnrB>=0) ? jnrB : 0;
975             jnrC       = (jnrC>=0) ? jnrC : 0;
976             jnrD       = (jnrD>=0) ? jnrD : 0;
977
978             j_coord_offsetA  = DIM*jnrA;
979             j_coord_offsetB  = DIM*jnrB;
980             j_coord_offsetC  = DIM*jnrC;
981             j_coord_offsetD  = DIM*jnrD;
982
983             /* load j atom coordinates */
984             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
985                                               x+j_coord_offsetC,x+j_coord_offsetD,
986                                               &jx0,&jy0,&jz0);
987
988             /* Calculate displacement vector */
989             dx10             = _mm_sub_ps(ix1,jx0);
990             dy10             = _mm_sub_ps(iy1,jy0);
991             dz10             = _mm_sub_ps(iz1,jz0);
992             dx20             = _mm_sub_ps(ix2,jx0);
993             dy20             = _mm_sub_ps(iy2,jy0);
994             dz20             = _mm_sub_ps(iz2,jz0);
995             dx30             = _mm_sub_ps(ix3,jx0);
996             dy30             = _mm_sub_ps(iy3,jy0);
997             dz30             = _mm_sub_ps(iz3,jz0);
998
999             /* Calculate squared distance and things based on it */
1000             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1001             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1002             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1003
1004             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1005             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1006             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1007
1008             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1009             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1010             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1011
1012             /* Load parameters for j particles */
1013             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1014                                                               charge+jnrC+0,charge+jnrD+0);
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             if (gmx_mm_any_lt(rsq10,rcutoff2))
1021             {
1022
1023             r10              = _mm_mul_ps(rsq10,rinv10);
1024             r10              = _mm_andnot_ps(dummy_mask,r10);
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq10             = _mm_mul_ps(iq1,jq0);
1028
1029             /* EWALD ELECTROSTATICS */
1030
1031             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1032             ewrt             = _mm_mul_ps(r10,ewtabscale);
1033             ewitab           = _mm_cvttps_epi32(ewrt);
1034             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1035             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1036                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1037                                          &ewtabF,&ewtabFn);
1038             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1039             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1040
1041             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1042
1043             fscal            = felec;
1044
1045             fscal            = _mm_and_ps(fscal,cutoff_mask);
1046
1047             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1048
1049             /* Calculate temporary vectorial force */
1050             tx               = _mm_mul_ps(fscal,dx10);
1051             ty               = _mm_mul_ps(fscal,dy10);
1052             tz               = _mm_mul_ps(fscal,dz10);
1053
1054             /* Update vectorial force */
1055             fix1             = _mm_add_ps(fix1,tx);
1056             fiy1             = _mm_add_ps(fiy1,ty);
1057             fiz1             = _mm_add_ps(fiz1,tz);
1058
1059             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1060                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1061                                                    tx,ty,tz);
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (gmx_mm_any_lt(rsq20,rcutoff2))
1070             {
1071
1072             r20              = _mm_mul_ps(rsq20,rinv20);
1073             r20              = _mm_andnot_ps(dummy_mask,r20);
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq20             = _mm_mul_ps(iq2,jq0);
1077
1078             /* EWALD ELECTROSTATICS */
1079
1080             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1081             ewrt             = _mm_mul_ps(r20,ewtabscale);
1082             ewitab           = _mm_cvttps_epi32(ewrt);
1083             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1084             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1085                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1086                                          &ewtabF,&ewtabFn);
1087             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1088             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1089
1090             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1091
1092             fscal            = felec;
1093
1094             fscal            = _mm_and_ps(fscal,cutoff_mask);
1095
1096             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm_mul_ps(fscal,dx20);
1100             ty               = _mm_mul_ps(fscal,dy20);
1101             tz               = _mm_mul_ps(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm_add_ps(fix2,tx);
1105             fiy2             = _mm_add_ps(fiy2,ty);
1106             fiz2             = _mm_add_ps(fiz2,tz);
1107
1108             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1109                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1110                                                    tx,ty,tz);
1111
1112             }
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             if (gmx_mm_any_lt(rsq30,rcutoff2))
1119             {
1120
1121             r30              = _mm_mul_ps(rsq30,rinv30);
1122             r30              = _mm_andnot_ps(dummy_mask,r30);
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq30             = _mm_mul_ps(iq3,jq0);
1126
1127             /* EWALD ELECTROSTATICS */
1128
1129             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1130             ewrt             = _mm_mul_ps(r30,ewtabscale);
1131             ewitab           = _mm_cvttps_epi32(ewrt);
1132             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1133             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1134                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1135                                          &ewtabF,&ewtabFn);
1136             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1137             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1138
1139             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1140
1141             fscal            = felec;
1142
1143             fscal            = _mm_and_ps(fscal,cutoff_mask);
1144
1145             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1146
1147             /* Calculate temporary vectorial force */
1148             tx               = _mm_mul_ps(fscal,dx30);
1149             ty               = _mm_mul_ps(fscal,dy30);
1150             tz               = _mm_mul_ps(fscal,dz30);
1151
1152             /* Update vectorial force */
1153             fix3             = _mm_add_ps(fix3,tx);
1154             fiy3             = _mm_add_ps(fiy3,ty);
1155             fiz3             = _mm_add_ps(fiz3,tz);
1156
1157             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1158                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1159                                                    tx,ty,tz);
1160
1161             }
1162
1163             /* Inner loop uses 120 flops */
1164         }
1165
1166         /* End of innermost loop */
1167
1168         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1169                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1170
1171         /* Increment number of inner iterations */
1172         inneriter                  += j_index_end - j_index_start;
1173
1174         /* Outer loop uses 27 flops */
1175     }
1176
1177     /* Increment number of outer iterations */
1178     outeriter        += nri;
1179
1180     /* Update outer/inner flops */
1181
1182     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*27 + inneriter*120);
1183 }