Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Water4
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
94     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
95     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
96     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
97     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
98     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
99     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
100     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
101     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
102     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
103     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
104     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
105     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
106     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
107     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
108     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
109     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
110     real             *charge;
111     int              nvdwtype;
112     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
113     int              *vdwtype;
114     real             *vdwparam;
115     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
116     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
117     __m128i          ewitab;
118     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
119     real             *ewtab;
120     __m128           dummy_mask,cutoff_mask;
121     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
122     __m128           one     = _mm_set1_ps(1.0);
123     __m128           two     = _mm_set1_ps(2.0);
124     x                = xx[0];
125     f                = ff[0];
126
127     nri              = nlist->nri;
128     iinr             = nlist->iinr;
129     jindex           = nlist->jindex;
130     jjnr             = nlist->jjnr;
131     shiftidx         = nlist->shift;
132     gid              = nlist->gid;
133     shiftvec         = fr->shift_vec[0];
134     fshift           = fr->fshift[0];
135     facel            = _mm_set1_ps(fr->epsfac);
136     charge           = mdatoms->chargeA;
137     nvdwtype         = fr->ntype;
138     vdwparam         = fr->nbfp;
139     vdwtype          = mdatoms->typeA;
140
141     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     jq1              = _mm_set1_ps(charge[inr+1]);
154     jq2              = _mm_set1_ps(charge[inr+2]);
155     jq3              = _mm_set1_ps(charge[inr+3]);
156     vdwjidx0A        = 2*vdwtype[inr+0];
157     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
158     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
159     qq11             = _mm_mul_ps(iq1,jq1);
160     qq12             = _mm_mul_ps(iq1,jq2);
161     qq13             = _mm_mul_ps(iq1,jq3);
162     qq21             = _mm_mul_ps(iq2,jq1);
163     qq22             = _mm_mul_ps(iq2,jq2);
164     qq23             = _mm_mul_ps(iq2,jq3);
165     qq31             = _mm_mul_ps(iq3,jq1);
166     qq32             = _mm_mul_ps(iq3,jq2);
167     qq33             = _mm_mul_ps(iq3,jq3);
168
169     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
170     rcutoff_scalar   = fr->rcoulomb;
171     rcutoff          = _mm_set1_ps(rcutoff_scalar);
172     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
173
174     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
175     rvdw             = _mm_set1_ps(fr->rvdw);
176
177     /* Avoid stupid compiler warnings */
178     jnrA = jnrB = jnrC = jnrD = 0;
179     j_coord_offsetA = 0;
180     j_coord_offsetB = 0;
181     j_coord_offsetC = 0;
182     j_coord_offsetD = 0;
183
184     outeriter        = 0;
185     inneriter        = 0;
186
187     for(iidx=0;iidx<4*DIM;iidx++)
188     {
189         scratch[iidx] = 0.0;
190     }  
191
192     /* Start outer loop over neighborlists */
193     for(iidx=0; iidx<nri; iidx++)
194     {
195         /* Load shift vector for this list */
196         i_shift_offset   = DIM*shiftidx[iidx];
197
198         /* Load limits for loop over neighbors */
199         j_index_start    = jindex[iidx];
200         j_index_end      = jindex[iidx+1];
201
202         /* Get outer coordinate index */
203         inr              = iinr[iidx];
204         i_coord_offset   = DIM*inr;
205
206         /* Load i particle coords and add shift vector */
207         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
208                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
209         
210         fix0             = _mm_setzero_ps();
211         fiy0             = _mm_setzero_ps();
212         fiz0             = _mm_setzero_ps();
213         fix1             = _mm_setzero_ps();
214         fiy1             = _mm_setzero_ps();
215         fiz1             = _mm_setzero_ps();
216         fix2             = _mm_setzero_ps();
217         fiy2             = _mm_setzero_ps();
218         fiz2             = _mm_setzero_ps();
219         fix3             = _mm_setzero_ps();
220         fiy3             = _mm_setzero_ps();
221         fiz3             = _mm_setzero_ps();
222
223         /* Reset potential sums */
224         velecsum         = _mm_setzero_ps();
225         vvdwsum          = _mm_setzero_ps();
226
227         /* Start inner kernel loop */
228         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
229         {
230
231             /* Get j neighbor index, and coordinate index */
232             jnrA             = jjnr[jidx];
233             jnrB             = jjnr[jidx+1];
234             jnrC             = jjnr[jidx+2];
235             jnrD             = jjnr[jidx+3];
236             j_coord_offsetA  = DIM*jnrA;
237             j_coord_offsetB  = DIM*jnrB;
238             j_coord_offsetC  = DIM*jnrC;
239             j_coord_offsetD  = DIM*jnrD;
240
241             /* load j atom coordinates */
242             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
243                                               x+j_coord_offsetC,x+j_coord_offsetD,
244                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
245                                               &jy2,&jz2,&jx3,&jy3,&jz3);
246
247             /* Calculate displacement vector */
248             dx00             = _mm_sub_ps(ix0,jx0);
249             dy00             = _mm_sub_ps(iy0,jy0);
250             dz00             = _mm_sub_ps(iz0,jz0);
251             dx11             = _mm_sub_ps(ix1,jx1);
252             dy11             = _mm_sub_ps(iy1,jy1);
253             dz11             = _mm_sub_ps(iz1,jz1);
254             dx12             = _mm_sub_ps(ix1,jx2);
255             dy12             = _mm_sub_ps(iy1,jy2);
256             dz12             = _mm_sub_ps(iz1,jz2);
257             dx13             = _mm_sub_ps(ix1,jx3);
258             dy13             = _mm_sub_ps(iy1,jy3);
259             dz13             = _mm_sub_ps(iz1,jz3);
260             dx21             = _mm_sub_ps(ix2,jx1);
261             dy21             = _mm_sub_ps(iy2,jy1);
262             dz21             = _mm_sub_ps(iz2,jz1);
263             dx22             = _mm_sub_ps(ix2,jx2);
264             dy22             = _mm_sub_ps(iy2,jy2);
265             dz22             = _mm_sub_ps(iz2,jz2);
266             dx23             = _mm_sub_ps(ix2,jx3);
267             dy23             = _mm_sub_ps(iy2,jy3);
268             dz23             = _mm_sub_ps(iz2,jz3);
269             dx31             = _mm_sub_ps(ix3,jx1);
270             dy31             = _mm_sub_ps(iy3,jy1);
271             dz31             = _mm_sub_ps(iz3,jz1);
272             dx32             = _mm_sub_ps(ix3,jx2);
273             dy32             = _mm_sub_ps(iy3,jy2);
274             dz32             = _mm_sub_ps(iz3,jz2);
275             dx33             = _mm_sub_ps(ix3,jx3);
276             dy33             = _mm_sub_ps(iy3,jy3);
277             dz33             = _mm_sub_ps(iz3,jz3);
278
279             /* Calculate squared distance and things based on it */
280             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
281             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
282             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
283             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
284             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
285             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
286             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
287             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
288             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
289             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
290
291             rinv11           = gmx_mm_invsqrt_ps(rsq11);
292             rinv12           = gmx_mm_invsqrt_ps(rsq12);
293             rinv13           = gmx_mm_invsqrt_ps(rsq13);
294             rinv21           = gmx_mm_invsqrt_ps(rsq21);
295             rinv22           = gmx_mm_invsqrt_ps(rsq22);
296             rinv23           = gmx_mm_invsqrt_ps(rsq23);
297             rinv31           = gmx_mm_invsqrt_ps(rsq31);
298             rinv32           = gmx_mm_invsqrt_ps(rsq32);
299             rinv33           = gmx_mm_invsqrt_ps(rsq33);
300
301             rinvsq00         = gmx_mm_inv_ps(rsq00);
302             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
303             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
304             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
305             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
306             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
307             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
308             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
309             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
310             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
311
312             fjx0             = _mm_setzero_ps();
313             fjy0             = _mm_setzero_ps();
314             fjz0             = _mm_setzero_ps();
315             fjx1             = _mm_setzero_ps();
316             fjy1             = _mm_setzero_ps();
317             fjz1             = _mm_setzero_ps();
318             fjx2             = _mm_setzero_ps();
319             fjy2             = _mm_setzero_ps();
320             fjz2             = _mm_setzero_ps();
321             fjx3             = _mm_setzero_ps();
322             fjy3             = _mm_setzero_ps();
323             fjz3             = _mm_setzero_ps();
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             if (gmx_mm_any_lt(rsq00,rcutoff2))
330             {
331
332             /* LENNARD-JONES DISPERSION/REPULSION */
333
334             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
335             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
336             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
337             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
338                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
339             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
340
341             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
345             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             fscal            = _mm_and_ps(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm_mul_ps(fscal,dx00);
353             ty               = _mm_mul_ps(fscal,dy00);
354             tz               = _mm_mul_ps(fscal,dz00);
355
356             /* Update vectorial force */
357             fix0             = _mm_add_ps(fix0,tx);
358             fiy0             = _mm_add_ps(fiy0,ty);
359             fiz0             = _mm_add_ps(fiz0,tz);
360
361             fjx0             = _mm_add_ps(fjx0,tx);
362             fjy0             = _mm_add_ps(fjy0,ty);
363             fjz0             = _mm_add_ps(fjz0,tz);
364             
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm_any_lt(rsq11,rcutoff2))
372             {
373
374             r11              = _mm_mul_ps(rsq11,rinv11);
375
376             /* EWALD ELECTROSTATICS */
377
378             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
379             ewrt             = _mm_mul_ps(r11,ewtabscale);
380             ewitab           = _mm_cvttps_epi32(ewrt);
381             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
382             ewitab           = _mm_slli_epi32(ewitab,2);
383             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
384             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
385             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
386             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
387             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
388             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
389             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
390             velec            = _mm_mul_ps(qq11,_mm_sub_ps(_mm_sub_ps(rinv11,sh_ewald),velec));
391             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
392
393             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velec            = _mm_and_ps(velec,cutoff_mask);
397             velecsum         = _mm_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             fscal            = _mm_and_ps(fscal,cutoff_mask);
402
403             /* Calculate temporary vectorial force */
404             tx               = _mm_mul_ps(fscal,dx11);
405             ty               = _mm_mul_ps(fscal,dy11);
406             tz               = _mm_mul_ps(fscal,dz11);
407
408             /* Update vectorial force */
409             fix1             = _mm_add_ps(fix1,tx);
410             fiy1             = _mm_add_ps(fiy1,ty);
411             fiz1             = _mm_add_ps(fiz1,tz);
412
413             fjx1             = _mm_add_ps(fjx1,tx);
414             fjy1             = _mm_add_ps(fjy1,ty);
415             fjz1             = _mm_add_ps(fjz1,tz);
416             
417             }
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             if (gmx_mm_any_lt(rsq12,rcutoff2))
424             {
425
426             r12              = _mm_mul_ps(rsq12,rinv12);
427
428             /* EWALD ELECTROSTATICS */
429
430             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
431             ewrt             = _mm_mul_ps(r12,ewtabscale);
432             ewitab           = _mm_cvttps_epi32(ewrt);
433             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
434             ewitab           = _mm_slli_epi32(ewitab,2);
435             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
436             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
437             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
438             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
439             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
440             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
441             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
442             velec            = _mm_mul_ps(qq12,_mm_sub_ps(_mm_sub_ps(rinv12,sh_ewald),velec));
443             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
444
445             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
446
447             /* Update potential sum for this i atom from the interaction with this j atom. */
448             velec            = _mm_and_ps(velec,cutoff_mask);
449             velecsum         = _mm_add_ps(velecsum,velec);
450
451             fscal            = felec;
452
453             fscal            = _mm_and_ps(fscal,cutoff_mask);
454
455             /* Calculate temporary vectorial force */
456             tx               = _mm_mul_ps(fscal,dx12);
457             ty               = _mm_mul_ps(fscal,dy12);
458             tz               = _mm_mul_ps(fscal,dz12);
459
460             /* Update vectorial force */
461             fix1             = _mm_add_ps(fix1,tx);
462             fiy1             = _mm_add_ps(fiy1,ty);
463             fiz1             = _mm_add_ps(fiz1,tz);
464
465             fjx2             = _mm_add_ps(fjx2,tx);
466             fjy2             = _mm_add_ps(fjy2,ty);
467             fjz2             = _mm_add_ps(fjz2,tz);
468             
469             }
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             if (gmx_mm_any_lt(rsq13,rcutoff2))
476             {
477
478             r13              = _mm_mul_ps(rsq13,rinv13);
479
480             /* EWALD ELECTROSTATICS */
481
482             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
483             ewrt             = _mm_mul_ps(r13,ewtabscale);
484             ewitab           = _mm_cvttps_epi32(ewrt);
485             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
486             ewitab           = _mm_slli_epi32(ewitab,2);
487             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
488             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
489             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
490             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
491             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
492             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
493             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
494             velec            = _mm_mul_ps(qq13,_mm_sub_ps(_mm_sub_ps(rinv13,sh_ewald),velec));
495             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
496
497             cutoff_mask      = _mm_cmplt_ps(rsq13,rcutoff2);
498
499             /* Update potential sum for this i atom from the interaction with this j atom. */
500             velec            = _mm_and_ps(velec,cutoff_mask);
501             velecsum         = _mm_add_ps(velecsum,velec);
502
503             fscal            = felec;
504
505             fscal            = _mm_and_ps(fscal,cutoff_mask);
506
507             /* Calculate temporary vectorial force */
508             tx               = _mm_mul_ps(fscal,dx13);
509             ty               = _mm_mul_ps(fscal,dy13);
510             tz               = _mm_mul_ps(fscal,dz13);
511
512             /* Update vectorial force */
513             fix1             = _mm_add_ps(fix1,tx);
514             fiy1             = _mm_add_ps(fiy1,ty);
515             fiz1             = _mm_add_ps(fiz1,tz);
516
517             fjx3             = _mm_add_ps(fjx3,tx);
518             fjy3             = _mm_add_ps(fjy3,ty);
519             fjz3             = _mm_add_ps(fjz3,tz);
520             
521             }
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             if (gmx_mm_any_lt(rsq21,rcutoff2))
528             {
529
530             r21              = _mm_mul_ps(rsq21,rinv21);
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = _mm_mul_ps(r21,ewtabscale);
536             ewitab           = _mm_cvttps_epi32(ewrt);
537             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
538             ewitab           = _mm_slli_epi32(ewitab,2);
539             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
540             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
541             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
542             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
543             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
544             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
545             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
546             velec            = _mm_mul_ps(qq21,_mm_sub_ps(_mm_sub_ps(rinv21,sh_ewald),velec));
547             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
548
549             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_and_ps(velec,cutoff_mask);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_and_ps(fscal,cutoff_mask);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm_mul_ps(fscal,dx21);
561             ty               = _mm_mul_ps(fscal,dy21);
562             tz               = _mm_mul_ps(fscal,dz21);
563
564             /* Update vectorial force */
565             fix2             = _mm_add_ps(fix2,tx);
566             fiy2             = _mm_add_ps(fiy2,ty);
567             fiz2             = _mm_add_ps(fiz2,tz);
568
569             fjx1             = _mm_add_ps(fjx1,tx);
570             fjy1             = _mm_add_ps(fjy1,ty);
571             fjz1             = _mm_add_ps(fjz1,tz);
572             
573             }
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq22,rcutoff2))
580             {
581
582             r22              = _mm_mul_ps(rsq22,rinv22);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _mm_mul_ps(r22,ewtabscale);
588             ewitab           = _mm_cvttps_epi32(ewrt);
589             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
590             ewitab           = _mm_slli_epi32(ewitab,2);
591             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
592             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
593             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
594             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
595             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
596             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
597             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
598             velec            = _mm_mul_ps(qq22,_mm_sub_ps(_mm_sub_ps(rinv22,sh_ewald),velec));
599             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
600
601             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm_and_ps(velec,cutoff_mask);
605             velecsum         = _mm_add_ps(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _mm_and_ps(fscal,cutoff_mask);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm_mul_ps(fscal,dx22);
613             ty               = _mm_mul_ps(fscal,dy22);
614             tz               = _mm_mul_ps(fscal,dz22);
615
616             /* Update vectorial force */
617             fix2             = _mm_add_ps(fix2,tx);
618             fiy2             = _mm_add_ps(fiy2,ty);
619             fiz2             = _mm_add_ps(fiz2,tz);
620
621             fjx2             = _mm_add_ps(fjx2,tx);
622             fjy2             = _mm_add_ps(fjy2,ty);
623             fjz2             = _mm_add_ps(fjz2,tz);
624             
625             }
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             if (gmx_mm_any_lt(rsq23,rcutoff2))
632             {
633
634             r23              = _mm_mul_ps(rsq23,rinv23);
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = _mm_mul_ps(r23,ewtabscale);
640             ewitab           = _mm_cvttps_epi32(ewrt);
641             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
642             ewitab           = _mm_slli_epi32(ewitab,2);
643             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
644             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
645             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
646             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
647             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
648             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
649             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
650             velec            = _mm_mul_ps(qq23,_mm_sub_ps(_mm_sub_ps(rinv23,sh_ewald),velec));
651             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
652
653             cutoff_mask      = _mm_cmplt_ps(rsq23,rcutoff2);
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm_and_ps(velec,cutoff_mask);
657             velecsum         = _mm_add_ps(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm_and_ps(fscal,cutoff_mask);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_ps(fscal,dx23);
665             ty               = _mm_mul_ps(fscal,dy23);
666             tz               = _mm_mul_ps(fscal,dz23);
667
668             /* Update vectorial force */
669             fix2             = _mm_add_ps(fix2,tx);
670             fiy2             = _mm_add_ps(fiy2,ty);
671             fiz2             = _mm_add_ps(fiz2,tz);
672
673             fjx3             = _mm_add_ps(fjx3,tx);
674             fjy3             = _mm_add_ps(fjy3,ty);
675             fjz3             = _mm_add_ps(fjz3,tz);
676             
677             }
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             if (gmx_mm_any_lt(rsq31,rcutoff2))
684             {
685
686             r31              = _mm_mul_ps(rsq31,rinv31);
687
688             /* EWALD ELECTROSTATICS */
689
690             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
691             ewrt             = _mm_mul_ps(r31,ewtabscale);
692             ewitab           = _mm_cvttps_epi32(ewrt);
693             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
694             ewitab           = _mm_slli_epi32(ewitab,2);
695             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
696             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
697             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
698             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
699             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
700             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
701             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
702             velec            = _mm_mul_ps(qq31,_mm_sub_ps(_mm_sub_ps(rinv31,sh_ewald),velec));
703             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
704
705             cutoff_mask      = _mm_cmplt_ps(rsq31,rcutoff2);
706
707             /* Update potential sum for this i atom from the interaction with this j atom. */
708             velec            = _mm_and_ps(velec,cutoff_mask);
709             velecsum         = _mm_add_ps(velecsum,velec);
710
711             fscal            = felec;
712
713             fscal            = _mm_and_ps(fscal,cutoff_mask);
714
715             /* Calculate temporary vectorial force */
716             tx               = _mm_mul_ps(fscal,dx31);
717             ty               = _mm_mul_ps(fscal,dy31);
718             tz               = _mm_mul_ps(fscal,dz31);
719
720             /* Update vectorial force */
721             fix3             = _mm_add_ps(fix3,tx);
722             fiy3             = _mm_add_ps(fiy3,ty);
723             fiz3             = _mm_add_ps(fiz3,tz);
724
725             fjx1             = _mm_add_ps(fjx1,tx);
726             fjy1             = _mm_add_ps(fjy1,ty);
727             fjz1             = _mm_add_ps(fjz1,tz);
728             
729             }
730
731             /**************************
732              * CALCULATE INTERACTIONS *
733              **************************/
734
735             if (gmx_mm_any_lt(rsq32,rcutoff2))
736             {
737
738             r32              = _mm_mul_ps(rsq32,rinv32);
739
740             /* EWALD ELECTROSTATICS */
741
742             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
743             ewrt             = _mm_mul_ps(r32,ewtabscale);
744             ewitab           = _mm_cvttps_epi32(ewrt);
745             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
746             ewitab           = _mm_slli_epi32(ewitab,2);
747             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
748             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
749             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
750             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
751             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
752             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
753             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
754             velec            = _mm_mul_ps(qq32,_mm_sub_ps(_mm_sub_ps(rinv32,sh_ewald),velec));
755             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
756
757             cutoff_mask      = _mm_cmplt_ps(rsq32,rcutoff2);
758
759             /* Update potential sum for this i atom from the interaction with this j atom. */
760             velec            = _mm_and_ps(velec,cutoff_mask);
761             velecsum         = _mm_add_ps(velecsum,velec);
762
763             fscal            = felec;
764
765             fscal            = _mm_and_ps(fscal,cutoff_mask);
766
767             /* Calculate temporary vectorial force */
768             tx               = _mm_mul_ps(fscal,dx32);
769             ty               = _mm_mul_ps(fscal,dy32);
770             tz               = _mm_mul_ps(fscal,dz32);
771
772             /* Update vectorial force */
773             fix3             = _mm_add_ps(fix3,tx);
774             fiy3             = _mm_add_ps(fiy3,ty);
775             fiz3             = _mm_add_ps(fiz3,tz);
776
777             fjx2             = _mm_add_ps(fjx2,tx);
778             fjy2             = _mm_add_ps(fjy2,ty);
779             fjz2             = _mm_add_ps(fjz2,tz);
780             
781             }
782
783             /**************************
784              * CALCULATE INTERACTIONS *
785              **************************/
786
787             if (gmx_mm_any_lt(rsq33,rcutoff2))
788             {
789
790             r33              = _mm_mul_ps(rsq33,rinv33);
791
792             /* EWALD ELECTROSTATICS */
793
794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
795             ewrt             = _mm_mul_ps(r33,ewtabscale);
796             ewitab           = _mm_cvttps_epi32(ewrt);
797             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
798             ewitab           = _mm_slli_epi32(ewitab,2);
799             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
800             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
801             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
802             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
803             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
804             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
805             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
806             velec            = _mm_mul_ps(qq33,_mm_sub_ps(_mm_sub_ps(rinv33,sh_ewald),velec));
807             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
808
809             cutoff_mask      = _mm_cmplt_ps(rsq33,rcutoff2);
810
811             /* Update potential sum for this i atom from the interaction with this j atom. */
812             velec            = _mm_and_ps(velec,cutoff_mask);
813             velecsum         = _mm_add_ps(velecsum,velec);
814
815             fscal            = felec;
816
817             fscal            = _mm_and_ps(fscal,cutoff_mask);
818
819             /* Calculate temporary vectorial force */
820             tx               = _mm_mul_ps(fscal,dx33);
821             ty               = _mm_mul_ps(fscal,dy33);
822             tz               = _mm_mul_ps(fscal,dz33);
823
824             /* Update vectorial force */
825             fix3             = _mm_add_ps(fix3,tx);
826             fiy3             = _mm_add_ps(fiy3,ty);
827             fiz3             = _mm_add_ps(fiz3,tz);
828
829             fjx3             = _mm_add_ps(fjx3,tx);
830             fjy3             = _mm_add_ps(fjy3,ty);
831             fjz3             = _mm_add_ps(fjz3,tz);
832             
833             }
834
835             fjptrA             = f+j_coord_offsetA;
836             fjptrB             = f+j_coord_offsetB;
837             fjptrC             = f+j_coord_offsetC;
838             fjptrD             = f+j_coord_offsetD;
839
840             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
841                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
842                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
843
844             /* Inner loop uses 458 flops */
845         }
846
847         if(jidx<j_index_end)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrlistA         = jjnr[jidx];
852             jnrlistB         = jjnr[jidx+1];
853             jnrlistC         = jjnr[jidx+2];
854             jnrlistD         = jjnr[jidx+3];
855             /* Sign of each element will be negative for non-real atoms.
856              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
857              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
858              */
859             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
860             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
861             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
862             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
863             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
864             j_coord_offsetA  = DIM*jnrA;
865             j_coord_offsetB  = DIM*jnrB;
866             j_coord_offsetC  = DIM*jnrC;
867             j_coord_offsetD  = DIM*jnrD;
868
869             /* load j atom coordinates */
870             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
871                                               x+j_coord_offsetC,x+j_coord_offsetD,
872                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
873                                               &jy2,&jz2,&jx3,&jy3,&jz3);
874
875             /* Calculate displacement vector */
876             dx00             = _mm_sub_ps(ix0,jx0);
877             dy00             = _mm_sub_ps(iy0,jy0);
878             dz00             = _mm_sub_ps(iz0,jz0);
879             dx11             = _mm_sub_ps(ix1,jx1);
880             dy11             = _mm_sub_ps(iy1,jy1);
881             dz11             = _mm_sub_ps(iz1,jz1);
882             dx12             = _mm_sub_ps(ix1,jx2);
883             dy12             = _mm_sub_ps(iy1,jy2);
884             dz12             = _mm_sub_ps(iz1,jz2);
885             dx13             = _mm_sub_ps(ix1,jx3);
886             dy13             = _mm_sub_ps(iy1,jy3);
887             dz13             = _mm_sub_ps(iz1,jz3);
888             dx21             = _mm_sub_ps(ix2,jx1);
889             dy21             = _mm_sub_ps(iy2,jy1);
890             dz21             = _mm_sub_ps(iz2,jz1);
891             dx22             = _mm_sub_ps(ix2,jx2);
892             dy22             = _mm_sub_ps(iy2,jy2);
893             dz22             = _mm_sub_ps(iz2,jz2);
894             dx23             = _mm_sub_ps(ix2,jx3);
895             dy23             = _mm_sub_ps(iy2,jy3);
896             dz23             = _mm_sub_ps(iz2,jz3);
897             dx31             = _mm_sub_ps(ix3,jx1);
898             dy31             = _mm_sub_ps(iy3,jy1);
899             dz31             = _mm_sub_ps(iz3,jz1);
900             dx32             = _mm_sub_ps(ix3,jx2);
901             dy32             = _mm_sub_ps(iy3,jy2);
902             dz32             = _mm_sub_ps(iz3,jz2);
903             dx33             = _mm_sub_ps(ix3,jx3);
904             dy33             = _mm_sub_ps(iy3,jy3);
905             dz33             = _mm_sub_ps(iz3,jz3);
906
907             /* Calculate squared distance and things based on it */
908             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
909             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
910             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
911             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
912             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
913             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
914             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
915             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
916             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
917             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
918
919             rinv11           = gmx_mm_invsqrt_ps(rsq11);
920             rinv12           = gmx_mm_invsqrt_ps(rsq12);
921             rinv13           = gmx_mm_invsqrt_ps(rsq13);
922             rinv21           = gmx_mm_invsqrt_ps(rsq21);
923             rinv22           = gmx_mm_invsqrt_ps(rsq22);
924             rinv23           = gmx_mm_invsqrt_ps(rsq23);
925             rinv31           = gmx_mm_invsqrt_ps(rsq31);
926             rinv32           = gmx_mm_invsqrt_ps(rsq32);
927             rinv33           = gmx_mm_invsqrt_ps(rsq33);
928
929             rinvsq00         = gmx_mm_inv_ps(rsq00);
930             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
931             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
932             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
933             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
934             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
935             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
936             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
937             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
938             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
939
940             fjx0             = _mm_setzero_ps();
941             fjy0             = _mm_setzero_ps();
942             fjz0             = _mm_setzero_ps();
943             fjx1             = _mm_setzero_ps();
944             fjy1             = _mm_setzero_ps();
945             fjz1             = _mm_setzero_ps();
946             fjx2             = _mm_setzero_ps();
947             fjy2             = _mm_setzero_ps();
948             fjz2             = _mm_setzero_ps();
949             fjx3             = _mm_setzero_ps();
950             fjy3             = _mm_setzero_ps();
951             fjz3             = _mm_setzero_ps();
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             if (gmx_mm_any_lt(rsq00,rcutoff2))
958             {
959
960             /* LENNARD-JONES DISPERSION/REPULSION */
961
962             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
963             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
964             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
965             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
966                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
967             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
968
969             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
970
971             /* Update potential sum for this i atom from the interaction with this j atom. */
972             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
973             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
974             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
975
976             fscal            = fvdw;
977
978             fscal            = _mm_and_ps(fscal,cutoff_mask);
979
980             fscal            = _mm_andnot_ps(dummy_mask,fscal);
981
982             /* Calculate temporary vectorial force */
983             tx               = _mm_mul_ps(fscal,dx00);
984             ty               = _mm_mul_ps(fscal,dy00);
985             tz               = _mm_mul_ps(fscal,dz00);
986
987             /* Update vectorial force */
988             fix0             = _mm_add_ps(fix0,tx);
989             fiy0             = _mm_add_ps(fiy0,ty);
990             fiz0             = _mm_add_ps(fiz0,tz);
991
992             fjx0             = _mm_add_ps(fjx0,tx);
993             fjy0             = _mm_add_ps(fjy0,ty);
994             fjz0             = _mm_add_ps(fjz0,tz);
995             
996             }
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             if (gmx_mm_any_lt(rsq11,rcutoff2))
1003             {
1004
1005             r11              = _mm_mul_ps(rsq11,rinv11);
1006             r11              = _mm_andnot_ps(dummy_mask,r11);
1007
1008             /* EWALD ELECTROSTATICS */
1009
1010             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1011             ewrt             = _mm_mul_ps(r11,ewtabscale);
1012             ewitab           = _mm_cvttps_epi32(ewrt);
1013             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1014             ewitab           = _mm_slli_epi32(ewitab,2);
1015             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1016             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1017             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1018             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1019             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1020             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1021             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1022             velec            = _mm_mul_ps(qq11,_mm_sub_ps(_mm_sub_ps(rinv11,sh_ewald),velec));
1023             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1024
1025             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
1026
1027             /* Update potential sum for this i atom from the interaction with this j atom. */
1028             velec            = _mm_and_ps(velec,cutoff_mask);
1029             velec            = _mm_andnot_ps(dummy_mask,velec);
1030             velecsum         = _mm_add_ps(velecsum,velec);
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm_and_ps(fscal,cutoff_mask);
1035
1036             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_ps(fscal,dx11);
1040             ty               = _mm_mul_ps(fscal,dy11);
1041             tz               = _mm_mul_ps(fscal,dz11);
1042
1043             /* Update vectorial force */
1044             fix1             = _mm_add_ps(fix1,tx);
1045             fiy1             = _mm_add_ps(fiy1,ty);
1046             fiz1             = _mm_add_ps(fiz1,tz);
1047
1048             fjx1             = _mm_add_ps(fjx1,tx);
1049             fjy1             = _mm_add_ps(fjy1,ty);
1050             fjz1             = _mm_add_ps(fjz1,tz);
1051             
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (gmx_mm_any_lt(rsq12,rcutoff2))
1059             {
1060
1061             r12              = _mm_mul_ps(rsq12,rinv12);
1062             r12              = _mm_andnot_ps(dummy_mask,r12);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_ps(r12,ewtabscale);
1068             ewitab           = _mm_cvttps_epi32(ewrt);
1069             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1070             ewitab           = _mm_slli_epi32(ewitab,2);
1071             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1072             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1073             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1074             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1075             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1076             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1077             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1078             velec            = _mm_mul_ps(qq12,_mm_sub_ps(_mm_sub_ps(rinv12,sh_ewald),velec));
1079             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1080
1081             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
1082
1083             /* Update potential sum for this i atom from the interaction with this j atom. */
1084             velec            = _mm_and_ps(velec,cutoff_mask);
1085             velec            = _mm_andnot_ps(dummy_mask,velec);
1086             velecsum         = _mm_add_ps(velecsum,velec);
1087
1088             fscal            = felec;
1089
1090             fscal            = _mm_and_ps(fscal,cutoff_mask);
1091
1092             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm_mul_ps(fscal,dx12);
1096             ty               = _mm_mul_ps(fscal,dy12);
1097             tz               = _mm_mul_ps(fscal,dz12);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm_add_ps(fix1,tx);
1101             fiy1             = _mm_add_ps(fiy1,ty);
1102             fiz1             = _mm_add_ps(fiz1,tz);
1103
1104             fjx2             = _mm_add_ps(fjx2,tx);
1105             fjy2             = _mm_add_ps(fjy2,ty);
1106             fjz2             = _mm_add_ps(fjz2,tz);
1107             
1108             }
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm_any_lt(rsq13,rcutoff2))
1115             {
1116
1117             r13              = _mm_mul_ps(rsq13,rinv13);
1118             r13              = _mm_andnot_ps(dummy_mask,r13);
1119
1120             /* EWALD ELECTROSTATICS */
1121
1122             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1123             ewrt             = _mm_mul_ps(r13,ewtabscale);
1124             ewitab           = _mm_cvttps_epi32(ewrt);
1125             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1126             ewitab           = _mm_slli_epi32(ewitab,2);
1127             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1128             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1129             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1130             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1131             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1132             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1133             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1134             velec            = _mm_mul_ps(qq13,_mm_sub_ps(_mm_sub_ps(rinv13,sh_ewald),velec));
1135             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1136
1137             cutoff_mask      = _mm_cmplt_ps(rsq13,rcutoff2);
1138
1139             /* Update potential sum for this i atom from the interaction with this j atom. */
1140             velec            = _mm_and_ps(velec,cutoff_mask);
1141             velec            = _mm_andnot_ps(dummy_mask,velec);
1142             velecsum         = _mm_add_ps(velecsum,velec);
1143
1144             fscal            = felec;
1145
1146             fscal            = _mm_and_ps(fscal,cutoff_mask);
1147
1148             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1149
1150             /* Calculate temporary vectorial force */
1151             tx               = _mm_mul_ps(fscal,dx13);
1152             ty               = _mm_mul_ps(fscal,dy13);
1153             tz               = _mm_mul_ps(fscal,dz13);
1154
1155             /* Update vectorial force */
1156             fix1             = _mm_add_ps(fix1,tx);
1157             fiy1             = _mm_add_ps(fiy1,ty);
1158             fiz1             = _mm_add_ps(fiz1,tz);
1159
1160             fjx3             = _mm_add_ps(fjx3,tx);
1161             fjy3             = _mm_add_ps(fjy3,ty);
1162             fjz3             = _mm_add_ps(fjz3,tz);
1163             
1164             }
1165
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             if (gmx_mm_any_lt(rsq21,rcutoff2))
1171             {
1172
1173             r21              = _mm_mul_ps(rsq21,rinv21);
1174             r21              = _mm_andnot_ps(dummy_mask,r21);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1179             ewrt             = _mm_mul_ps(r21,ewtabscale);
1180             ewitab           = _mm_cvttps_epi32(ewrt);
1181             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1182             ewitab           = _mm_slli_epi32(ewitab,2);
1183             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1184             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1185             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1186             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1187             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1188             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1189             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1190             velec            = _mm_mul_ps(qq21,_mm_sub_ps(_mm_sub_ps(rinv21,sh_ewald),velec));
1191             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1192
1193             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
1194
1195             /* Update potential sum for this i atom from the interaction with this j atom. */
1196             velec            = _mm_and_ps(velec,cutoff_mask);
1197             velec            = _mm_andnot_ps(dummy_mask,velec);
1198             velecsum         = _mm_add_ps(velecsum,velec);
1199
1200             fscal            = felec;
1201
1202             fscal            = _mm_and_ps(fscal,cutoff_mask);
1203
1204             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1205
1206             /* Calculate temporary vectorial force */
1207             tx               = _mm_mul_ps(fscal,dx21);
1208             ty               = _mm_mul_ps(fscal,dy21);
1209             tz               = _mm_mul_ps(fscal,dz21);
1210
1211             /* Update vectorial force */
1212             fix2             = _mm_add_ps(fix2,tx);
1213             fiy2             = _mm_add_ps(fiy2,ty);
1214             fiz2             = _mm_add_ps(fiz2,tz);
1215
1216             fjx1             = _mm_add_ps(fjx1,tx);
1217             fjy1             = _mm_add_ps(fjy1,ty);
1218             fjz1             = _mm_add_ps(fjz1,tz);
1219             
1220             }
1221
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             if (gmx_mm_any_lt(rsq22,rcutoff2))
1227             {
1228
1229             r22              = _mm_mul_ps(rsq22,rinv22);
1230             r22              = _mm_andnot_ps(dummy_mask,r22);
1231
1232             /* EWALD ELECTROSTATICS */
1233
1234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1235             ewrt             = _mm_mul_ps(r22,ewtabscale);
1236             ewitab           = _mm_cvttps_epi32(ewrt);
1237             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1238             ewitab           = _mm_slli_epi32(ewitab,2);
1239             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1240             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1241             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1242             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1243             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1244             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1245             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1246             velec            = _mm_mul_ps(qq22,_mm_sub_ps(_mm_sub_ps(rinv22,sh_ewald),velec));
1247             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
1248
1249             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
1250
1251             /* Update potential sum for this i atom from the interaction with this j atom. */
1252             velec            = _mm_and_ps(velec,cutoff_mask);
1253             velec            = _mm_andnot_ps(dummy_mask,velec);
1254             velecsum         = _mm_add_ps(velecsum,velec);
1255
1256             fscal            = felec;
1257
1258             fscal            = _mm_and_ps(fscal,cutoff_mask);
1259
1260             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm_mul_ps(fscal,dx22);
1264             ty               = _mm_mul_ps(fscal,dy22);
1265             tz               = _mm_mul_ps(fscal,dz22);
1266
1267             /* Update vectorial force */
1268             fix2             = _mm_add_ps(fix2,tx);
1269             fiy2             = _mm_add_ps(fiy2,ty);
1270             fiz2             = _mm_add_ps(fiz2,tz);
1271
1272             fjx2             = _mm_add_ps(fjx2,tx);
1273             fjy2             = _mm_add_ps(fjy2,ty);
1274             fjz2             = _mm_add_ps(fjz2,tz);
1275             
1276             }
1277
1278             /**************************
1279              * CALCULATE INTERACTIONS *
1280              **************************/
1281
1282             if (gmx_mm_any_lt(rsq23,rcutoff2))
1283             {
1284
1285             r23              = _mm_mul_ps(rsq23,rinv23);
1286             r23              = _mm_andnot_ps(dummy_mask,r23);
1287
1288             /* EWALD ELECTROSTATICS */
1289
1290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1291             ewrt             = _mm_mul_ps(r23,ewtabscale);
1292             ewitab           = _mm_cvttps_epi32(ewrt);
1293             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1294             ewitab           = _mm_slli_epi32(ewitab,2);
1295             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1296             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1297             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1298             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1299             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1300             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1301             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1302             velec            = _mm_mul_ps(qq23,_mm_sub_ps(_mm_sub_ps(rinv23,sh_ewald),velec));
1303             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
1304
1305             cutoff_mask      = _mm_cmplt_ps(rsq23,rcutoff2);
1306
1307             /* Update potential sum for this i atom from the interaction with this j atom. */
1308             velec            = _mm_and_ps(velec,cutoff_mask);
1309             velec            = _mm_andnot_ps(dummy_mask,velec);
1310             velecsum         = _mm_add_ps(velecsum,velec);
1311
1312             fscal            = felec;
1313
1314             fscal            = _mm_and_ps(fscal,cutoff_mask);
1315
1316             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1317
1318             /* Calculate temporary vectorial force */
1319             tx               = _mm_mul_ps(fscal,dx23);
1320             ty               = _mm_mul_ps(fscal,dy23);
1321             tz               = _mm_mul_ps(fscal,dz23);
1322
1323             /* Update vectorial force */
1324             fix2             = _mm_add_ps(fix2,tx);
1325             fiy2             = _mm_add_ps(fiy2,ty);
1326             fiz2             = _mm_add_ps(fiz2,tz);
1327
1328             fjx3             = _mm_add_ps(fjx3,tx);
1329             fjy3             = _mm_add_ps(fjy3,ty);
1330             fjz3             = _mm_add_ps(fjz3,tz);
1331             
1332             }
1333
1334             /**************************
1335              * CALCULATE INTERACTIONS *
1336              **************************/
1337
1338             if (gmx_mm_any_lt(rsq31,rcutoff2))
1339             {
1340
1341             r31              = _mm_mul_ps(rsq31,rinv31);
1342             r31              = _mm_andnot_ps(dummy_mask,r31);
1343
1344             /* EWALD ELECTROSTATICS */
1345
1346             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1347             ewrt             = _mm_mul_ps(r31,ewtabscale);
1348             ewitab           = _mm_cvttps_epi32(ewrt);
1349             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1350             ewitab           = _mm_slli_epi32(ewitab,2);
1351             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1352             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1353             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1354             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1355             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1356             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1357             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1358             velec            = _mm_mul_ps(qq31,_mm_sub_ps(_mm_sub_ps(rinv31,sh_ewald),velec));
1359             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
1360
1361             cutoff_mask      = _mm_cmplt_ps(rsq31,rcutoff2);
1362
1363             /* Update potential sum for this i atom from the interaction with this j atom. */
1364             velec            = _mm_and_ps(velec,cutoff_mask);
1365             velec            = _mm_andnot_ps(dummy_mask,velec);
1366             velecsum         = _mm_add_ps(velecsum,velec);
1367
1368             fscal            = felec;
1369
1370             fscal            = _mm_and_ps(fscal,cutoff_mask);
1371
1372             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1373
1374             /* Calculate temporary vectorial force */
1375             tx               = _mm_mul_ps(fscal,dx31);
1376             ty               = _mm_mul_ps(fscal,dy31);
1377             tz               = _mm_mul_ps(fscal,dz31);
1378
1379             /* Update vectorial force */
1380             fix3             = _mm_add_ps(fix3,tx);
1381             fiy3             = _mm_add_ps(fiy3,ty);
1382             fiz3             = _mm_add_ps(fiz3,tz);
1383
1384             fjx1             = _mm_add_ps(fjx1,tx);
1385             fjy1             = _mm_add_ps(fjy1,ty);
1386             fjz1             = _mm_add_ps(fjz1,tz);
1387             
1388             }
1389
1390             /**************************
1391              * CALCULATE INTERACTIONS *
1392              **************************/
1393
1394             if (gmx_mm_any_lt(rsq32,rcutoff2))
1395             {
1396
1397             r32              = _mm_mul_ps(rsq32,rinv32);
1398             r32              = _mm_andnot_ps(dummy_mask,r32);
1399
1400             /* EWALD ELECTROSTATICS */
1401
1402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1403             ewrt             = _mm_mul_ps(r32,ewtabscale);
1404             ewitab           = _mm_cvttps_epi32(ewrt);
1405             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1406             ewitab           = _mm_slli_epi32(ewitab,2);
1407             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1408             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1409             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1410             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1411             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1412             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1413             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1414             velec            = _mm_mul_ps(qq32,_mm_sub_ps(_mm_sub_ps(rinv32,sh_ewald),velec));
1415             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
1416
1417             cutoff_mask      = _mm_cmplt_ps(rsq32,rcutoff2);
1418
1419             /* Update potential sum for this i atom from the interaction with this j atom. */
1420             velec            = _mm_and_ps(velec,cutoff_mask);
1421             velec            = _mm_andnot_ps(dummy_mask,velec);
1422             velecsum         = _mm_add_ps(velecsum,velec);
1423
1424             fscal            = felec;
1425
1426             fscal            = _mm_and_ps(fscal,cutoff_mask);
1427
1428             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1429
1430             /* Calculate temporary vectorial force */
1431             tx               = _mm_mul_ps(fscal,dx32);
1432             ty               = _mm_mul_ps(fscal,dy32);
1433             tz               = _mm_mul_ps(fscal,dz32);
1434
1435             /* Update vectorial force */
1436             fix3             = _mm_add_ps(fix3,tx);
1437             fiy3             = _mm_add_ps(fiy3,ty);
1438             fiz3             = _mm_add_ps(fiz3,tz);
1439
1440             fjx2             = _mm_add_ps(fjx2,tx);
1441             fjy2             = _mm_add_ps(fjy2,ty);
1442             fjz2             = _mm_add_ps(fjz2,tz);
1443             
1444             }
1445
1446             /**************************
1447              * CALCULATE INTERACTIONS *
1448              **************************/
1449
1450             if (gmx_mm_any_lt(rsq33,rcutoff2))
1451             {
1452
1453             r33              = _mm_mul_ps(rsq33,rinv33);
1454             r33              = _mm_andnot_ps(dummy_mask,r33);
1455
1456             /* EWALD ELECTROSTATICS */
1457
1458             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1459             ewrt             = _mm_mul_ps(r33,ewtabscale);
1460             ewitab           = _mm_cvttps_epi32(ewrt);
1461             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1462             ewitab           = _mm_slli_epi32(ewitab,2);
1463             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1464             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
1465             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
1466             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
1467             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
1468             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
1469             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
1470             velec            = _mm_mul_ps(qq33,_mm_sub_ps(_mm_sub_ps(rinv33,sh_ewald),velec));
1471             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
1472
1473             cutoff_mask      = _mm_cmplt_ps(rsq33,rcutoff2);
1474
1475             /* Update potential sum for this i atom from the interaction with this j atom. */
1476             velec            = _mm_and_ps(velec,cutoff_mask);
1477             velec            = _mm_andnot_ps(dummy_mask,velec);
1478             velecsum         = _mm_add_ps(velecsum,velec);
1479
1480             fscal            = felec;
1481
1482             fscal            = _mm_and_ps(fscal,cutoff_mask);
1483
1484             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1485
1486             /* Calculate temporary vectorial force */
1487             tx               = _mm_mul_ps(fscal,dx33);
1488             ty               = _mm_mul_ps(fscal,dy33);
1489             tz               = _mm_mul_ps(fscal,dz33);
1490
1491             /* Update vectorial force */
1492             fix3             = _mm_add_ps(fix3,tx);
1493             fiy3             = _mm_add_ps(fiy3,ty);
1494             fiz3             = _mm_add_ps(fiz3,tz);
1495
1496             fjx3             = _mm_add_ps(fjx3,tx);
1497             fjy3             = _mm_add_ps(fjy3,ty);
1498             fjz3             = _mm_add_ps(fjz3,tz);
1499             
1500             }
1501
1502             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1503             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1504             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1505             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1506
1507             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1508                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1509                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1510
1511             /* Inner loop uses 467 flops */
1512         }
1513
1514         /* End of innermost loop */
1515
1516         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1517                                               f+i_coord_offset,fshift+i_shift_offset);
1518
1519         ggid                        = gid[iidx];
1520         /* Update potential energies */
1521         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1522         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1523
1524         /* Increment number of inner iterations */
1525         inneriter                  += j_index_end - j_index_start;
1526
1527         /* Outer loop uses 26 flops */
1528     }
1529
1530     /* Increment number of outer iterations */
1531     outeriter        += nri;
1532
1533     /* Update outer/inner flops */
1534
1535     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*467);
1536 }
1537 /*
1538  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_sse2_single
1539  * Electrostatics interaction: Ewald
1540  * VdW interaction:            LennardJones
1541  * Geometry:                   Water4-Water4
1542  * Calculate force/pot:        Force
1543  */
1544 void
1545 nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_sse2_single
1546                     (t_nblist                    * gmx_restrict       nlist,
1547                      rvec                        * gmx_restrict          xx,
1548                      rvec                        * gmx_restrict          ff,
1549                      t_forcerec                  * gmx_restrict          fr,
1550                      t_mdatoms                   * gmx_restrict     mdatoms,
1551                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1552                      t_nrnb                      * gmx_restrict        nrnb)
1553 {
1554     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1555      * just 0 for non-waters.
1556      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
1557      * jnr indices corresponding to data put in the four positions in the SIMD register.
1558      */
1559     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1560     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1561     int              jnrA,jnrB,jnrC,jnrD;
1562     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1563     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1564     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1565     real             rcutoff_scalar;
1566     real             *shiftvec,*fshift,*x,*f;
1567     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1568     real             scratch[4*DIM];
1569     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1570     int              vdwioffset0;
1571     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1572     int              vdwioffset1;
1573     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1574     int              vdwioffset2;
1575     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1576     int              vdwioffset3;
1577     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1578     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1579     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1580     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1581     __m128           jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1582     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1583     __m128           jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1584     int              vdwjidx3A,vdwjidx3B,vdwjidx3C,vdwjidx3D;
1585     __m128           jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1586     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1587     __m128           dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1588     __m128           dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1589     __m128           dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1590     __m128           dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1591     __m128           dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1592     __m128           dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1593     __m128           dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1594     __m128           dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1595     __m128           dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1596     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
1597     real             *charge;
1598     int              nvdwtype;
1599     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1600     int              *vdwtype;
1601     real             *vdwparam;
1602     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
1603     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
1604     __m128i          ewitab;
1605     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1606     real             *ewtab;
1607     __m128           dummy_mask,cutoff_mask;
1608     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
1609     __m128           one     = _mm_set1_ps(1.0);
1610     __m128           two     = _mm_set1_ps(2.0);
1611     x                = xx[0];
1612     f                = ff[0];
1613
1614     nri              = nlist->nri;
1615     iinr             = nlist->iinr;
1616     jindex           = nlist->jindex;
1617     jjnr             = nlist->jjnr;
1618     shiftidx         = nlist->shift;
1619     gid              = nlist->gid;
1620     shiftvec         = fr->shift_vec[0];
1621     fshift           = fr->fshift[0];
1622     facel            = _mm_set1_ps(fr->epsfac);
1623     charge           = mdatoms->chargeA;
1624     nvdwtype         = fr->ntype;
1625     vdwparam         = fr->nbfp;
1626     vdwtype          = mdatoms->typeA;
1627
1628     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
1629     ewtab            = fr->ic->tabq_coul_F;
1630     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
1631     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
1632
1633     /* Setup water-specific parameters */
1634     inr              = nlist->iinr[0];
1635     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
1636     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
1637     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
1638     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1639
1640     jq1              = _mm_set1_ps(charge[inr+1]);
1641     jq2              = _mm_set1_ps(charge[inr+2]);
1642     jq3              = _mm_set1_ps(charge[inr+3]);
1643     vdwjidx0A        = 2*vdwtype[inr+0];
1644     c6_00            = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A]);
1645     c12_00           = _mm_set1_ps(vdwparam[vdwioffset0+vdwjidx0A+1]);
1646     qq11             = _mm_mul_ps(iq1,jq1);
1647     qq12             = _mm_mul_ps(iq1,jq2);
1648     qq13             = _mm_mul_ps(iq1,jq3);
1649     qq21             = _mm_mul_ps(iq2,jq1);
1650     qq22             = _mm_mul_ps(iq2,jq2);
1651     qq23             = _mm_mul_ps(iq2,jq3);
1652     qq31             = _mm_mul_ps(iq3,jq1);
1653     qq32             = _mm_mul_ps(iq3,jq2);
1654     qq33             = _mm_mul_ps(iq3,jq3);
1655
1656     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
1657     rcutoff_scalar   = fr->rcoulomb;
1658     rcutoff          = _mm_set1_ps(rcutoff_scalar);
1659     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
1660
1661     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
1662     rvdw             = _mm_set1_ps(fr->rvdw);
1663
1664     /* Avoid stupid compiler warnings */
1665     jnrA = jnrB = jnrC = jnrD = 0;
1666     j_coord_offsetA = 0;
1667     j_coord_offsetB = 0;
1668     j_coord_offsetC = 0;
1669     j_coord_offsetD = 0;
1670
1671     outeriter        = 0;
1672     inneriter        = 0;
1673
1674     for(iidx=0;iidx<4*DIM;iidx++)
1675     {
1676         scratch[iidx] = 0.0;
1677     }  
1678
1679     /* Start outer loop over neighborlists */
1680     for(iidx=0; iidx<nri; iidx++)
1681     {
1682         /* Load shift vector for this list */
1683         i_shift_offset   = DIM*shiftidx[iidx];
1684
1685         /* Load limits for loop over neighbors */
1686         j_index_start    = jindex[iidx];
1687         j_index_end      = jindex[iidx+1];
1688
1689         /* Get outer coordinate index */
1690         inr              = iinr[iidx];
1691         i_coord_offset   = DIM*inr;
1692
1693         /* Load i particle coords and add shift vector */
1694         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
1695                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1696         
1697         fix0             = _mm_setzero_ps();
1698         fiy0             = _mm_setzero_ps();
1699         fiz0             = _mm_setzero_ps();
1700         fix1             = _mm_setzero_ps();
1701         fiy1             = _mm_setzero_ps();
1702         fiz1             = _mm_setzero_ps();
1703         fix2             = _mm_setzero_ps();
1704         fiy2             = _mm_setzero_ps();
1705         fiz2             = _mm_setzero_ps();
1706         fix3             = _mm_setzero_ps();
1707         fiy3             = _mm_setzero_ps();
1708         fiz3             = _mm_setzero_ps();
1709
1710         /* Start inner kernel loop */
1711         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1712         {
1713
1714             /* Get j neighbor index, and coordinate index */
1715             jnrA             = jjnr[jidx];
1716             jnrB             = jjnr[jidx+1];
1717             jnrC             = jjnr[jidx+2];
1718             jnrD             = jjnr[jidx+3];
1719             j_coord_offsetA  = DIM*jnrA;
1720             j_coord_offsetB  = DIM*jnrB;
1721             j_coord_offsetC  = DIM*jnrC;
1722             j_coord_offsetD  = DIM*jnrD;
1723
1724             /* load j atom coordinates */
1725             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1726                                               x+j_coord_offsetC,x+j_coord_offsetD,
1727                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1728                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1729
1730             /* Calculate displacement vector */
1731             dx00             = _mm_sub_ps(ix0,jx0);
1732             dy00             = _mm_sub_ps(iy0,jy0);
1733             dz00             = _mm_sub_ps(iz0,jz0);
1734             dx11             = _mm_sub_ps(ix1,jx1);
1735             dy11             = _mm_sub_ps(iy1,jy1);
1736             dz11             = _mm_sub_ps(iz1,jz1);
1737             dx12             = _mm_sub_ps(ix1,jx2);
1738             dy12             = _mm_sub_ps(iy1,jy2);
1739             dz12             = _mm_sub_ps(iz1,jz2);
1740             dx13             = _mm_sub_ps(ix1,jx3);
1741             dy13             = _mm_sub_ps(iy1,jy3);
1742             dz13             = _mm_sub_ps(iz1,jz3);
1743             dx21             = _mm_sub_ps(ix2,jx1);
1744             dy21             = _mm_sub_ps(iy2,jy1);
1745             dz21             = _mm_sub_ps(iz2,jz1);
1746             dx22             = _mm_sub_ps(ix2,jx2);
1747             dy22             = _mm_sub_ps(iy2,jy2);
1748             dz22             = _mm_sub_ps(iz2,jz2);
1749             dx23             = _mm_sub_ps(ix2,jx3);
1750             dy23             = _mm_sub_ps(iy2,jy3);
1751             dz23             = _mm_sub_ps(iz2,jz3);
1752             dx31             = _mm_sub_ps(ix3,jx1);
1753             dy31             = _mm_sub_ps(iy3,jy1);
1754             dz31             = _mm_sub_ps(iz3,jz1);
1755             dx32             = _mm_sub_ps(ix3,jx2);
1756             dy32             = _mm_sub_ps(iy3,jy2);
1757             dz32             = _mm_sub_ps(iz3,jz2);
1758             dx33             = _mm_sub_ps(ix3,jx3);
1759             dy33             = _mm_sub_ps(iy3,jy3);
1760             dz33             = _mm_sub_ps(iz3,jz3);
1761
1762             /* Calculate squared distance and things based on it */
1763             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1764             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
1765             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
1766             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
1767             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
1768             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
1769             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
1770             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
1771             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
1772             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
1773
1774             rinv11           = gmx_mm_invsqrt_ps(rsq11);
1775             rinv12           = gmx_mm_invsqrt_ps(rsq12);
1776             rinv13           = gmx_mm_invsqrt_ps(rsq13);
1777             rinv21           = gmx_mm_invsqrt_ps(rsq21);
1778             rinv22           = gmx_mm_invsqrt_ps(rsq22);
1779             rinv23           = gmx_mm_invsqrt_ps(rsq23);
1780             rinv31           = gmx_mm_invsqrt_ps(rsq31);
1781             rinv32           = gmx_mm_invsqrt_ps(rsq32);
1782             rinv33           = gmx_mm_invsqrt_ps(rsq33);
1783
1784             rinvsq00         = gmx_mm_inv_ps(rsq00);
1785             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
1786             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
1787             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
1788             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
1789             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
1790             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
1791             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
1792             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
1793             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
1794
1795             fjx0             = _mm_setzero_ps();
1796             fjy0             = _mm_setzero_ps();
1797             fjz0             = _mm_setzero_ps();
1798             fjx1             = _mm_setzero_ps();
1799             fjy1             = _mm_setzero_ps();
1800             fjz1             = _mm_setzero_ps();
1801             fjx2             = _mm_setzero_ps();
1802             fjy2             = _mm_setzero_ps();
1803             fjz2             = _mm_setzero_ps();
1804             fjx3             = _mm_setzero_ps();
1805             fjy3             = _mm_setzero_ps();
1806             fjz3             = _mm_setzero_ps();
1807
1808             /**************************
1809              * CALCULATE INTERACTIONS *
1810              **************************/
1811
1812             if (gmx_mm_any_lt(rsq00,rcutoff2))
1813             {
1814
1815             /* LENNARD-JONES DISPERSION/REPULSION */
1816
1817             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1818             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1819
1820             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1821
1822             fscal            = fvdw;
1823
1824             fscal            = _mm_and_ps(fscal,cutoff_mask);
1825
1826             /* Calculate temporary vectorial force */
1827             tx               = _mm_mul_ps(fscal,dx00);
1828             ty               = _mm_mul_ps(fscal,dy00);
1829             tz               = _mm_mul_ps(fscal,dz00);
1830
1831             /* Update vectorial force */
1832             fix0             = _mm_add_ps(fix0,tx);
1833             fiy0             = _mm_add_ps(fiy0,ty);
1834             fiz0             = _mm_add_ps(fiz0,tz);
1835
1836             fjx0             = _mm_add_ps(fjx0,tx);
1837             fjy0             = _mm_add_ps(fjy0,ty);
1838             fjz0             = _mm_add_ps(fjz0,tz);
1839             
1840             }
1841
1842             /**************************
1843              * CALCULATE INTERACTIONS *
1844              **************************/
1845
1846             if (gmx_mm_any_lt(rsq11,rcutoff2))
1847             {
1848
1849             r11              = _mm_mul_ps(rsq11,rinv11);
1850
1851             /* EWALD ELECTROSTATICS */
1852
1853             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1854             ewrt             = _mm_mul_ps(r11,ewtabscale);
1855             ewitab           = _mm_cvttps_epi32(ewrt);
1856             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1857             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1858                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1859                                          &ewtabF,&ewtabFn);
1860             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1861             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
1862
1863             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
1864
1865             fscal            = felec;
1866
1867             fscal            = _mm_and_ps(fscal,cutoff_mask);
1868
1869             /* Calculate temporary vectorial force */
1870             tx               = _mm_mul_ps(fscal,dx11);
1871             ty               = _mm_mul_ps(fscal,dy11);
1872             tz               = _mm_mul_ps(fscal,dz11);
1873
1874             /* Update vectorial force */
1875             fix1             = _mm_add_ps(fix1,tx);
1876             fiy1             = _mm_add_ps(fiy1,ty);
1877             fiz1             = _mm_add_ps(fiz1,tz);
1878
1879             fjx1             = _mm_add_ps(fjx1,tx);
1880             fjy1             = _mm_add_ps(fjy1,ty);
1881             fjz1             = _mm_add_ps(fjz1,tz);
1882             
1883             }
1884
1885             /**************************
1886              * CALCULATE INTERACTIONS *
1887              **************************/
1888
1889             if (gmx_mm_any_lt(rsq12,rcutoff2))
1890             {
1891
1892             r12              = _mm_mul_ps(rsq12,rinv12);
1893
1894             /* EWALD ELECTROSTATICS */
1895
1896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1897             ewrt             = _mm_mul_ps(r12,ewtabscale);
1898             ewitab           = _mm_cvttps_epi32(ewrt);
1899             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1900             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1901                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1902                                          &ewtabF,&ewtabFn);
1903             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1904             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
1905
1906             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
1907
1908             fscal            = felec;
1909
1910             fscal            = _mm_and_ps(fscal,cutoff_mask);
1911
1912             /* Calculate temporary vectorial force */
1913             tx               = _mm_mul_ps(fscal,dx12);
1914             ty               = _mm_mul_ps(fscal,dy12);
1915             tz               = _mm_mul_ps(fscal,dz12);
1916
1917             /* Update vectorial force */
1918             fix1             = _mm_add_ps(fix1,tx);
1919             fiy1             = _mm_add_ps(fiy1,ty);
1920             fiz1             = _mm_add_ps(fiz1,tz);
1921
1922             fjx2             = _mm_add_ps(fjx2,tx);
1923             fjy2             = _mm_add_ps(fjy2,ty);
1924             fjz2             = _mm_add_ps(fjz2,tz);
1925             
1926             }
1927
1928             /**************************
1929              * CALCULATE INTERACTIONS *
1930              **************************/
1931
1932             if (gmx_mm_any_lt(rsq13,rcutoff2))
1933             {
1934
1935             r13              = _mm_mul_ps(rsq13,rinv13);
1936
1937             /* EWALD ELECTROSTATICS */
1938
1939             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1940             ewrt             = _mm_mul_ps(r13,ewtabscale);
1941             ewitab           = _mm_cvttps_epi32(ewrt);
1942             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1943             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1944                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1945                                          &ewtabF,&ewtabFn);
1946             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1947             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
1948
1949             cutoff_mask      = _mm_cmplt_ps(rsq13,rcutoff2);
1950
1951             fscal            = felec;
1952
1953             fscal            = _mm_and_ps(fscal,cutoff_mask);
1954
1955             /* Calculate temporary vectorial force */
1956             tx               = _mm_mul_ps(fscal,dx13);
1957             ty               = _mm_mul_ps(fscal,dy13);
1958             tz               = _mm_mul_ps(fscal,dz13);
1959
1960             /* Update vectorial force */
1961             fix1             = _mm_add_ps(fix1,tx);
1962             fiy1             = _mm_add_ps(fiy1,ty);
1963             fiz1             = _mm_add_ps(fiz1,tz);
1964
1965             fjx3             = _mm_add_ps(fjx3,tx);
1966             fjy3             = _mm_add_ps(fjy3,ty);
1967             fjz3             = _mm_add_ps(fjz3,tz);
1968             
1969             }
1970
1971             /**************************
1972              * CALCULATE INTERACTIONS *
1973              **************************/
1974
1975             if (gmx_mm_any_lt(rsq21,rcutoff2))
1976             {
1977
1978             r21              = _mm_mul_ps(rsq21,rinv21);
1979
1980             /* EWALD ELECTROSTATICS */
1981
1982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1983             ewrt             = _mm_mul_ps(r21,ewtabscale);
1984             ewitab           = _mm_cvttps_epi32(ewrt);
1985             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1986             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1987                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1988                                          &ewtabF,&ewtabFn);
1989             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1990             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
1991
1992             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
1993
1994             fscal            = felec;
1995
1996             fscal            = _mm_and_ps(fscal,cutoff_mask);
1997
1998             /* Calculate temporary vectorial force */
1999             tx               = _mm_mul_ps(fscal,dx21);
2000             ty               = _mm_mul_ps(fscal,dy21);
2001             tz               = _mm_mul_ps(fscal,dz21);
2002
2003             /* Update vectorial force */
2004             fix2             = _mm_add_ps(fix2,tx);
2005             fiy2             = _mm_add_ps(fiy2,ty);
2006             fiz2             = _mm_add_ps(fiz2,tz);
2007
2008             fjx1             = _mm_add_ps(fjx1,tx);
2009             fjy1             = _mm_add_ps(fjy1,ty);
2010             fjz1             = _mm_add_ps(fjz1,tz);
2011             
2012             }
2013
2014             /**************************
2015              * CALCULATE INTERACTIONS *
2016              **************************/
2017
2018             if (gmx_mm_any_lt(rsq22,rcutoff2))
2019             {
2020
2021             r22              = _mm_mul_ps(rsq22,rinv22);
2022
2023             /* EWALD ELECTROSTATICS */
2024
2025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2026             ewrt             = _mm_mul_ps(r22,ewtabscale);
2027             ewitab           = _mm_cvttps_epi32(ewrt);
2028             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2029             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2030                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2031                                          &ewtabF,&ewtabFn);
2032             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2033             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2034
2035             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
2036
2037             fscal            = felec;
2038
2039             fscal            = _mm_and_ps(fscal,cutoff_mask);
2040
2041             /* Calculate temporary vectorial force */
2042             tx               = _mm_mul_ps(fscal,dx22);
2043             ty               = _mm_mul_ps(fscal,dy22);
2044             tz               = _mm_mul_ps(fscal,dz22);
2045
2046             /* Update vectorial force */
2047             fix2             = _mm_add_ps(fix2,tx);
2048             fiy2             = _mm_add_ps(fiy2,ty);
2049             fiz2             = _mm_add_ps(fiz2,tz);
2050
2051             fjx2             = _mm_add_ps(fjx2,tx);
2052             fjy2             = _mm_add_ps(fjy2,ty);
2053             fjz2             = _mm_add_ps(fjz2,tz);
2054             
2055             }
2056
2057             /**************************
2058              * CALCULATE INTERACTIONS *
2059              **************************/
2060
2061             if (gmx_mm_any_lt(rsq23,rcutoff2))
2062             {
2063
2064             r23              = _mm_mul_ps(rsq23,rinv23);
2065
2066             /* EWALD ELECTROSTATICS */
2067
2068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2069             ewrt             = _mm_mul_ps(r23,ewtabscale);
2070             ewitab           = _mm_cvttps_epi32(ewrt);
2071             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2072             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2073                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2074                                          &ewtabF,&ewtabFn);
2075             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2076             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2077
2078             cutoff_mask      = _mm_cmplt_ps(rsq23,rcutoff2);
2079
2080             fscal            = felec;
2081
2082             fscal            = _mm_and_ps(fscal,cutoff_mask);
2083
2084             /* Calculate temporary vectorial force */
2085             tx               = _mm_mul_ps(fscal,dx23);
2086             ty               = _mm_mul_ps(fscal,dy23);
2087             tz               = _mm_mul_ps(fscal,dz23);
2088
2089             /* Update vectorial force */
2090             fix2             = _mm_add_ps(fix2,tx);
2091             fiy2             = _mm_add_ps(fiy2,ty);
2092             fiz2             = _mm_add_ps(fiz2,tz);
2093
2094             fjx3             = _mm_add_ps(fjx3,tx);
2095             fjy3             = _mm_add_ps(fjy3,ty);
2096             fjz3             = _mm_add_ps(fjz3,tz);
2097             
2098             }
2099
2100             /**************************
2101              * CALCULATE INTERACTIONS *
2102              **************************/
2103
2104             if (gmx_mm_any_lt(rsq31,rcutoff2))
2105             {
2106
2107             r31              = _mm_mul_ps(rsq31,rinv31);
2108
2109             /* EWALD ELECTROSTATICS */
2110
2111             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2112             ewrt             = _mm_mul_ps(r31,ewtabscale);
2113             ewitab           = _mm_cvttps_epi32(ewrt);
2114             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2115             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2116                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2117                                          &ewtabF,&ewtabFn);
2118             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2119             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2120
2121             cutoff_mask      = _mm_cmplt_ps(rsq31,rcutoff2);
2122
2123             fscal            = felec;
2124
2125             fscal            = _mm_and_ps(fscal,cutoff_mask);
2126
2127             /* Calculate temporary vectorial force */
2128             tx               = _mm_mul_ps(fscal,dx31);
2129             ty               = _mm_mul_ps(fscal,dy31);
2130             tz               = _mm_mul_ps(fscal,dz31);
2131
2132             /* Update vectorial force */
2133             fix3             = _mm_add_ps(fix3,tx);
2134             fiy3             = _mm_add_ps(fiy3,ty);
2135             fiz3             = _mm_add_ps(fiz3,tz);
2136
2137             fjx1             = _mm_add_ps(fjx1,tx);
2138             fjy1             = _mm_add_ps(fjy1,ty);
2139             fjz1             = _mm_add_ps(fjz1,tz);
2140             
2141             }
2142
2143             /**************************
2144              * CALCULATE INTERACTIONS *
2145              **************************/
2146
2147             if (gmx_mm_any_lt(rsq32,rcutoff2))
2148             {
2149
2150             r32              = _mm_mul_ps(rsq32,rinv32);
2151
2152             /* EWALD ELECTROSTATICS */
2153
2154             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2155             ewrt             = _mm_mul_ps(r32,ewtabscale);
2156             ewitab           = _mm_cvttps_epi32(ewrt);
2157             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2158             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2159                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2160                                          &ewtabF,&ewtabFn);
2161             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2162             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2163
2164             cutoff_mask      = _mm_cmplt_ps(rsq32,rcutoff2);
2165
2166             fscal            = felec;
2167
2168             fscal            = _mm_and_ps(fscal,cutoff_mask);
2169
2170             /* Calculate temporary vectorial force */
2171             tx               = _mm_mul_ps(fscal,dx32);
2172             ty               = _mm_mul_ps(fscal,dy32);
2173             tz               = _mm_mul_ps(fscal,dz32);
2174
2175             /* Update vectorial force */
2176             fix3             = _mm_add_ps(fix3,tx);
2177             fiy3             = _mm_add_ps(fiy3,ty);
2178             fiz3             = _mm_add_ps(fiz3,tz);
2179
2180             fjx2             = _mm_add_ps(fjx2,tx);
2181             fjy2             = _mm_add_ps(fjy2,ty);
2182             fjz2             = _mm_add_ps(fjz2,tz);
2183             
2184             }
2185
2186             /**************************
2187              * CALCULATE INTERACTIONS *
2188              **************************/
2189
2190             if (gmx_mm_any_lt(rsq33,rcutoff2))
2191             {
2192
2193             r33              = _mm_mul_ps(rsq33,rinv33);
2194
2195             /* EWALD ELECTROSTATICS */
2196
2197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2198             ewrt             = _mm_mul_ps(r33,ewtabscale);
2199             ewitab           = _mm_cvttps_epi32(ewrt);
2200             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2201             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2202                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2203                                          &ewtabF,&ewtabFn);
2204             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2205             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2206
2207             cutoff_mask      = _mm_cmplt_ps(rsq33,rcutoff2);
2208
2209             fscal            = felec;
2210
2211             fscal            = _mm_and_ps(fscal,cutoff_mask);
2212
2213             /* Calculate temporary vectorial force */
2214             tx               = _mm_mul_ps(fscal,dx33);
2215             ty               = _mm_mul_ps(fscal,dy33);
2216             tz               = _mm_mul_ps(fscal,dz33);
2217
2218             /* Update vectorial force */
2219             fix3             = _mm_add_ps(fix3,tx);
2220             fiy3             = _mm_add_ps(fiy3,ty);
2221             fiz3             = _mm_add_ps(fiz3,tz);
2222
2223             fjx3             = _mm_add_ps(fjx3,tx);
2224             fjy3             = _mm_add_ps(fjy3,ty);
2225             fjz3             = _mm_add_ps(fjz3,tz);
2226             
2227             }
2228
2229             fjptrA             = f+j_coord_offsetA;
2230             fjptrB             = f+j_coord_offsetB;
2231             fjptrC             = f+j_coord_offsetC;
2232             fjptrD             = f+j_coord_offsetD;
2233
2234             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2235                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2236                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2237
2238             /* Inner loop uses 384 flops */
2239         }
2240
2241         if(jidx<j_index_end)
2242         {
2243
2244             /* Get j neighbor index, and coordinate index */
2245             jnrlistA         = jjnr[jidx];
2246             jnrlistB         = jjnr[jidx+1];
2247             jnrlistC         = jjnr[jidx+2];
2248             jnrlistD         = jjnr[jidx+3];
2249             /* Sign of each element will be negative for non-real atoms.
2250              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
2251              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
2252              */
2253             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
2254             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
2255             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
2256             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
2257             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
2258             j_coord_offsetA  = DIM*jnrA;
2259             j_coord_offsetB  = DIM*jnrB;
2260             j_coord_offsetC  = DIM*jnrC;
2261             j_coord_offsetD  = DIM*jnrD;
2262
2263             /* load j atom coordinates */
2264             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
2265                                               x+j_coord_offsetC,x+j_coord_offsetD,
2266                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
2267                                               &jy2,&jz2,&jx3,&jy3,&jz3);
2268
2269             /* Calculate displacement vector */
2270             dx00             = _mm_sub_ps(ix0,jx0);
2271             dy00             = _mm_sub_ps(iy0,jy0);
2272             dz00             = _mm_sub_ps(iz0,jz0);
2273             dx11             = _mm_sub_ps(ix1,jx1);
2274             dy11             = _mm_sub_ps(iy1,jy1);
2275             dz11             = _mm_sub_ps(iz1,jz1);
2276             dx12             = _mm_sub_ps(ix1,jx2);
2277             dy12             = _mm_sub_ps(iy1,jy2);
2278             dz12             = _mm_sub_ps(iz1,jz2);
2279             dx13             = _mm_sub_ps(ix1,jx3);
2280             dy13             = _mm_sub_ps(iy1,jy3);
2281             dz13             = _mm_sub_ps(iz1,jz3);
2282             dx21             = _mm_sub_ps(ix2,jx1);
2283             dy21             = _mm_sub_ps(iy2,jy1);
2284             dz21             = _mm_sub_ps(iz2,jz1);
2285             dx22             = _mm_sub_ps(ix2,jx2);
2286             dy22             = _mm_sub_ps(iy2,jy2);
2287             dz22             = _mm_sub_ps(iz2,jz2);
2288             dx23             = _mm_sub_ps(ix2,jx3);
2289             dy23             = _mm_sub_ps(iy2,jy3);
2290             dz23             = _mm_sub_ps(iz2,jz3);
2291             dx31             = _mm_sub_ps(ix3,jx1);
2292             dy31             = _mm_sub_ps(iy3,jy1);
2293             dz31             = _mm_sub_ps(iz3,jz1);
2294             dx32             = _mm_sub_ps(ix3,jx2);
2295             dy32             = _mm_sub_ps(iy3,jy2);
2296             dz32             = _mm_sub_ps(iz3,jz2);
2297             dx33             = _mm_sub_ps(ix3,jx3);
2298             dy33             = _mm_sub_ps(iy3,jy3);
2299             dz33             = _mm_sub_ps(iz3,jz3);
2300
2301             /* Calculate squared distance and things based on it */
2302             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
2303             rsq11            = gmx_mm_calc_rsq_ps(dx11,dy11,dz11);
2304             rsq12            = gmx_mm_calc_rsq_ps(dx12,dy12,dz12);
2305             rsq13            = gmx_mm_calc_rsq_ps(dx13,dy13,dz13);
2306             rsq21            = gmx_mm_calc_rsq_ps(dx21,dy21,dz21);
2307             rsq22            = gmx_mm_calc_rsq_ps(dx22,dy22,dz22);
2308             rsq23            = gmx_mm_calc_rsq_ps(dx23,dy23,dz23);
2309             rsq31            = gmx_mm_calc_rsq_ps(dx31,dy31,dz31);
2310             rsq32            = gmx_mm_calc_rsq_ps(dx32,dy32,dz32);
2311             rsq33            = gmx_mm_calc_rsq_ps(dx33,dy33,dz33);
2312
2313             rinv11           = gmx_mm_invsqrt_ps(rsq11);
2314             rinv12           = gmx_mm_invsqrt_ps(rsq12);
2315             rinv13           = gmx_mm_invsqrt_ps(rsq13);
2316             rinv21           = gmx_mm_invsqrt_ps(rsq21);
2317             rinv22           = gmx_mm_invsqrt_ps(rsq22);
2318             rinv23           = gmx_mm_invsqrt_ps(rsq23);
2319             rinv31           = gmx_mm_invsqrt_ps(rsq31);
2320             rinv32           = gmx_mm_invsqrt_ps(rsq32);
2321             rinv33           = gmx_mm_invsqrt_ps(rsq33);
2322
2323             rinvsq00         = gmx_mm_inv_ps(rsq00);
2324             rinvsq11         = _mm_mul_ps(rinv11,rinv11);
2325             rinvsq12         = _mm_mul_ps(rinv12,rinv12);
2326             rinvsq13         = _mm_mul_ps(rinv13,rinv13);
2327             rinvsq21         = _mm_mul_ps(rinv21,rinv21);
2328             rinvsq22         = _mm_mul_ps(rinv22,rinv22);
2329             rinvsq23         = _mm_mul_ps(rinv23,rinv23);
2330             rinvsq31         = _mm_mul_ps(rinv31,rinv31);
2331             rinvsq32         = _mm_mul_ps(rinv32,rinv32);
2332             rinvsq33         = _mm_mul_ps(rinv33,rinv33);
2333
2334             fjx0             = _mm_setzero_ps();
2335             fjy0             = _mm_setzero_ps();
2336             fjz0             = _mm_setzero_ps();
2337             fjx1             = _mm_setzero_ps();
2338             fjy1             = _mm_setzero_ps();
2339             fjz1             = _mm_setzero_ps();
2340             fjx2             = _mm_setzero_ps();
2341             fjy2             = _mm_setzero_ps();
2342             fjz2             = _mm_setzero_ps();
2343             fjx3             = _mm_setzero_ps();
2344             fjy3             = _mm_setzero_ps();
2345             fjz3             = _mm_setzero_ps();
2346
2347             /**************************
2348              * CALCULATE INTERACTIONS *
2349              **************************/
2350
2351             if (gmx_mm_any_lt(rsq00,rcutoff2))
2352             {
2353
2354             /* LENNARD-JONES DISPERSION/REPULSION */
2355
2356             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
2357             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
2358
2359             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
2360
2361             fscal            = fvdw;
2362
2363             fscal            = _mm_and_ps(fscal,cutoff_mask);
2364
2365             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2366
2367             /* Calculate temporary vectorial force */
2368             tx               = _mm_mul_ps(fscal,dx00);
2369             ty               = _mm_mul_ps(fscal,dy00);
2370             tz               = _mm_mul_ps(fscal,dz00);
2371
2372             /* Update vectorial force */
2373             fix0             = _mm_add_ps(fix0,tx);
2374             fiy0             = _mm_add_ps(fiy0,ty);
2375             fiz0             = _mm_add_ps(fiz0,tz);
2376
2377             fjx0             = _mm_add_ps(fjx0,tx);
2378             fjy0             = _mm_add_ps(fjy0,ty);
2379             fjz0             = _mm_add_ps(fjz0,tz);
2380             
2381             }
2382
2383             /**************************
2384              * CALCULATE INTERACTIONS *
2385              **************************/
2386
2387             if (gmx_mm_any_lt(rsq11,rcutoff2))
2388             {
2389
2390             r11              = _mm_mul_ps(rsq11,rinv11);
2391             r11              = _mm_andnot_ps(dummy_mask,r11);
2392
2393             /* EWALD ELECTROSTATICS */
2394
2395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2396             ewrt             = _mm_mul_ps(r11,ewtabscale);
2397             ewitab           = _mm_cvttps_epi32(ewrt);
2398             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2399             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2400                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2401                                          &ewtabF,&ewtabFn);
2402             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2403             felec            = _mm_mul_ps(_mm_mul_ps(qq11,rinv11),_mm_sub_ps(rinvsq11,felec));
2404
2405             cutoff_mask      = _mm_cmplt_ps(rsq11,rcutoff2);
2406
2407             fscal            = felec;
2408
2409             fscal            = _mm_and_ps(fscal,cutoff_mask);
2410
2411             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2412
2413             /* Calculate temporary vectorial force */
2414             tx               = _mm_mul_ps(fscal,dx11);
2415             ty               = _mm_mul_ps(fscal,dy11);
2416             tz               = _mm_mul_ps(fscal,dz11);
2417
2418             /* Update vectorial force */
2419             fix1             = _mm_add_ps(fix1,tx);
2420             fiy1             = _mm_add_ps(fiy1,ty);
2421             fiz1             = _mm_add_ps(fiz1,tz);
2422
2423             fjx1             = _mm_add_ps(fjx1,tx);
2424             fjy1             = _mm_add_ps(fjy1,ty);
2425             fjz1             = _mm_add_ps(fjz1,tz);
2426             
2427             }
2428
2429             /**************************
2430              * CALCULATE INTERACTIONS *
2431              **************************/
2432
2433             if (gmx_mm_any_lt(rsq12,rcutoff2))
2434             {
2435
2436             r12              = _mm_mul_ps(rsq12,rinv12);
2437             r12              = _mm_andnot_ps(dummy_mask,r12);
2438
2439             /* EWALD ELECTROSTATICS */
2440
2441             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2442             ewrt             = _mm_mul_ps(r12,ewtabscale);
2443             ewitab           = _mm_cvttps_epi32(ewrt);
2444             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2445             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2446                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2447                                          &ewtabF,&ewtabFn);
2448             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2449             felec            = _mm_mul_ps(_mm_mul_ps(qq12,rinv12),_mm_sub_ps(rinvsq12,felec));
2450
2451             cutoff_mask      = _mm_cmplt_ps(rsq12,rcutoff2);
2452
2453             fscal            = felec;
2454
2455             fscal            = _mm_and_ps(fscal,cutoff_mask);
2456
2457             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2458
2459             /* Calculate temporary vectorial force */
2460             tx               = _mm_mul_ps(fscal,dx12);
2461             ty               = _mm_mul_ps(fscal,dy12);
2462             tz               = _mm_mul_ps(fscal,dz12);
2463
2464             /* Update vectorial force */
2465             fix1             = _mm_add_ps(fix1,tx);
2466             fiy1             = _mm_add_ps(fiy1,ty);
2467             fiz1             = _mm_add_ps(fiz1,tz);
2468
2469             fjx2             = _mm_add_ps(fjx2,tx);
2470             fjy2             = _mm_add_ps(fjy2,ty);
2471             fjz2             = _mm_add_ps(fjz2,tz);
2472             
2473             }
2474
2475             /**************************
2476              * CALCULATE INTERACTIONS *
2477              **************************/
2478
2479             if (gmx_mm_any_lt(rsq13,rcutoff2))
2480             {
2481
2482             r13              = _mm_mul_ps(rsq13,rinv13);
2483             r13              = _mm_andnot_ps(dummy_mask,r13);
2484
2485             /* EWALD ELECTROSTATICS */
2486
2487             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2488             ewrt             = _mm_mul_ps(r13,ewtabscale);
2489             ewitab           = _mm_cvttps_epi32(ewrt);
2490             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2491             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2492                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2493                                          &ewtabF,&ewtabFn);
2494             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2495             felec            = _mm_mul_ps(_mm_mul_ps(qq13,rinv13),_mm_sub_ps(rinvsq13,felec));
2496
2497             cutoff_mask      = _mm_cmplt_ps(rsq13,rcutoff2);
2498
2499             fscal            = felec;
2500
2501             fscal            = _mm_and_ps(fscal,cutoff_mask);
2502
2503             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2504
2505             /* Calculate temporary vectorial force */
2506             tx               = _mm_mul_ps(fscal,dx13);
2507             ty               = _mm_mul_ps(fscal,dy13);
2508             tz               = _mm_mul_ps(fscal,dz13);
2509
2510             /* Update vectorial force */
2511             fix1             = _mm_add_ps(fix1,tx);
2512             fiy1             = _mm_add_ps(fiy1,ty);
2513             fiz1             = _mm_add_ps(fiz1,tz);
2514
2515             fjx3             = _mm_add_ps(fjx3,tx);
2516             fjy3             = _mm_add_ps(fjy3,ty);
2517             fjz3             = _mm_add_ps(fjz3,tz);
2518             
2519             }
2520
2521             /**************************
2522              * CALCULATE INTERACTIONS *
2523              **************************/
2524
2525             if (gmx_mm_any_lt(rsq21,rcutoff2))
2526             {
2527
2528             r21              = _mm_mul_ps(rsq21,rinv21);
2529             r21              = _mm_andnot_ps(dummy_mask,r21);
2530
2531             /* EWALD ELECTROSTATICS */
2532
2533             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2534             ewrt             = _mm_mul_ps(r21,ewtabscale);
2535             ewitab           = _mm_cvttps_epi32(ewrt);
2536             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2537             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2538                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2539                                          &ewtabF,&ewtabFn);
2540             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2541             felec            = _mm_mul_ps(_mm_mul_ps(qq21,rinv21),_mm_sub_ps(rinvsq21,felec));
2542
2543             cutoff_mask      = _mm_cmplt_ps(rsq21,rcutoff2);
2544
2545             fscal            = felec;
2546
2547             fscal            = _mm_and_ps(fscal,cutoff_mask);
2548
2549             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2550
2551             /* Calculate temporary vectorial force */
2552             tx               = _mm_mul_ps(fscal,dx21);
2553             ty               = _mm_mul_ps(fscal,dy21);
2554             tz               = _mm_mul_ps(fscal,dz21);
2555
2556             /* Update vectorial force */
2557             fix2             = _mm_add_ps(fix2,tx);
2558             fiy2             = _mm_add_ps(fiy2,ty);
2559             fiz2             = _mm_add_ps(fiz2,tz);
2560
2561             fjx1             = _mm_add_ps(fjx1,tx);
2562             fjy1             = _mm_add_ps(fjy1,ty);
2563             fjz1             = _mm_add_ps(fjz1,tz);
2564             
2565             }
2566
2567             /**************************
2568              * CALCULATE INTERACTIONS *
2569              **************************/
2570
2571             if (gmx_mm_any_lt(rsq22,rcutoff2))
2572             {
2573
2574             r22              = _mm_mul_ps(rsq22,rinv22);
2575             r22              = _mm_andnot_ps(dummy_mask,r22);
2576
2577             /* EWALD ELECTROSTATICS */
2578
2579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2580             ewrt             = _mm_mul_ps(r22,ewtabscale);
2581             ewitab           = _mm_cvttps_epi32(ewrt);
2582             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2583             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2584                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2585                                          &ewtabF,&ewtabFn);
2586             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2587             felec            = _mm_mul_ps(_mm_mul_ps(qq22,rinv22),_mm_sub_ps(rinvsq22,felec));
2588
2589             cutoff_mask      = _mm_cmplt_ps(rsq22,rcutoff2);
2590
2591             fscal            = felec;
2592
2593             fscal            = _mm_and_ps(fscal,cutoff_mask);
2594
2595             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2596
2597             /* Calculate temporary vectorial force */
2598             tx               = _mm_mul_ps(fscal,dx22);
2599             ty               = _mm_mul_ps(fscal,dy22);
2600             tz               = _mm_mul_ps(fscal,dz22);
2601
2602             /* Update vectorial force */
2603             fix2             = _mm_add_ps(fix2,tx);
2604             fiy2             = _mm_add_ps(fiy2,ty);
2605             fiz2             = _mm_add_ps(fiz2,tz);
2606
2607             fjx2             = _mm_add_ps(fjx2,tx);
2608             fjy2             = _mm_add_ps(fjy2,ty);
2609             fjz2             = _mm_add_ps(fjz2,tz);
2610             
2611             }
2612
2613             /**************************
2614              * CALCULATE INTERACTIONS *
2615              **************************/
2616
2617             if (gmx_mm_any_lt(rsq23,rcutoff2))
2618             {
2619
2620             r23              = _mm_mul_ps(rsq23,rinv23);
2621             r23              = _mm_andnot_ps(dummy_mask,r23);
2622
2623             /* EWALD ELECTROSTATICS */
2624
2625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2626             ewrt             = _mm_mul_ps(r23,ewtabscale);
2627             ewitab           = _mm_cvttps_epi32(ewrt);
2628             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2629             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2630                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2631                                          &ewtabF,&ewtabFn);
2632             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2633             felec            = _mm_mul_ps(_mm_mul_ps(qq23,rinv23),_mm_sub_ps(rinvsq23,felec));
2634
2635             cutoff_mask      = _mm_cmplt_ps(rsq23,rcutoff2);
2636
2637             fscal            = felec;
2638
2639             fscal            = _mm_and_ps(fscal,cutoff_mask);
2640
2641             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2642
2643             /* Calculate temporary vectorial force */
2644             tx               = _mm_mul_ps(fscal,dx23);
2645             ty               = _mm_mul_ps(fscal,dy23);
2646             tz               = _mm_mul_ps(fscal,dz23);
2647
2648             /* Update vectorial force */
2649             fix2             = _mm_add_ps(fix2,tx);
2650             fiy2             = _mm_add_ps(fiy2,ty);
2651             fiz2             = _mm_add_ps(fiz2,tz);
2652
2653             fjx3             = _mm_add_ps(fjx3,tx);
2654             fjy3             = _mm_add_ps(fjy3,ty);
2655             fjz3             = _mm_add_ps(fjz3,tz);
2656             
2657             }
2658
2659             /**************************
2660              * CALCULATE INTERACTIONS *
2661              **************************/
2662
2663             if (gmx_mm_any_lt(rsq31,rcutoff2))
2664             {
2665
2666             r31              = _mm_mul_ps(rsq31,rinv31);
2667             r31              = _mm_andnot_ps(dummy_mask,r31);
2668
2669             /* EWALD ELECTROSTATICS */
2670
2671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2672             ewrt             = _mm_mul_ps(r31,ewtabscale);
2673             ewitab           = _mm_cvttps_epi32(ewrt);
2674             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2675             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2676                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2677                                          &ewtabF,&ewtabFn);
2678             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2679             felec            = _mm_mul_ps(_mm_mul_ps(qq31,rinv31),_mm_sub_ps(rinvsq31,felec));
2680
2681             cutoff_mask      = _mm_cmplt_ps(rsq31,rcutoff2);
2682
2683             fscal            = felec;
2684
2685             fscal            = _mm_and_ps(fscal,cutoff_mask);
2686
2687             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2688
2689             /* Calculate temporary vectorial force */
2690             tx               = _mm_mul_ps(fscal,dx31);
2691             ty               = _mm_mul_ps(fscal,dy31);
2692             tz               = _mm_mul_ps(fscal,dz31);
2693
2694             /* Update vectorial force */
2695             fix3             = _mm_add_ps(fix3,tx);
2696             fiy3             = _mm_add_ps(fiy3,ty);
2697             fiz3             = _mm_add_ps(fiz3,tz);
2698
2699             fjx1             = _mm_add_ps(fjx1,tx);
2700             fjy1             = _mm_add_ps(fjy1,ty);
2701             fjz1             = _mm_add_ps(fjz1,tz);
2702             
2703             }
2704
2705             /**************************
2706              * CALCULATE INTERACTIONS *
2707              **************************/
2708
2709             if (gmx_mm_any_lt(rsq32,rcutoff2))
2710             {
2711
2712             r32              = _mm_mul_ps(rsq32,rinv32);
2713             r32              = _mm_andnot_ps(dummy_mask,r32);
2714
2715             /* EWALD ELECTROSTATICS */
2716
2717             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2718             ewrt             = _mm_mul_ps(r32,ewtabscale);
2719             ewitab           = _mm_cvttps_epi32(ewrt);
2720             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2721             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2722                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2723                                          &ewtabF,&ewtabFn);
2724             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2725             felec            = _mm_mul_ps(_mm_mul_ps(qq32,rinv32),_mm_sub_ps(rinvsq32,felec));
2726
2727             cutoff_mask      = _mm_cmplt_ps(rsq32,rcutoff2);
2728
2729             fscal            = felec;
2730
2731             fscal            = _mm_and_ps(fscal,cutoff_mask);
2732
2733             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2734
2735             /* Calculate temporary vectorial force */
2736             tx               = _mm_mul_ps(fscal,dx32);
2737             ty               = _mm_mul_ps(fscal,dy32);
2738             tz               = _mm_mul_ps(fscal,dz32);
2739
2740             /* Update vectorial force */
2741             fix3             = _mm_add_ps(fix3,tx);
2742             fiy3             = _mm_add_ps(fiy3,ty);
2743             fiz3             = _mm_add_ps(fiz3,tz);
2744
2745             fjx2             = _mm_add_ps(fjx2,tx);
2746             fjy2             = _mm_add_ps(fjy2,ty);
2747             fjz2             = _mm_add_ps(fjz2,tz);
2748             
2749             }
2750
2751             /**************************
2752              * CALCULATE INTERACTIONS *
2753              **************************/
2754
2755             if (gmx_mm_any_lt(rsq33,rcutoff2))
2756             {
2757
2758             r33              = _mm_mul_ps(rsq33,rinv33);
2759             r33              = _mm_andnot_ps(dummy_mask,r33);
2760
2761             /* EWALD ELECTROSTATICS */
2762
2763             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2764             ewrt             = _mm_mul_ps(r33,ewtabscale);
2765             ewitab           = _mm_cvttps_epi32(ewrt);
2766             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
2767             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
2768                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
2769                                          &ewtabF,&ewtabFn);
2770             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
2771             felec            = _mm_mul_ps(_mm_mul_ps(qq33,rinv33),_mm_sub_ps(rinvsq33,felec));
2772
2773             cutoff_mask      = _mm_cmplt_ps(rsq33,rcutoff2);
2774
2775             fscal            = felec;
2776
2777             fscal            = _mm_and_ps(fscal,cutoff_mask);
2778
2779             fscal            = _mm_andnot_ps(dummy_mask,fscal);
2780
2781             /* Calculate temporary vectorial force */
2782             tx               = _mm_mul_ps(fscal,dx33);
2783             ty               = _mm_mul_ps(fscal,dy33);
2784             tz               = _mm_mul_ps(fscal,dz33);
2785
2786             /* Update vectorial force */
2787             fix3             = _mm_add_ps(fix3,tx);
2788             fiy3             = _mm_add_ps(fiy3,ty);
2789             fiz3             = _mm_add_ps(fiz3,tz);
2790
2791             fjx3             = _mm_add_ps(fjx3,tx);
2792             fjy3             = _mm_add_ps(fjy3,ty);
2793             fjz3             = _mm_add_ps(fjz3,tz);
2794             
2795             }
2796
2797             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2798             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2799             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2800             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2801
2802             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
2803                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
2804                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2805
2806             /* Inner loop uses 393 flops */
2807         }
2808
2809         /* End of innermost loop */
2810
2811         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2812                                               f+i_coord_offset,fshift+i_shift_offset);
2813
2814         /* Increment number of inner iterations */
2815         inneriter                  += j_index_end - j_index_start;
2816
2817         /* Outer loop uses 24 flops */
2818     }
2819
2820     /* Increment number of outer iterations */
2821     outeriter        += nri;
2822
2823     /* Update outer/inner flops */
2824
2825     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*393);
2826 }