Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwioffset3;
73     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
75     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
78     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
79     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          ewitab;
89     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
90     real             *ewtab;
91     __m128           dummy_mask,cutoff_mask;
92     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
93     __m128           one     = _mm_set1_ps(1.0);
94     __m128           two     = _mm_set1_ps(2.0);
95     x                = xx[0];
96     f                = ff[0];
97
98     nri              = nlist->nri;
99     iinr             = nlist->iinr;
100     jindex           = nlist->jindex;
101     jjnr             = nlist->jjnr;
102     shiftidx         = nlist->shift;
103     gid              = nlist->gid;
104     shiftvec         = fr->shift_vec[0];
105     fshift           = fr->fshift[0];
106     facel            = _mm_set1_ps(fr->epsfac);
107     charge           = mdatoms->chargeA;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
122     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
130     rvdw             = _mm_set1_ps(fr->rvdw);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147         shX              = shiftvec[i_shift_offset+XX];
148         shY              = shiftvec[i_shift_offset+YY];
149         shZ              = shiftvec[i_shift_offset+ZZ];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
161         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
162         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
163         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
164         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
165         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
166         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
167         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
168         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
169         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
170         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
171         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182         fix3             = _mm_setzero_ps();
183         fiy3             = _mm_setzero_ps();
184         fiz3             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               x+j_coord_offsetC,x+j_coord_offsetD,
208                                               &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm_sub_ps(ix0,jx0);
212             dy00             = _mm_sub_ps(iy0,jy0);
213             dz00             = _mm_sub_ps(iz0,jz0);
214             dx10             = _mm_sub_ps(ix1,jx0);
215             dy10             = _mm_sub_ps(iy1,jy0);
216             dz10             = _mm_sub_ps(iz1,jz0);
217             dx20             = _mm_sub_ps(ix2,jx0);
218             dy20             = _mm_sub_ps(iy2,jy0);
219             dz20             = _mm_sub_ps(iz2,jz0);
220             dx30             = _mm_sub_ps(ix3,jx0);
221             dy30             = _mm_sub_ps(iy3,jy0);
222             dz30             = _mm_sub_ps(iz3,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
229
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232             rinv30           = gmx_mm_invsqrt_ps(rsq30);
233
234             rinvsq00         = gmx_mm_inv_ps(rsq00);
235             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
236             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
237             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
241                                                               charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm_any_lt(rsq00,rcutoff2))
252             {
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,
257                                          vdwparam+vdwioffset0+vdwjidx0C,
258                                          vdwparam+vdwioffset0+vdwjidx0D,
259                                          &c6_00,&c12_00);
260
261             /* LENNARD-JONES DISPERSION/REPULSION */
262
263             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
264             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
265             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
266             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
267                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
268             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
269
270             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
274             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             fscal            = _mm_and_ps(fscal,cutoff_mask);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_ps(fscal,dx00);
282             ty               = _mm_mul_ps(fscal,dy00);
283             tz               = _mm_mul_ps(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm_add_ps(fix0,tx);
287             fiy0             = _mm_add_ps(fiy0,ty);
288             fiz0             = _mm_add_ps(fiz0,tz);
289
290             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
291                                                    f+j_coord_offsetC,f+j_coord_offsetD,
292                                                    tx,ty,tz);
293
294             }
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq10,rcutoff2))
301             {
302
303             r10              = _mm_mul_ps(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_ps(iq1,jq0);
307
308             /* EWALD ELECTROSTATICS */
309
310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
311             ewrt             = _mm_mul_ps(r10,ewtabscale);
312             ewitab           = _mm_cvttps_epi32(ewrt);
313             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
314             ewitab           = _mm_slli_epi32(ewitab,2);
315             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
316             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
317             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
318             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
319             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
320             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
321             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
322             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
323             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
324
325             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velec            = _mm_and_ps(velec,cutoff_mask);
329             velecsum         = _mm_add_ps(velecsum,velec);
330
331             fscal            = felec;
332
333             fscal            = _mm_and_ps(fscal,cutoff_mask);
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm_mul_ps(fscal,dx10);
337             ty               = _mm_mul_ps(fscal,dy10);
338             tz               = _mm_mul_ps(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm_add_ps(fix1,tx);
342             fiy1             = _mm_add_ps(fiy1,ty);
343             fiz1             = _mm_add_ps(fiz1,tz);
344
345             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
346                                                    f+j_coord_offsetC,f+j_coord_offsetD,
347                                                    tx,ty,tz);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq20,rcutoff2))
356             {
357
358             r20              = _mm_mul_ps(rsq20,rinv20);
359
360             /* Compute parameters for interactions between i and j atoms */
361             qq20             = _mm_mul_ps(iq2,jq0);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _mm_mul_ps(r20,ewtabscale);
367             ewitab           = _mm_cvttps_epi32(ewrt);
368             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
372             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
373             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
374             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
375             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
376             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
377             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
378             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
379
380             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm_and_ps(velec,cutoff_mask);
384             velecsum         = _mm_add_ps(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm_and_ps(fscal,cutoff_mask);
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm_mul_ps(fscal,dx20);
392             ty               = _mm_mul_ps(fscal,dy20);
393             tz               = _mm_mul_ps(fscal,dz20);
394
395             /* Update vectorial force */
396             fix2             = _mm_add_ps(fix2,tx);
397             fiy2             = _mm_add_ps(fiy2,ty);
398             fiz2             = _mm_add_ps(fiz2,tz);
399
400             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
401                                                    f+j_coord_offsetC,f+j_coord_offsetD,
402                                                    tx,ty,tz);
403
404             }
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             if (gmx_mm_any_lt(rsq30,rcutoff2))
411             {
412
413             r30              = _mm_mul_ps(rsq30,rinv30);
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq30             = _mm_mul_ps(iq3,jq0);
417
418             /* EWALD ELECTROSTATICS */
419
420             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
421             ewrt             = _mm_mul_ps(r30,ewtabscale);
422             ewitab           = _mm_cvttps_epi32(ewrt);
423             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
424             ewitab           = _mm_slli_epi32(ewitab,2);
425             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
426             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
427             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
428             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
429             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
430             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
431             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
432             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
433             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
434
435             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
436
437             /* Update potential sum for this i atom from the interaction with this j atom. */
438             velec            = _mm_and_ps(velec,cutoff_mask);
439             velecsum         = _mm_add_ps(velecsum,velec);
440
441             fscal            = felec;
442
443             fscal            = _mm_and_ps(fscal,cutoff_mask);
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm_mul_ps(fscal,dx30);
447             ty               = _mm_mul_ps(fscal,dy30);
448             tz               = _mm_mul_ps(fscal,dz30);
449
450             /* Update vectorial force */
451             fix3             = _mm_add_ps(fix3,tx);
452             fiy3             = _mm_add_ps(fiy3,ty);
453             fiz3             = _mm_add_ps(fiz3,tz);
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
456                                                    f+j_coord_offsetC,f+j_coord_offsetD,
457                                                    tx,ty,tz);
458
459             }
460
461             /* Inner loop uses 179 flops */
462         }
463
464         if(jidx<j_index_end)
465         {
466
467             /* Get j neighbor index, and coordinate index */
468             jnrA             = jjnr[jidx];
469             jnrB             = jjnr[jidx+1];
470             jnrC             = jjnr[jidx+2];
471             jnrD             = jjnr[jidx+3];
472
473             /* Sign of each element will be negative for non-real atoms.
474              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
475              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
476              */
477             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
478             jnrA       = (jnrA>=0) ? jnrA : 0;
479             jnrB       = (jnrB>=0) ? jnrB : 0;
480             jnrC       = (jnrC>=0) ? jnrC : 0;
481             jnrD       = (jnrD>=0) ? jnrD : 0;
482
483             j_coord_offsetA  = DIM*jnrA;
484             j_coord_offsetB  = DIM*jnrB;
485             j_coord_offsetC  = DIM*jnrC;
486             j_coord_offsetD  = DIM*jnrD;
487
488             /* load j atom coordinates */
489             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
490                                               x+j_coord_offsetC,x+j_coord_offsetD,
491                                               &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm_sub_ps(ix0,jx0);
495             dy00             = _mm_sub_ps(iy0,jy0);
496             dz00             = _mm_sub_ps(iz0,jz0);
497             dx10             = _mm_sub_ps(ix1,jx0);
498             dy10             = _mm_sub_ps(iy1,jy0);
499             dz10             = _mm_sub_ps(iz1,jz0);
500             dx20             = _mm_sub_ps(ix2,jx0);
501             dy20             = _mm_sub_ps(iy2,jy0);
502             dz20             = _mm_sub_ps(iz2,jz0);
503             dx30             = _mm_sub_ps(ix3,jx0);
504             dy30             = _mm_sub_ps(iy3,jy0);
505             dz30             = _mm_sub_ps(iz3,jz0);
506
507             /* Calculate squared distance and things based on it */
508             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
509             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
510             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
511             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
512
513             rinv10           = gmx_mm_invsqrt_ps(rsq10);
514             rinv20           = gmx_mm_invsqrt_ps(rsq20);
515             rinv30           = gmx_mm_invsqrt_ps(rsq30);
516
517             rinvsq00         = gmx_mm_inv_ps(rsq00);
518             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
519             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
520             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
521
522             /* Load parameters for j particles */
523             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
524                                                               charge+jnrC+0,charge+jnrD+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527             vdwjidx0C        = 2*vdwtype[jnrC+0];
528             vdwjidx0D        = 2*vdwtype[jnrD+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq00,rcutoff2))
535             {
536
537             /* Compute parameters for interactions between i and j atoms */
538             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,
540                                          vdwparam+vdwioffset0+vdwjidx0C,
541                                          vdwparam+vdwioffset0+vdwjidx0D,
542                                          &c6_00,&c12_00);
543
544             /* LENNARD-JONES DISPERSION/REPULSION */
545
546             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
547             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
548             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
549             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
550                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
551             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
552
553             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
557             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
558             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
559
560             fscal            = fvdw;
561
562             fscal            = _mm_and_ps(fscal,cutoff_mask);
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_ps(fscal,dx00);
568             ty               = _mm_mul_ps(fscal,dy00);
569             tz               = _mm_mul_ps(fscal,dz00);
570
571             /* Update vectorial force */
572             fix0             = _mm_add_ps(fix0,tx);
573             fiy0             = _mm_add_ps(fiy0,ty);
574             fiz0             = _mm_add_ps(fiz0,tz);
575
576             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
577                                                    f+j_coord_offsetC,f+j_coord_offsetD,
578                                                    tx,ty,tz);
579
580             }
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (gmx_mm_any_lt(rsq10,rcutoff2))
587             {
588
589             r10              = _mm_mul_ps(rsq10,rinv10);
590             r10              = _mm_andnot_ps(dummy_mask,r10);
591
592             /* Compute parameters for interactions between i and j atoms */
593             qq10             = _mm_mul_ps(iq1,jq0);
594
595             /* EWALD ELECTROSTATICS */
596
597             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
598             ewrt             = _mm_mul_ps(r10,ewtabscale);
599             ewitab           = _mm_cvttps_epi32(ewrt);
600             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
601             ewitab           = _mm_slli_epi32(ewitab,2);
602             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
603             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
604             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
605             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
606             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
607             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
608             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
609             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
610             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
611
612             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             velec            = _mm_and_ps(velec,cutoff_mask);
616             velec            = _mm_andnot_ps(dummy_mask,velec);
617             velecsum         = _mm_add_ps(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm_and_ps(fscal,cutoff_mask);
622
623             fscal            = _mm_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_ps(fscal,dx10);
627             ty               = _mm_mul_ps(fscal,dy10);
628             tz               = _mm_mul_ps(fscal,dz10);
629
630             /* Update vectorial force */
631             fix1             = _mm_add_ps(fix1,tx);
632             fiy1             = _mm_add_ps(fiy1,ty);
633             fiz1             = _mm_add_ps(fiz1,tz);
634
635             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
636                                                    f+j_coord_offsetC,f+j_coord_offsetD,
637                                                    tx,ty,tz);
638
639             }
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm_any_lt(rsq20,rcutoff2))
646             {
647
648             r20              = _mm_mul_ps(rsq20,rinv20);
649             r20              = _mm_andnot_ps(dummy_mask,r20);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq20             = _mm_mul_ps(iq2,jq0);
653
654             /* EWALD ELECTROSTATICS */
655
656             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
657             ewrt             = _mm_mul_ps(r20,ewtabscale);
658             ewitab           = _mm_cvttps_epi32(ewrt);
659             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
663             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
664             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
665             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
666             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
667             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
668             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
669             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
670
671             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
672
673             /* Update potential sum for this i atom from the interaction with this j atom. */
674             velec            = _mm_and_ps(velec,cutoff_mask);
675             velec            = _mm_andnot_ps(dummy_mask,velec);
676             velecsum         = _mm_add_ps(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm_and_ps(fscal,cutoff_mask);
681
682             fscal            = _mm_andnot_ps(dummy_mask,fscal);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_ps(fscal,dx20);
686             ty               = _mm_mul_ps(fscal,dy20);
687             tz               = _mm_mul_ps(fscal,dz20);
688
689             /* Update vectorial force */
690             fix2             = _mm_add_ps(fix2,tx);
691             fiy2             = _mm_add_ps(fiy2,ty);
692             fiz2             = _mm_add_ps(fiz2,tz);
693
694             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
695                                                    f+j_coord_offsetC,f+j_coord_offsetD,
696                                                    tx,ty,tz);
697
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm_any_lt(rsq30,rcutoff2))
705             {
706
707             r30              = _mm_mul_ps(rsq30,rinv30);
708             r30              = _mm_andnot_ps(dummy_mask,r30);
709
710             /* Compute parameters for interactions between i and j atoms */
711             qq30             = _mm_mul_ps(iq3,jq0);
712
713             /* EWALD ELECTROSTATICS */
714
715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
716             ewrt             = _mm_mul_ps(r30,ewtabscale);
717             ewitab           = _mm_cvttps_epi32(ewrt);
718             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
719             ewitab           = _mm_slli_epi32(ewitab,2);
720             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
721             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
722             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
723             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
724             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
725             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
726             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
727             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
728             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
729
730             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
731
732             /* Update potential sum for this i atom from the interaction with this j atom. */
733             velec            = _mm_and_ps(velec,cutoff_mask);
734             velec            = _mm_andnot_ps(dummy_mask,velec);
735             velecsum         = _mm_add_ps(velecsum,velec);
736
737             fscal            = felec;
738
739             fscal            = _mm_and_ps(fscal,cutoff_mask);
740
741             fscal            = _mm_andnot_ps(dummy_mask,fscal);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm_mul_ps(fscal,dx30);
745             ty               = _mm_mul_ps(fscal,dy30);
746             tz               = _mm_mul_ps(fscal,dz30);
747
748             /* Update vectorial force */
749             fix3             = _mm_add_ps(fix3,tx);
750             fiy3             = _mm_add_ps(fiy3,ty);
751             fiz3             = _mm_add_ps(fiz3,tz);
752
753             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
754                                                    f+j_coord_offsetC,f+j_coord_offsetD,
755                                                    tx,ty,tz);
756
757             }
758
759             /* Inner loop uses 182 flops */
760         }
761
762         /* End of innermost loop */
763
764         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
765                                               f+i_coord_offset,fshift+i_shift_offset);
766
767         ggid                        = gid[iidx];
768         /* Update potential energies */
769         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
770         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
771
772         /* Increment number of inner iterations */
773         inneriter                  += j_index_end - j_index_start;
774
775         /* Outer loop uses 38 flops */
776     }
777
778     /* Increment number of outer iterations */
779     outeriter        += nri;
780
781     /* Update outer/inner flops */
782
783     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*38 + inneriter*182);
784 }
785 /*
786  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_single
787  * Electrostatics interaction: Ewald
788  * VdW interaction:            LennardJones
789  * Geometry:                   Water4-Particle
790  * Calculate force/pot:        Force
791  */
792 void
793 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_sse2_single
794                     (t_nblist * gmx_restrict                nlist,
795                      rvec * gmx_restrict                    xx,
796                      rvec * gmx_restrict                    ff,
797                      t_forcerec * gmx_restrict              fr,
798                      t_mdatoms * gmx_restrict               mdatoms,
799                      nb_kernel_data_t * gmx_restrict        kernel_data,
800                      t_nrnb * gmx_restrict                  nrnb)
801 {
802     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
803      * just 0 for non-waters.
804      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
805      * jnr indices corresponding to data put in the four positions in the SIMD register.
806      */
807     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
808     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
809     int              jnrA,jnrB,jnrC,jnrD;
810     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
811     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
812     real             shX,shY,shZ,rcutoff_scalar;
813     real             *shiftvec,*fshift,*x,*f;
814     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
815     int              vdwioffset0;
816     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
817     int              vdwioffset1;
818     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
819     int              vdwioffset2;
820     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
821     int              vdwioffset3;
822     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
823     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
824     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
825     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
826     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
827     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
828     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
829     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
830     real             *charge;
831     int              nvdwtype;
832     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
833     int              *vdwtype;
834     real             *vdwparam;
835     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
836     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
837     __m128i          ewitab;
838     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
839     real             *ewtab;
840     __m128           dummy_mask,cutoff_mask;
841     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
842     __m128           one     = _mm_set1_ps(1.0);
843     __m128           two     = _mm_set1_ps(2.0);
844     x                = xx[0];
845     f                = ff[0];
846
847     nri              = nlist->nri;
848     iinr             = nlist->iinr;
849     jindex           = nlist->jindex;
850     jjnr             = nlist->jjnr;
851     shiftidx         = nlist->shift;
852     gid              = nlist->gid;
853     shiftvec         = fr->shift_vec[0];
854     fshift           = fr->fshift[0];
855     facel            = _mm_set1_ps(fr->epsfac);
856     charge           = mdatoms->chargeA;
857     nvdwtype         = fr->ntype;
858     vdwparam         = fr->nbfp;
859     vdwtype          = mdatoms->typeA;
860
861     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
862     ewtab            = fr->ic->tabq_coul_F;
863     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
864     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
865
866     /* Setup water-specific parameters */
867     inr              = nlist->iinr[0];
868     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
869     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
870     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
871     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
872
873     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
874     rcutoff_scalar   = fr->rcoulomb;
875     rcutoff          = _mm_set1_ps(rcutoff_scalar);
876     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
877
878     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
879     rvdw             = _mm_set1_ps(fr->rvdw);
880
881     /* Avoid stupid compiler warnings */
882     jnrA = jnrB = jnrC = jnrD = 0;
883     j_coord_offsetA = 0;
884     j_coord_offsetB = 0;
885     j_coord_offsetC = 0;
886     j_coord_offsetD = 0;
887
888     outeriter        = 0;
889     inneriter        = 0;
890
891     /* Start outer loop over neighborlists */
892     for(iidx=0; iidx<nri; iidx++)
893     {
894         /* Load shift vector for this list */
895         i_shift_offset   = DIM*shiftidx[iidx];
896         shX              = shiftvec[i_shift_offset+XX];
897         shY              = shiftvec[i_shift_offset+YY];
898         shZ              = shiftvec[i_shift_offset+ZZ];
899
900         /* Load limits for loop over neighbors */
901         j_index_start    = jindex[iidx];
902         j_index_end      = jindex[iidx+1];
903
904         /* Get outer coordinate index */
905         inr              = iinr[iidx];
906         i_coord_offset   = DIM*inr;
907
908         /* Load i particle coords and add shift vector */
909         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
910         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
911         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
912         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
913         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
914         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
915         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
916         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
917         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
918         ix3              = _mm_set1_ps(shX + x[i_coord_offset+DIM*3+XX]);
919         iy3              = _mm_set1_ps(shY + x[i_coord_offset+DIM*3+YY]);
920         iz3              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*3+ZZ]);
921
922         fix0             = _mm_setzero_ps();
923         fiy0             = _mm_setzero_ps();
924         fiz0             = _mm_setzero_ps();
925         fix1             = _mm_setzero_ps();
926         fiy1             = _mm_setzero_ps();
927         fiz1             = _mm_setzero_ps();
928         fix2             = _mm_setzero_ps();
929         fiy2             = _mm_setzero_ps();
930         fiz2             = _mm_setzero_ps();
931         fix3             = _mm_setzero_ps();
932         fiy3             = _mm_setzero_ps();
933         fiz3             = _mm_setzero_ps();
934
935         /* Start inner kernel loop */
936         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
937         {
938
939             /* Get j neighbor index, and coordinate index */
940             jnrA             = jjnr[jidx];
941             jnrB             = jjnr[jidx+1];
942             jnrC             = jjnr[jidx+2];
943             jnrD             = jjnr[jidx+3];
944
945             j_coord_offsetA  = DIM*jnrA;
946             j_coord_offsetB  = DIM*jnrB;
947             j_coord_offsetC  = DIM*jnrC;
948             j_coord_offsetD  = DIM*jnrD;
949
950             /* load j atom coordinates */
951             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
952                                               x+j_coord_offsetC,x+j_coord_offsetD,
953                                               &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm_sub_ps(ix0,jx0);
957             dy00             = _mm_sub_ps(iy0,jy0);
958             dz00             = _mm_sub_ps(iz0,jz0);
959             dx10             = _mm_sub_ps(ix1,jx0);
960             dy10             = _mm_sub_ps(iy1,jy0);
961             dz10             = _mm_sub_ps(iz1,jz0);
962             dx20             = _mm_sub_ps(ix2,jx0);
963             dy20             = _mm_sub_ps(iy2,jy0);
964             dz20             = _mm_sub_ps(iz2,jz0);
965             dx30             = _mm_sub_ps(ix3,jx0);
966             dy30             = _mm_sub_ps(iy3,jy0);
967             dz30             = _mm_sub_ps(iz3,jz0);
968
969             /* Calculate squared distance and things based on it */
970             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
971             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
972             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
973             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
974
975             rinv10           = gmx_mm_invsqrt_ps(rsq10);
976             rinv20           = gmx_mm_invsqrt_ps(rsq20);
977             rinv30           = gmx_mm_invsqrt_ps(rsq30);
978
979             rinvsq00         = gmx_mm_inv_ps(rsq00);
980             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
981             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
982             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
983
984             /* Load parameters for j particles */
985             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
986                                                               charge+jnrC+0,charge+jnrD+0);
987             vdwjidx0A        = 2*vdwtype[jnrA+0];
988             vdwjidx0B        = 2*vdwtype[jnrB+0];
989             vdwjidx0C        = 2*vdwtype[jnrC+0];
990             vdwjidx0D        = 2*vdwtype[jnrD+0];
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             if (gmx_mm_any_lt(rsq00,rcutoff2))
997             {
998
999             /* Compute parameters for interactions between i and j atoms */
1000             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1001                                          vdwparam+vdwioffset0+vdwjidx0B,
1002                                          vdwparam+vdwioffset0+vdwjidx0C,
1003                                          vdwparam+vdwioffset0+vdwjidx0D,
1004                                          &c6_00,&c12_00);
1005
1006             /* LENNARD-JONES DISPERSION/REPULSION */
1007
1008             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1009             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1010
1011             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1012
1013             fscal            = fvdw;
1014
1015             fscal            = _mm_and_ps(fscal,cutoff_mask);
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm_mul_ps(fscal,dx00);
1019             ty               = _mm_mul_ps(fscal,dy00);
1020             tz               = _mm_mul_ps(fscal,dz00);
1021
1022             /* Update vectorial force */
1023             fix0             = _mm_add_ps(fix0,tx);
1024             fiy0             = _mm_add_ps(fiy0,ty);
1025             fiz0             = _mm_add_ps(fiz0,tz);
1026
1027             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1028                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1029                                                    tx,ty,tz);
1030
1031             }
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             if (gmx_mm_any_lt(rsq10,rcutoff2))
1038             {
1039
1040             r10              = _mm_mul_ps(rsq10,rinv10);
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq10             = _mm_mul_ps(iq1,jq0);
1044
1045             /* EWALD ELECTROSTATICS */
1046
1047             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1048             ewrt             = _mm_mul_ps(r10,ewtabscale);
1049             ewitab           = _mm_cvttps_epi32(ewrt);
1050             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1051             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1052                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1053                                          &ewtabF,&ewtabFn);
1054             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1055             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1056
1057             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm_and_ps(fscal,cutoff_mask);
1062
1063             /* Calculate temporary vectorial force */
1064             tx               = _mm_mul_ps(fscal,dx10);
1065             ty               = _mm_mul_ps(fscal,dy10);
1066             tz               = _mm_mul_ps(fscal,dz10);
1067
1068             /* Update vectorial force */
1069             fix1             = _mm_add_ps(fix1,tx);
1070             fiy1             = _mm_add_ps(fiy1,ty);
1071             fiz1             = _mm_add_ps(fiz1,tz);
1072
1073             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1074                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1075                                                    tx,ty,tz);
1076
1077             }
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             if (gmx_mm_any_lt(rsq20,rcutoff2))
1084             {
1085
1086             r20              = _mm_mul_ps(rsq20,rinv20);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq20             = _mm_mul_ps(iq2,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092
1093             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1094             ewrt             = _mm_mul_ps(r20,ewtabscale);
1095             ewitab           = _mm_cvttps_epi32(ewrt);
1096             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1097             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1098                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1099                                          &ewtabF,&ewtabFn);
1100             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1101             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1102
1103             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm_and_ps(fscal,cutoff_mask);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_ps(fscal,dx20);
1111             ty               = _mm_mul_ps(fscal,dy20);
1112             tz               = _mm_mul_ps(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm_add_ps(fix2,tx);
1116             fiy2             = _mm_add_ps(fiy2,ty);
1117             fiz2             = _mm_add_ps(fiz2,tz);
1118
1119             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1120                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1121                                                    tx,ty,tz);
1122
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq30,rcutoff2))
1130             {
1131
1132             r30              = _mm_mul_ps(rsq30,rinv30);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq30             = _mm_mul_ps(iq3,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_ps(r30,ewtabscale);
1141             ewitab           = _mm_cvttps_epi32(ewrt);
1142             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1143             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1144                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1145                                          &ewtabF,&ewtabFn);
1146             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1147             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1148
1149             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_and_ps(fscal,cutoff_mask);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_ps(fscal,dx30);
1157             ty               = _mm_mul_ps(fscal,dy30);
1158             tz               = _mm_mul_ps(fscal,dz30);
1159
1160             /* Update vectorial force */
1161             fix3             = _mm_add_ps(fix3,tx);
1162             fiy3             = _mm_add_ps(fiy3,ty);
1163             fiz3             = _mm_add_ps(fiz3,tz);
1164
1165             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1166                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1167                                                    tx,ty,tz);
1168
1169             }
1170
1171             /* Inner loop uses 147 flops */
1172         }
1173
1174         if(jidx<j_index_end)
1175         {
1176
1177             /* Get j neighbor index, and coordinate index */
1178             jnrA             = jjnr[jidx];
1179             jnrB             = jjnr[jidx+1];
1180             jnrC             = jjnr[jidx+2];
1181             jnrD             = jjnr[jidx+3];
1182
1183             /* Sign of each element will be negative for non-real atoms.
1184              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1185              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1186              */
1187             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1188             jnrA       = (jnrA>=0) ? jnrA : 0;
1189             jnrB       = (jnrB>=0) ? jnrB : 0;
1190             jnrC       = (jnrC>=0) ? jnrC : 0;
1191             jnrD       = (jnrD>=0) ? jnrD : 0;
1192
1193             j_coord_offsetA  = DIM*jnrA;
1194             j_coord_offsetB  = DIM*jnrB;
1195             j_coord_offsetC  = DIM*jnrC;
1196             j_coord_offsetD  = DIM*jnrD;
1197
1198             /* load j atom coordinates */
1199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1200                                               x+j_coord_offsetC,x+j_coord_offsetD,
1201                                               &jx0,&jy0,&jz0);
1202
1203             /* Calculate displacement vector */
1204             dx00             = _mm_sub_ps(ix0,jx0);
1205             dy00             = _mm_sub_ps(iy0,jy0);
1206             dz00             = _mm_sub_ps(iz0,jz0);
1207             dx10             = _mm_sub_ps(ix1,jx0);
1208             dy10             = _mm_sub_ps(iy1,jy0);
1209             dz10             = _mm_sub_ps(iz1,jz0);
1210             dx20             = _mm_sub_ps(ix2,jx0);
1211             dy20             = _mm_sub_ps(iy2,jy0);
1212             dz20             = _mm_sub_ps(iz2,jz0);
1213             dx30             = _mm_sub_ps(ix3,jx0);
1214             dy30             = _mm_sub_ps(iy3,jy0);
1215             dz30             = _mm_sub_ps(iz3,jz0);
1216
1217             /* Calculate squared distance and things based on it */
1218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1222
1223             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1224             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1225             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1226
1227             rinvsq00         = gmx_mm_inv_ps(rsq00);
1228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1231
1232             /* Load parameters for j particles */
1233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1234                                                               charge+jnrC+0,charge+jnrD+0);
1235             vdwjidx0A        = 2*vdwtype[jnrA+0];
1236             vdwjidx0B        = 2*vdwtype[jnrB+0];
1237             vdwjidx0C        = 2*vdwtype[jnrC+0];
1238             vdwjidx0D        = 2*vdwtype[jnrD+0];
1239
1240             /**************************
1241              * CALCULATE INTERACTIONS *
1242              **************************/
1243
1244             if (gmx_mm_any_lt(rsq00,rcutoff2))
1245             {
1246
1247             /* Compute parameters for interactions between i and j atoms */
1248             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1249                                          vdwparam+vdwioffset0+vdwjidx0B,
1250                                          vdwparam+vdwioffset0+vdwjidx0C,
1251                                          vdwparam+vdwioffset0+vdwjidx0D,
1252                                          &c6_00,&c12_00);
1253
1254             /* LENNARD-JONES DISPERSION/REPULSION */
1255
1256             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1257             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1258
1259             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1260
1261             fscal            = fvdw;
1262
1263             fscal            = _mm_and_ps(fscal,cutoff_mask);
1264
1265             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1266
1267             /* Calculate temporary vectorial force */
1268             tx               = _mm_mul_ps(fscal,dx00);
1269             ty               = _mm_mul_ps(fscal,dy00);
1270             tz               = _mm_mul_ps(fscal,dz00);
1271
1272             /* Update vectorial force */
1273             fix0             = _mm_add_ps(fix0,tx);
1274             fiy0             = _mm_add_ps(fiy0,ty);
1275             fiz0             = _mm_add_ps(fiz0,tz);
1276
1277             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1278                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1279                                                    tx,ty,tz);
1280
1281             }
1282
1283             /**************************
1284              * CALCULATE INTERACTIONS *
1285              **************************/
1286
1287             if (gmx_mm_any_lt(rsq10,rcutoff2))
1288             {
1289
1290             r10              = _mm_mul_ps(rsq10,rinv10);
1291             r10              = _mm_andnot_ps(dummy_mask,r10);
1292
1293             /* Compute parameters for interactions between i and j atoms */
1294             qq10             = _mm_mul_ps(iq1,jq0);
1295
1296             /* EWALD ELECTROSTATICS */
1297
1298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1299             ewrt             = _mm_mul_ps(r10,ewtabscale);
1300             ewitab           = _mm_cvttps_epi32(ewrt);
1301             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1302             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1303                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1304                                          &ewtabF,&ewtabFn);
1305             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1306             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1307
1308             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1309
1310             fscal            = felec;
1311
1312             fscal            = _mm_and_ps(fscal,cutoff_mask);
1313
1314             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1315
1316             /* Calculate temporary vectorial force */
1317             tx               = _mm_mul_ps(fscal,dx10);
1318             ty               = _mm_mul_ps(fscal,dy10);
1319             tz               = _mm_mul_ps(fscal,dz10);
1320
1321             /* Update vectorial force */
1322             fix1             = _mm_add_ps(fix1,tx);
1323             fiy1             = _mm_add_ps(fiy1,ty);
1324             fiz1             = _mm_add_ps(fiz1,tz);
1325
1326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1327                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1328                                                    tx,ty,tz);
1329
1330             }
1331
1332             /**************************
1333              * CALCULATE INTERACTIONS *
1334              **************************/
1335
1336             if (gmx_mm_any_lt(rsq20,rcutoff2))
1337             {
1338
1339             r20              = _mm_mul_ps(rsq20,rinv20);
1340             r20              = _mm_andnot_ps(dummy_mask,r20);
1341
1342             /* Compute parameters for interactions between i and j atoms */
1343             qq20             = _mm_mul_ps(iq2,jq0);
1344
1345             /* EWALD ELECTROSTATICS */
1346
1347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1348             ewrt             = _mm_mul_ps(r20,ewtabscale);
1349             ewitab           = _mm_cvttps_epi32(ewrt);
1350             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1351             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1352                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1353                                          &ewtabF,&ewtabFn);
1354             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1355             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1356
1357             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1358
1359             fscal            = felec;
1360
1361             fscal            = _mm_and_ps(fscal,cutoff_mask);
1362
1363             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1364
1365             /* Calculate temporary vectorial force */
1366             tx               = _mm_mul_ps(fscal,dx20);
1367             ty               = _mm_mul_ps(fscal,dy20);
1368             tz               = _mm_mul_ps(fscal,dz20);
1369
1370             /* Update vectorial force */
1371             fix2             = _mm_add_ps(fix2,tx);
1372             fiy2             = _mm_add_ps(fiy2,ty);
1373             fiz2             = _mm_add_ps(fiz2,tz);
1374
1375             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1376                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1377                                                    tx,ty,tz);
1378
1379             }
1380
1381             /**************************
1382              * CALCULATE INTERACTIONS *
1383              **************************/
1384
1385             if (gmx_mm_any_lt(rsq30,rcutoff2))
1386             {
1387
1388             r30              = _mm_mul_ps(rsq30,rinv30);
1389             r30              = _mm_andnot_ps(dummy_mask,r30);
1390
1391             /* Compute parameters for interactions between i and j atoms */
1392             qq30             = _mm_mul_ps(iq3,jq0);
1393
1394             /* EWALD ELECTROSTATICS */
1395
1396             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1397             ewrt             = _mm_mul_ps(r30,ewtabscale);
1398             ewitab           = _mm_cvttps_epi32(ewrt);
1399             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1400             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1401                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1402                                          &ewtabF,&ewtabFn);
1403             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1404             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1405
1406             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1407
1408             fscal            = felec;
1409
1410             fscal            = _mm_and_ps(fscal,cutoff_mask);
1411
1412             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1413
1414             /* Calculate temporary vectorial force */
1415             tx               = _mm_mul_ps(fscal,dx30);
1416             ty               = _mm_mul_ps(fscal,dy30);
1417             tz               = _mm_mul_ps(fscal,dz30);
1418
1419             /* Update vectorial force */
1420             fix3             = _mm_add_ps(fix3,tx);
1421             fiy3             = _mm_add_ps(fiy3,ty);
1422             fiz3             = _mm_add_ps(fiz3,tz);
1423
1424             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1425                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1426                                                    tx,ty,tz);
1427
1428             }
1429
1430             /* Inner loop uses 150 flops */
1431         }
1432
1433         /* End of innermost loop */
1434
1435         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1436                                               f+i_coord_offset,fshift+i_shift_offset);
1437
1438         /* Increment number of inner iterations */
1439         inneriter                  += j_index_end - j_index_start;
1440
1441         /* Outer loop uses 36 flops */
1442     }
1443
1444     /* Increment number of outer iterations */
1445     outeriter        += nri;
1446
1447     /* Update outer/inner flops */
1448
1449     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*36 + inneriter*150);
1450 }