Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          ewitab;
74     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
75     real             *ewtab;
76     __m128           dummy_mask,cutoff_mask;
77     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
78     __m128           one     = _mm_set1_ps(1.0);
79     __m128           two     = _mm_set1_ps(2.0);
80     x                = xx[0];
81     f                = ff[0];
82
83     nri              = nlist->nri;
84     iinr             = nlist->iinr;
85     jindex           = nlist->jindex;
86     jjnr             = nlist->jjnr;
87     shiftidx         = nlist->shift;
88     gid              = nlist->gid;
89     shiftvec         = fr->shift_vec[0];
90     fshift           = fr->fshift[0];
91     facel            = _mm_set1_ps(fr->epsfac);
92     charge           = mdatoms->chargeA;
93
94     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
95     ewtab            = fr->ic->tabq_coul_FDV0;
96     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
97     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
98
99     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
100     rcutoff_scalar   = fr->rcoulomb;
101     rcutoff          = _mm_set1_ps(rcutoff_scalar);
102     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
103
104     /* Avoid stupid compiler warnings */
105     jnrA = jnrB = jnrC = jnrD = 0;
106     j_coord_offsetA = 0;
107     j_coord_offsetB = 0;
108     j_coord_offsetC = 0;
109     j_coord_offsetD = 0;
110
111     outeriter        = 0;
112     inneriter        = 0;
113
114     /* Start outer loop over neighborlists */
115     for(iidx=0; iidx<nri; iidx++)
116     {
117         /* Load shift vector for this list */
118         i_shift_offset   = DIM*shiftidx[iidx];
119         shX              = shiftvec[i_shift_offset+XX];
120         shY              = shiftvec[i_shift_offset+YY];
121         shZ              = shiftvec[i_shift_offset+ZZ];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
133         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
134         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
135
136         fix0             = _mm_setzero_ps();
137         fiy0             = _mm_setzero_ps();
138         fiz0             = _mm_setzero_ps();
139
140         /* Load parameters for i particles */
141         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_ps();
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
148         {
149
150             /* Get j neighbor index, and coordinate index */
151             jnrA             = jjnr[jidx];
152             jnrB             = jjnr[jidx+1];
153             jnrC             = jjnr[jidx+2];
154             jnrD             = jjnr[jidx+3];
155
156             j_coord_offsetA  = DIM*jnrA;
157             j_coord_offsetB  = DIM*jnrB;
158             j_coord_offsetC  = DIM*jnrC;
159             j_coord_offsetD  = DIM*jnrD;
160
161             /* load j atom coordinates */
162             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
163                                               x+j_coord_offsetC,x+j_coord_offsetD,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_ps(ix0,jx0);
168             dy00             = _mm_sub_ps(iy0,jy0);
169             dz00             = _mm_sub_ps(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_ps(rsq00);
175
176             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
180                                                               charge+jnrC+0,charge+jnrD+0);
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             if (gmx_mm_any_lt(rsq00,rcutoff2))
187             {
188
189             r00              = _mm_mul_ps(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_ps(iq0,jq0);
193
194             /* EWALD ELECTROSTATICS */
195
196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197             ewrt             = _mm_mul_ps(r00,ewtabscale);
198             ewitab           = _mm_cvttps_epi32(ewrt);
199             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
200             ewitab           = _mm_slli_epi32(ewitab,2);
201             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
202             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
203             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
204             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
205             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
206             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
207             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
208             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
209             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
210
211             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             velec            = _mm_and_ps(velec,cutoff_mask);
215             velecsum         = _mm_add_ps(velecsum,velec);
216
217             fscal            = felec;
218
219             fscal            = _mm_and_ps(fscal,cutoff_mask);
220
221             /* Calculate temporary vectorial force */
222             tx               = _mm_mul_ps(fscal,dx00);
223             ty               = _mm_mul_ps(fscal,dy00);
224             tz               = _mm_mul_ps(fscal,dz00);
225
226             /* Update vectorial force */
227             fix0             = _mm_add_ps(fix0,tx);
228             fiy0             = _mm_add_ps(fiy0,ty);
229             fiz0             = _mm_add_ps(fiz0,tz);
230
231             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
232                                                    f+j_coord_offsetC,f+j_coord_offsetD,
233                                                    tx,ty,tz);
234
235             }
236
237             /* Inner loop uses 46 flops */
238         }
239
240         if(jidx<j_index_end)
241         {
242
243             /* Get j neighbor index, and coordinate index */
244             jnrA             = jjnr[jidx];
245             jnrB             = jjnr[jidx+1];
246             jnrC             = jjnr[jidx+2];
247             jnrD             = jjnr[jidx+3];
248
249             /* Sign of each element will be negative for non-real atoms.
250              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
251              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
252              */
253             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
254             jnrA       = (jnrA>=0) ? jnrA : 0;
255             jnrB       = (jnrB>=0) ? jnrB : 0;
256             jnrC       = (jnrC>=0) ? jnrC : 0;
257             jnrD       = (jnrD>=0) ? jnrD : 0;
258
259             j_coord_offsetA  = DIM*jnrA;
260             j_coord_offsetB  = DIM*jnrB;
261             j_coord_offsetC  = DIM*jnrC;
262             j_coord_offsetD  = DIM*jnrD;
263
264             /* load j atom coordinates */
265             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
266                                               x+j_coord_offsetC,x+j_coord_offsetD,
267                                               &jx0,&jy0,&jz0);
268
269             /* Calculate displacement vector */
270             dx00             = _mm_sub_ps(ix0,jx0);
271             dy00             = _mm_sub_ps(iy0,jy0);
272             dz00             = _mm_sub_ps(iz0,jz0);
273
274             /* Calculate squared distance and things based on it */
275             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
276
277             rinv00           = gmx_mm_invsqrt_ps(rsq00);
278
279             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
280
281             /* Load parameters for j particles */
282             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
283                                                               charge+jnrC+0,charge+jnrD+0);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             if (gmx_mm_any_lt(rsq00,rcutoff2))
290             {
291
292             r00              = _mm_mul_ps(rsq00,rinv00);
293             r00              = _mm_andnot_ps(dummy_mask,r00);
294
295             /* Compute parameters for interactions between i and j atoms */
296             qq00             = _mm_mul_ps(iq0,jq0);
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = _mm_mul_ps(r00,ewtabscale);
302             ewitab           = _mm_cvttps_epi32(ewrt);
303             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
304             ewitab           = _mm_slli_epi32(ewitab,2);
305             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
306             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
307             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
308             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
309             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
310             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
311             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
312             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
313             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
314
315             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_ps(velec,cutoff_mask);
319             velec            = _mm_andnot_ps(dummy_mask,velec);
320             velecsum         = _mm_add_ps(velecsum,velec);
321
322             fscal            = felec;
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326             fscal            = _mm_andnot_ps(dummy_mask,fscal);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_ps(fscal,dx00);
330             ty               = _mm_mul_ps(fscal,dy00);
331             tz               = _mm_mul_ps(fscal,dz00);
332
333             /* Update vectorial force */
334             fix0             = _mm_add_ps(fix0,tx);
335             fiy0             = _mm_add_ps(fiy0,ty);
336             fiz0             = _mm_add_ps(fiz0,tz);
337
338             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
339                                                    f+j_coord_offsetC,f+j_coord_offsetD,
340                                                    tx,ty,tz);
341
342             }
343
344             /* Inner loop uses 47 flops */
345         }
346
347         /* End of innermost loop */
348
349         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
350                                               f+i_coord_offset,fshift+i_shift_offset);
351
352         ggid                        = gid[iidx];
353         /* Update potential energies */
354         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
355
356         /* Increment number of inner iterations */
357         inneriter                  += j_index_end - j_index_start;
358
359         /* Outer loop uses 11 flops */
360     }
361
362     /* Increment number of outer iterations */
363     outeriter        += nri;
364
365     /* Update outer/inner flops */
366
367     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*11 + inneriter*47);
368 }
369 /*
370  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse2_single
371  * Electrostatics interaction: Ewald
372  * VdW interaction:            None
373  * Geometry:                   Particle-Particle
374  * Calculate force/pot:        Force
375  */
376 void
377 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse2_single
378                     (t_nblist * gmx_restrict                nlist,
379                      rvec * gmx_restrict                    xx,
380                      rvec * gmx_restrict                    ff,
381                      t_forcerec * gmx_restrict              fr,
382                      t_mdatoms * gmx_restrict               mdatoms,
383                      nb_kernel_data_t * gmx_restrict        kernel_data,
384                      t_nrnb * gmx_restrict                  nrnb)
385 {
386     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
387      * just 0 for non-waters.
388      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
389      * jnr indices corresponding to data put in the four positions in the SIMD register.
390      */
391     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
392     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
393     int              jnrA,jnrB,jnrC,jnrD;
394     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
395     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
396     real             shX,shY,shZ,rcutoff_scalar;
397     real             *shiftvec,*fshift,*x,*f;
398     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
399     int              vdwioffset0;
400     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
401     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
402     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
403     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
404     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
405     real             *charge;
406     __m128i          ewitab;
407     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
408     real             *ewtab;
409     __m128           dummy_mask,cutoff_mask;
410     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
411     __m128           one     = _mm_set1_ps(1.0);
412     __m128           two     = _mm_set1_ps(2.0);
413     x                = xx[0];
414     f                = ff[0];
415
416     nri              = nlist->nri;
417     iinr             = nlist->iinr;
418     jindex           = nlist->jindex;
419     jjnr             = nlist->jjnr;
420     shiftidx         = nlist->shift;
421     gid              = nlist->gid;
422     shiftvec         = fr->shift_vec[0];
423     fshift           = fr->fshift[0];
424     facel            = _mm_set1_ps(fr->epsfac);
425     charge           = mdatoms->chargeA;
426
427     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
428     ewtab            = fr->ic->tabq_coul_F;
429     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
430     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
431
432     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
433     rcutoff_scalar   = fr->rcoulomb;
434     rcutoff          = _mm_set1_ps(rcutoff_scalar);
435     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
436
437     /* Avoid stupid compiler warnings */
438     jnrA = jnrB = jnrC = jnrD = 0;
439     j_coord_offsetA = 0;
440     j_coord_offsetB = 0;
441     j_coord_offsetC = 0;
442     j_coord_offsetD = 0;
443
444     outeriter        = 0;
445     inneriter        = 0;
446
447     /* Start outer loop over neighborlists */
448     for(iidx=0; iidx<nri; iidx++)
449     {
450         /* Load shift vector for this list */
451         i_shift_offset   = DIM*shiftidx[iidx];
452         shX              = shiftvec[i_shift_offset+XX];
453         shY              = shiftvec[i_shift_offset+YY];
454         shZ              = shiftvec[i_shift_offset+ZZ];
455
456         /* Load limits for loop over neighbors */
457         j_index_start    = jindex[iidx];
458         j_index_end      = jindex[iidx+1];
459
460         /* Get outer coordinate index */
461         inr              = iinr[iidx];
462         i_coord_offset   = DIM*inr;
463
464         /* Load i particle coords and add shift vector */
465         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
466         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
467         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
468
469         fix0             = _mm_setzero_ps();
470         fiy0             = _mm_setzero_ps();
471         fiz0             = _mm_setzero_ps();
472
473         /* Load parameters for i particles */
474         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
475
476         /* Start inner kernel loop */
477         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
478         {
479
480             /* Get j neighbor index, and coordinate index */
481             jnrA             = jjnr[jidx];
482             jnrB             = jjnr[jidx+1];
483             jnrC             = jjnr[jidx+2];
484             jnrD             = jjnr[jidx+3];
485
486             j_coord_offsetA  = DIM*jnrA;
487             j_coord_offsetB  = DIM*jnrB;
488             j_coord_offsetC  = DIM*jnrC;
489             j_coord_offsetD  = DIM*jnrD;
490
491             /* load j atom coordinates */
492             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
493                                               x+j_coord_offsetC,x+j_coord_offsetD,
494                                               &jx0,&jy0,&jz0);
495
496             /* Calculate displacement vector */
497             dx00             = _mm_sub_ps(ix0,jx0);
498             dy00             = _mm_sub_ps(iy0,jy0);
499             dz00             = _mm_sub_ps(iz0,jz0);
500
501             /* Calculate squared distance and things based on it */
502             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503
504             rinv00           = gmx_mm_invsqrt_ps(rsq00);
505
506             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
507
508             /* Load parameters for j particles */
509             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
510                                                               charge+jnrC+0,charge+jnrD+0);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             if (gmx_mm_any_lt(rsq00,rcutoff2))
517             {
518
519             r00              = _mm_mul_ps(rsq00,rinv00);
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq00             = _mm_mul_ps(iq0,jq0);
523
524             /* EWALD ELECTROSTATICS */
525
526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
527             ewrt             = _mm_mul_ps(r00,ewtabscale);
528             ewitab           = _mm_cvttps_epi32(ewrt);
529             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
530             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
531                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
532                                          &ewtabF,&ewtabFn);
533             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
534             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
535
536             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
537
538             fscal            = felec;
539
540             fscal            = _mm_and_ps(fscal,cutoff_mask);
541
542             /* Calculate temporary vectorial force */
543             tx               = _mm_mul_ps(fscal,dx00);
544             ty               = _mm_mul_ps(fscal,dy00);
545             tz               = _mm_mul_ps(fscal,dz00);
546
547             /* Update vectorial force */
548             fix0             = _mm_add_ps(fix0,tx);
549             fiy0             = _mm_add_ps(fiy0,ty);
550             fiz0             = _mm_add_ps(fiz0,tz);
551
552             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
553                                                    f+j_coord_offsetC,f+j_coord_offsetD,
554                                                    tx,ty,tz);
555
556             }
557
558             /* Inner loop uses 39 flops */
559         }
560
561         if(jidx<j_index_end)
562         {
563
564             /* Get j neighbor index, and coordinate index */
565             jnrA             = jjnr[jidx];
566             jnrB             = jjnr[jidx+1];
567             jnrC             = jjnr[jidx+2];
568             jnrD             = jjnr[jidx+3];
569
570             /* Sign of each element will be negative for non-real atoms.
571              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
572              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
573              */
574             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
575             jnrA       = (jnrA>=0) ? jnrA : 0;
576             jnrB       = (jnrB>=0) ? jnrB : 0;
577             jnrC       = (jnrC>=0) ? jnrC : 0;
578             jnrD       = (jnrD>=0) ? jnrD : 0;
579
580             j_coord_offsetA  = DIM*jnrA;
581             j_coord_offsetB  = DIM*jnrB;
582             j_coord_offsetC  = DIM*jnrC;
583             j_coord_offsetD  = DIM*jnrD;
584
585             /* load j atom coordinates */
586             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
587                                               x+j_coord_offsetC,x+j_coord_offsetD,
588                                               &jx0,&jy0,&jz0);
589
590             /* Calculate displacement vector */
591             dx00             = _mm_sub_ps(ix0,jx0);
592             dy00             = _mm_sub_ps(iy0,jy0);
593             dz00             = _mm_sub_ps(iz0,jz0);
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
597
598             rinv00           = gmx_mm_invsqrt_ps(rsq00);
599
600             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
601
602             /* Load parameters for j particles */
603             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
604                                                               charge+jnrC+0,charge+jnrD+0);
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             if (gmx_mm_any_lt(rsq00,rcutoff2))
611             {
612
613             r00              = _mm_mul_ps(rsq00,rinv00);
614             r00              = _mm_andnot_ps(dummy_mask,r00);
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm_mul_ps(iq0,jq0);
618
619             /* EWALD ELECTROSTATICS */
620
621             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
622             ewrt             = _mm_mul_ps(r00,ewtabscale);
623             ewitab           = _mm_cvttps_epi32(ewrt);
624             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
625             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
626                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
627                                          &ewtabF,&ewtabFn);
628             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
629             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
630
631             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
632
633             fscal            = felec;
634
635             fscal            = _mm_and_ps(fscal,cutoff_mask);
636
637             fscal            = _mm_andnot_ps(dummy_mask,fscal);
638
639             /* Calculate temporary vectorial force */
640             tx               = _mm_mul_ps(fscal,dx00);
641             ty               = _mm_mul_ps(fscal,dy00);
642             tz               = _mm_mul_ps(fscal,dz00);
643
644             /* Update vectorial force */
645             fix0             = _mm_add_ps(fix0,tx);
646             fiy0             = _mm_add_ps(fiy0,ty);
647             fiz0             = _mm_add_ps(fiz0,tz);
648
649             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
650                                                    f+j_coord_offsetC,f+j_coord_offsetD,
651                                                    tx,ty,tz);
652
653             }
654
655             /* Inner loop uses 40 flops */
656         }
657
658         /* End of innermost loop */
659
660         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
661                                               f+i_coord_offset,fshift+i_shift_offset);
662
663         /* Increment number of inner iterations */
664         inneriter                  += j_index_end - j_index_start;
665
666         /* Outer loop uses 10 flops */
667     }
668
669     /* Increment number of outer iterations */
670     outeriter        += nri;
671
672     /* Update outer/inner flops */
673
674     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*10 + inneriter*40);
675 }