Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
84     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
85     __m128i          ewitab;
86     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
87     real             *ewtab;
88     __m128           dummy_mask,cutoff_mask;
89     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
90     __m128           one     = _mm_set1_ps(1.0);
91     __m128           two     = _mm_set1_ps(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm_set1_ps(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
110     ewtab            = fr->ic->tabq_coul_FDV0;
111     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
112     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
117     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
118     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
119     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_ps(rcutoff_scalar);
124     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
125
126     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
127     rvdw             = _mm_set1_ps(fr->rvdw);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144         shX              = shiftvec[i_shift_offset+XX];
145         shY              = shiftvec[i_shift_offset+YY];
146         shZ              = shiftvec[i_shift_offset+ZZ];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
158         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
159         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
160         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
161         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
162         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
163         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
164         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
165         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_ps();
179         vvdwsum          = _mm_setzero_ps();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             jnrC             = jjnr[jidx+2];
189             jnrD             = jjnr[jidx+3];
190
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205             dx10             = _mm_sub_ps(ix1,jx0);
206             dy10             = _mm_sub_ps(iy1,jy0);
207             dz10             = _mm_sub_ps(iz1,jz0);
208             dx20             = _mm_sub_ps(ix2,jx0);
209             dy20             = _mm_sub_ps(iy2,jy0);
210             dz20             = _mm_sub_ps(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218             rinv10           = gmx_mm_invsqrt_ps(rsq10);
219             rinv20           = gmx_mm_invsqrt_ps(rsq20);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             if (gmx_mm_any_lt(rsq00,rcutoff2))
238             {
239
240             r00              = _mm_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm_mul_ps(iq0,jq0);
244             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,
246                                          vdwparam+vdwioffset0+vdwjidx0C,
247                                          vdwparam+vdwioffset0+vdwjidx0D,
248                                          &c6_00,&c12_00);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
253             ewrt             = _mm_mul_ps(r00,ewtabscale);
254             ewitab           = _mm_cvttps_epi32(ewrt);
255             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
256             ewitab           = _mm_slli_epi32(ewitab,2);
257             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
258             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
259             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
260             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
261             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
262             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
263             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
264             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
265             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
271             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
273                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
274             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
275
276             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_and_ps(velec,cutoff_mask);
280             velecsum         = _mm_add_ps(velecsum,velec);
281             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286             fscal            = _mm_and_ps(fscal,cutoff_mask);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_ps(fscal,dx00);
290             ty               = _mm_mul_ps(fscal,dy00);
291             tz               = _mm_mul_ps(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm_add_ps(fix0,tx);
295             fiy0             = _mm_add_ps(fiy0,ty);
296             fiz0             = _mm_add_ps(fiz0,tz);
297
298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
299                                                    f+j_coord_offsetC,f+j_coord_offsetD,
300                                                    tx,ty,tz);
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm_any_lt(rsq10,rcutoff2))
309             {
310
311             r10              = _mm_mul_ps(rsq10,rinv10);
312
313             /* Compute parameters for interactions between i and j atoms */
314             qq10             = _mm_mul_ps(iq1,jq0);
315
316             /* EWALD ELECTROSTATICS */
317
318             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
319             ewrt             = _mm_mul_ps(r10,ewtabscale);
320             ewitab           = _mm_cvttps_epi32(ewrt);
321             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
322             ewitab           = _mm_slli_epi32(ewitab,2);
323             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
324             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
325             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
326             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
327             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
328             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
329             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
330             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
331             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
332
333             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm_and_ps(velec,cutoff_mask);
337             velecsum         = _mm_add_ps(velecsum,velec);
338
339             fscal            = felec;
340
341             fscal            = _mm_and_ps(fscal,cutoff_mask);
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_ps(fscal,dx10);
345             ty               = _mm_mul_ps(fscal,dy10);
346             tz               = _mm_mul_ps(fscal,dz10);
347
348             /* Update vectorial force */
349             fix1             = _mm_add_ps(fix1,tx);
350             fiy1             = _mm_add_ps(fiy1,ty);
351             fiz1             = _mm_add_ps(fiz1,tz);
352
353             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
354                                                    f+j_coord_offsetC,f+j_coord_offsetD,
355                                                    tx,ty,tz);
356
357             }
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm_any_lt(rsq20,rcutoff2))
364             {
365
366             r20              = _mm_mul_ps(rsq20,rinv20);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq20             = _mm_mul_ps(iq2,jq0);
370
371             /* EWALD ELECTROSTATICS */
372
373             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
374             ewrt             = _mm_mul_ps(r20,ewtabscale);
375             ewitab           = _mm_cvttps_epi32(ewrt);
376             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
380             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
381             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
382             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
383             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
384             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
385             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
386             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
387
388             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velec            = _mm_and_ps(velec,cutoff_mask);
392             velecsum         = _mm_add_ps(velecsum,velec);
393
394             fscal            = felec;
395
396             fscal            = _mm_and_ps(fscal,cutoff_mask);
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm_mul_ps(fscal,dx20);
400             ty               = _mm_mul_ps(fscal,dy20);
401             tz               = _mm_mul_ps(fscal,dz20);
402
403             /* Update vectorial force */
404             fix2             = _mm_add_ps(fix2,tx);
405             fiy2             = _mm_add_ps(fiy2,ty);
406             fiz2             = _mm_add_ps(fiz2,tz);
407
408             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
409                                                    f+j_coord_offsetC,f+j_coord_offsetD,
410                                                    tx,ty,tz);
411
412             }
413
414             /* Inner loop uses 156 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             /* Get j neighbor index, and coordinate index */
421             jnrA             = jjnr[jidx];
422             jnrB             = jjnr[jidx+1];
423             jnrC             = jjnr[jidx+2];
424             jnrD             = jjnr[jidx+3];
425
426             /* Sign of each element will be negative for non-real atoms.
427              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
428              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
429              */
430             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
431             jnrA       = (jnrA>=0) ? jnrA : 0;
432             jnrB       = (jnrB>=0) ? jnrB : 0;
433             jnrC       = (jnrC>=0) ? jnrC : 0;
434             jnrD       = (jnrD>=0) ? jnrD : 0;
435
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438             j_coord_offsetC  = DIM*jnrC;
439             j_coord_offsetD  = DIM*jnrD;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
443                                               x+j_coord_offsetC,x+j_coord_offsetD,
444                                               &jx0,&jy0,&jz0);
445
446             /* Calculate displacement vector */
447             dx00             = _mm_sub_ps(ix0,jx0);
448             dy00             = _mm_sub_ps(iy0,jy0);
449             dz00             = _mm_sub_ps(iz0,jz0);
450             dx10             = _mm_sub_ps(ix1,jx0);
451             dy10             = _mm_sub_ps(iy1,jy0);
452             dz10             = _mm_sub_ps(iz1,jz0);
453             dx20             = _mm_sub_ps(ix2,jx0);
454             dy20             = _mm_sub_ps(iy2,jy0);
455             dz20             = _mm_sub_ps(iz2,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
461
462             rinv00           = gmx_mm_invsqrt_ps(rsq00);
463             rinv10           = gmx_mm_invsqrt_ps(rsq10);
464             rinv20           = gmx_mm_invsqrt_ps(rsq20);
465
466             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
467             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
468             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
469
470             /* Load parameters for j particles */
471             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
472                                                               charge+jnrC+0,charge+jnrD+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474             vdwjidx0B        = 2*vdwtype[jnrB+0];
475             vdwjidx0C        = 2*vdwtype[jnrC+0];
476             vdwjidx0D        = 2*vdwtype[jnrD+0];
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             if (gmx_mm_any_lt(rsq00,rcutoff2))
483             {
484
485             r00              = _mm_mul_ps(rsq00,rinv00);
486             r00              = _mm_andnot_ps(dummy_mask,r00);
487
488             /* Compute parameters for interactions between i and j atoms */
489             qq00             = _mm_mul_ps(iq0,jq0);
490             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
491                                          vdwparam+vdwioffset0+vdwjidx0B,
492                                          vdwparam+vdwioffset0+vdwjidx0C,
493                                          vdwparam+vdwioffset0+vdwjidx0D,
494                                          &c6_00,&c12_00);
495
496             /* EWALD ELECTROSTATICS */
497
498             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499             ewrt             = _mm_mul_ps(r00,ewtabscale);
500             ewitab           = _mm_cvttps_epi32(ewrt);
501             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
502             ewitab           = _mm_slli_epi32(ewitab,2);
503             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
504             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
505             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
506             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
507             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
508             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
509             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
510             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
511             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
512
513             /* LENNARD-JONES DISPERSION/REPULSION */
514
515             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
516             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
517             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
518             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
519                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
520             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
521
522             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velec            = _mm_and_ps(velec,cutoff_mask);
526             velec            = _mm_andnot_ps(dummy_mask,velec);
527             velecsum         = _mm_add_ps(velecsum,velec);
528             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
529             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
530             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
531
532             fscal            = _mm_add_ps(felec,fvdw);
533
534             fscal            = _mm_and_ps(fscal,cutoff_mask);
535
536             fscal            = _mm_andnot_ps(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm_mul_ps(fscal,dx00);
540             ty               = _mm_mul_ps(fscal,dy00);
541             tz               = _mm_mul_ps(fscal,dz00);
542
543             /* Update vectorial force */
544             fix0             = _mm_add_ps(fix0,tx);
545             fiy0             = _mm_add_ps(fiy0,ty);
546             fiz0             = _mm_add_ps(fiz0,tz);
547
548             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
549                                                    f+j_coord_offsetC,f+j_coord_offsetD,
550                                                    tx,ty,tz);
551
552             }
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             if (gmx_mm_any_lt(rsq10,rcutoff2))
559             {
560
561             r10              = _mm_mul_ps(rsq10,rinv10);
562             r10              = _mm_andnot_ps(dummy_mask,r10);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq10             = _mm_mul_ps(iq1,jq0);
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = _mm_mul_ps(r10,ewtabscale);
571             ewitab           = _mm_cvttps_epi32(ewrt);
572             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
576             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
577             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
578             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
579             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
580             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
581             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
582             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
583
584             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_and_ps(velec,cutoff_mask);
588             velec            = _mm_andnot_ps(dummy_mask,velec);
589             velecsum         = _mm_add_ps(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_and_ps(fscal,cutoff_mask);
594
595             fscal            = _mm_andnot_ps(dummy_mask,fscal);
596
597             /* Calculate temporary vectorial force */
598             tx               = _mm_mul_ps(fscal,dx10);
599             ty               = _mm_mul_ps(fscal,dy10);
600             tz               = _mm_mul_ps(fscal,dz10);
601
602             /* Update vectorial force */
603             fix1             = _mm_add_ps(fix1,tx);
604             fiy1             = _mm_add_ps(fiy1,ty);
605             fiz1             = _mm_add_ps(fiz1,tz);
606
607             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
608                                                    f+j_coord_offsetC,f+j_coord_offsetD,
609                                                    tx,ty,tz);
610
611             }
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq20,rcutoff2))
618             {
619
620             r20              = _mm_mul_ps(rsq20,rinv20);
621             r20              = _mm_andnot_ps(dummy_mask,r20);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq20             = _mm_mul_ps(iq2,jq0);
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = _mm_mul_ps(r20,ewtabscale);
630             ewitab           = _mm_cvttps_epi32(ewrt);
631             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
632             ewitab           = _mm_slli_epi32(ewitab,2);
633             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
634             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
635             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
636             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
637             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
638             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
639             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
640             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
641             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
642
643             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velec            = _mm_and_ps(velec,cutoff_mask);
647             velec            = _mm_andnot_ps(dummy_mask,velec);
648             velecsum         = _mm_add_ps(velecsum,velec);
649
650             fscal            = felec;
651
652             fscal            = _mm_and_ps(fscal,cutoff_mask);
653
654             fscal            = _mm_andnot_ps(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm_mul_ps(fscal,dx20);
658             ty               = _mm_mul_ps(fscal,dy20);
659             tz               = _mm_mul_ps(fscal,dz20);
660
661             /* Update vectorial force */
662             fix2             = _mm_add_ps(fix2,tx);
663             fiy2             = _mm_add_ps(fiy2,ty);
664             fiz2             = _mm_add_ps(fiz2,tz);
665
666             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
667                                                    f+j_coord_offsetC,f+j_coord_offsetD,
668                                                    tx,ty,tz);
669
670             }
671
672             /* Inner loop uses 159 flops */
673         }
674
675         /* End of innermost loop */
676
677         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
678                                               f+i_coord_offset,fshift+i_shift_offset);
679
680         ggid                        = gid[iidx];
681         /* Update potential energies */
682         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
683         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 29 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*29 + inneriter*159);
697 }
698 /*
699  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse2_single
700  * Electrostatics interaction: Ewald
701  * VdW interaction:            LennardJones
702  * Geometry:                   Water3-Particle
703  * Calculate force/pot:        Force
704  */
705 void
706 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_sse2_single
707                     (t_nblist * gmx_restrict                nlist,
708                      rvec * gmx_restrict                    xx,
709                      rvec * gmx_restrict                    ff,
710                      t_forcerec * gmx_restrict              fr,
711                      t_mdatoms * gmx_restrict               mdatoms,
712                      nb_kernel_data_t * gmx_restrict        kernel_data,
713                      t_nrnb * gmx_restrict                  nrnb)
714 {
715     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
716      * just 0 for non-waters.
717      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
718      * jnr indices corresponding to data put in the four positions in the SIMD register.
719      */
720     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
721     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
722     int              jnrA,jnrB,jnrC,jnrD;
723     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
724     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
725     real             shX,shY,shZ,rcutoff_scalar;
726     real             *shiftvec,*fshift,*x,*f;
727     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
728     int              vdwioffset0;
729     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
730     int              vdwioffset1;
731     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
732     int              vdwioffset2;
733     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
734     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
735     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
736     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
737     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
738     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
739     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
740     real             *charge;
741     int              nvdwtype;
742     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
743     int              *vdwtype;
744     real             *vdwparam;
745     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
746     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
747     __m128i          ewitab;
748     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
749     real             *ewtab;
750     __m128           dummy_mask,cutoff_mask;
751     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
752     __m128           one     = _mm_set1_ps(1.0);
753     __m128           two     = _mm_set1_ps(2.0);
754     x                = xx[0];
755     f                = ff[0];
756
757     nri              = nlist->nri;
758     iinr             = nlist->iinr;
759     jindex           = nlist->jindex;
760     jjnr             = nlist->jjnr;
761     shiftidx         = nlist->shift;
762     gid              = nlist->gid;
763     shiftvec         = fr->shift_vec[0];
764     fshift           = fr->fshift[0];
765     facel            = _mm_set1_ps(fr->epsfac);
766     charge           = mdatoms->chargeA;
767     nvdwtype         = fr->ntype;
768     vdwparam         = fr->nbfp;
769     vdwtype          = mdatoms->typeA;
770
771     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
772     ewtab            = fr->ic->tabq_coul_F;
773     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
774     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
779     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
780     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
781     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
782
783     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
784     rcutoff_scalar   = fr->rcoulomb;
785     rcutoff          = _mm_set1_ps(rcutoff_scalar);
786     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
787
788     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
789     rvdw             = _mm_set1_ps(fr->rvdw);
790
791     /* Avoid stupid compiler warnings */
792     jnrA = jnrB = jnrC = jnrD = 0;
793     j_coord_offsetA = 0;
794     j_coord_offsetB = 0;
795     j_coord_offsetC = 0;
796     j_coord_offsetD = 0;
797
798     outeriter        = 0;
799     inneriter        = 0;
800
801     /* Start outer loop over neighborlists */
802     for(iidx=0; iidx<nri; iidx++)
803     {
804         /* Load shift vector for this list */
805         i_shift_offset   = DIM*shiftidx[iidx];
806         shX              = shiftvec[i_shift_offset+XX];
807         shY              = shiftvec[i_shift_offset+YY];
808         shZ              = shiftvec[i_shift_offset+ZZ];
809
810         /* Load limits for loop over neighbors */
811         j_index_start    = jindex[iidx];
812         j_index_end      = jindex[iidx+1];
813
814         /* Get outer coordinate index */
815         inr              = iinr[iidx];
816         i_coord_offset   = DIM*inr;
817
818         /* Load i particle coords and add shift vector */
819         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
820         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
821         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
822         ix1              = _mm_set1_ps(shX + x[i_coord_offset+DIM*1+XX]);
823         iy1              = _mm_set1_ps(shY + x[i_coord_offset+DIM*1+YY]);
824         iz1              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*1+ZZ]);
825         ix2              = _mm_set1_ps(shX + x[i_coord_offset+DIM*2+XX]);
826         iy2              = _mm_set1_ps(shY + x[i_coord_offset+DIM*2+YY]);
827         iz2              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*2+ZZ]);
828
829         fix0             = _mm_setzero_ps();
830         fiy0             = _mm_setzero_ps();
831         fiz0             = _mm_setzero_ps();
832         fix1             = _mm_setzero_ps();
833         fiy1             = _mm_setzero_ps();
834         fiz1             = _mm_setzero_ps();
835         fix2             = _mm_setzero_ps();
836         fiy2             = _mm_setzero_ps();
837         fiz2             = _mm_setzero_ps();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             jnrC             = jjnr[jidx+2];
847             jnrD             = jjnr[jidx+3];
848
849             j_coord_offsetA  = DIM*jnrA;
850             j_coord_offsetB  = DIM*jnrB;
851             j_coord_offsetC  = DIM*jnrC;
852             j_coord_offsetD  = DIM*jnrD;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               x+j_coord_offsetC,x+j_coord_offsetD,
857                                               &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm_sub_ps(ix0,jx0);
861             dy00             = _mm_sub_ps(iy0,jy0);
862             dz00             = _mm_sub_ps(iz0,jz0);
863             dx10             = _mm_sub_ps(ix1,jx0);
864             dy10             = _mm_sub_ps(iy1,jy0);
865             dz10             = _mm_sub_ps(iz1,jz0);
866             dx20             = _mm_sub_ps(ix2,jx0);
867             dy20             = _mm_sub_ps(iy2,jy0);
868             dz20             = _mm_sub_ps(iz2,jz0);
869
870             /* Calculate squared distance and things based on it */
871             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
872             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
873             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
874
875             rinv00           = gmx_mm_invsqrt_ps(rsq00);
876             rinv10           = gmx_mm_invsqrt_ps(rsq10);
877             rinv20           = gmx_mm_invsqrt_ps(rsq20);
878
879             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
880             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
881             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
885                                                               charge+jnrC+0,charge+jnrD+0);
886             vdwjidx0A        = 2*vdwtype[jnrA+0];
887             vdwjidx0B        = 2*vdwtype[jnrB+0];
888             vdwjidx0C        = 2*vdwtype[jnrC+0];
889             vdwjidx0D        = 2*vdwtype[jnrD+0];
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq00,rcutoff2))
896             {
897
898             r00              = _mm_mul_ps(rsq00,rinv00);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq00             = _mm_mul_ps(iq0,jq0);
902             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
903                                          vdwparam+vdwioffset0+vdwjidx0B,
904                                          vdwparam+vdwioffset0+vdwjidx0C,
905                                          vdwparam+vdwioffset0+vdwjidx0D,
906                                          &c6_00,&c12_00);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_ps(r00,ewtabscale);
912             ewitab           = _mm_cvttps_epi32(ewrt);
913             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
914             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
915                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
916                                          &ewtabF,&ewtabFn);
917             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
918             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
919
920             /* LENNARD-JONES DISPERSION/REPULSION */
921
922             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
923             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
924
925             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
926
927             fscal            = _mm_add_ps(felec,fvdw);
928
929             fscal            = _mm_and_ps(fscal,cutoff_mask);
930
931             /* Calculate temporary vectorial force */
932             tx               = _mm_mul_ps(fscal,dx00);
933             ty               = _mm_mul_ps(fscal,dy00);
934             tz               = _mm_mul_ps(fscal,dz00);
935
936             /* Update vectorial force */
937             fix0             = _mm_add_ps(fix0,tx);
938             fiy0             = _mm_add_ps(fiy0,ty);
939             fiz0             = _mm_add_ps(fiz0,tz);
940
941             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
942                                                    f+j_coord_offsetC,f+j_coord_offsetD,
943                                                    tx,ty,tz);
944
945             }
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             if (gmx_mm_any_lt(rsq10,rcutoff2))
952             {
953
954             r10              = _mm_mul_ps(rsq10,rinv10);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq10             = _mm_mul_ps(iq1,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_ps(r10,ewtabscale);
963             ewitab           = _mm_cvttps_epi32(ewrt);
964             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
965             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
966                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
967                                          &ewtabF,&ewtabFn);
968             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
969             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
970
971             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
972
973             fscal            = felec;
974
975             fscal            = _mm_and_ps(fscal,cutoff_mask);
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm_mul_ps(fscal,dx10);
979             ty               = _mm_mul_ps(fscal,dy10);
980             tz               = _mm_mul_ps(fscal,dz10);
981
982             /* Update vectorial force */
983             fix1             = _mm_add_ps(fix1,tx);
984             fiy1             = _mm_add_ps(fiy1,ty);
985             fiz1             = _mm_add_ps(fiz1,tz);
986
987             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
988                                                    f+j_coord_offsetC,f+j_coord_offsetD,
989                                                    tx,ty,tz);
990
991             }
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (gmx_mm_any_lt(rsq20,rcutoff2))
998             {
999
1000             r20              = _mm_mul_ps(rsq20,rinv20);
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq20             = _mm_mul_ps(iq2,jq0);
1004
1005             /* EWALD ELECTROSTATICS */
1006
1007             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1008             ewrt             = _mm_mul_ps(r20,ewtabscale);
1009             ewitab           = _mm_cvttps_epi32(ewrt);
1010             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1011             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1012                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1013                                          &ewtabF,&ewtabFn);
1014             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1015             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1016
1017             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1018
1019             fscal            = felec;
1020
1021             fscal            = _mm_and_ps(fscal,cutoff_mask);
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = _mm_mul_ps(fscal,dx20);
1025             ty               = _mm_mul_ps(fscal,dy20);
1026             tz               = _mm_mul_ps(fscal,dz20);
1027
1028             /* Update vectorial force */
1029             fix2             = _mm_add_ps(fix2,tx);
1030             fiy2             = _mm_add_ps(fiy2,ty);
1031             fiz2             = _mm_add_ps(fiz2,tz);
1032
1033             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1034                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1035                                                    tx,ty,tz);
1036
1037             }
1038
1039             /* Inner loop uses 124 flops */
1040         }
1041
1042         if(jidx<j_index_end)
1043         {
1044
1045             /* Get j neighbor index, and coordinate index */
1046             jnrA             = jjnr[jidx];
1047             jnrB             = jjnr[jidx+1];
1048             jnrC             = jjnr[jidx+2];
1049             jnrD             = jjnr[jidx+3];
1050
1051             /* Sign of each element will be negative for non-real atoms.
1052              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1053              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1054              */
1055             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1056             jnrA       = (jnrA>=0) ? jnrA : 0;
1057             jnrB       = (jnrB>=0) ? jnrB : 0;
1058             jnrC       = (jnrC>=0) ? jnrC : 0;
1059             jnrD       = (jnrD>=0) ? jnrD : 0;
1060
1061             j_coord_offsetA  = DIM*jnrA;
1062             j_coord_offsetB  = DIM*jnrB;
1063             j_coord_offsetC  = DIM*jnrC;
1064             j_coord_offsetD  = DIM*jnrD;
1065
1066             /* load j atom coordinates */
1067             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1068                                               x+j_coord_offsetC,x+j_coord_offsetD,
1069                                               &jx0,&jy0,&jz0);
1070
1071             /* Calculate displacement vector */
1072             dx00             = _mm_sub_ps(ix0,jx0);
1073             dy00             = _mm_sub_ps(iy0,jy0);
1074             dz00             = _mm_sub_ps(iz0,jz0);
1075             dx10             = _mm_sub_ps(ix1,jx0);
1076             dy10             = _mm_sub_ps(iy1,jy0);
1077             dz10             = _mm_sub_ps(iz1,jz0);
1078             dx20             = _mm_sub_ps(ix2,jx0);
1079             dy20             = _mm_sub_ps(iy2,jy0);
1080             dz20             = _mm_sub_ps(iz2,jz0);
1081
1082             /* Calculate squared distance and things based on it */
1083             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1084             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1085             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1086
1087             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1088             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1089             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1090
1091             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1092             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1093             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1094
1095             /* Load parameters for j particles */
1096             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1097                                                               charge+jnrC+0,charge+jnrD+0);
1098             vdwjidx0A        = 2*vdwtype[jnrA+0];
1099             vdwjidx0B        = 2*vdwtype[jnrB+0];
1100             vdwjidx0C        = 2*vdwtype[jnrC+0];
1101             vdwjidx0D        = 2*vdwtype[jnrD+0];
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             if (gmx_mm_any_lt(rsq00,rcutoff2))
1108             {
1109
1110             r00              = _mm_mul_ps(rsq00,rinv00);
1111             r00              = _mm_andnot_ps(dummy_mask,r00);
1112
1113             /* Compute parameters for interactions between i and j atoms */
1114             qq00             = _mm_mul_ps(iq0,jq0);
1115             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1116                                          vdwparam+vdwioffset0+vdwjidx0B,
1117                                          vdwparam+vdwioffset0+vdwjidx0C,
1118                                          vdwparam+vdwioffset0+vdwjidx0D,
1119                                          &c6_00,&c12_00);
1120
1121             /* EWALD ELECTROSTATICS */
1122
1123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124             ewrt             = _mm_mul_ps(r00,ewtabscale);
1125             ewitab           = _mm_cvttps_epi32(ewrt);
1126             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1127             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1128                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1129                                          &ewtabF,&ewtabFn);
1130             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1131             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1132
1133             /* LENNARD-JONES DISPERSION/REPULSION */
1134
1135             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1136             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1137
1138             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1139
1140             fscal            = _mm_add_ps(felec,fvdw);
1141
1142             fscal            = _mm_and_ps(fscal,cutoff_mask);
1143
1144             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1145
1146             /* Calculate temporary vectorial force */
1147             tx               = _mm_mul_ps(fscal,dx00);
1148             ty               = _mm_mul_ps(fscal,dy00);
1149             tz               = _mm_mul_ps(fscal,dz00);
1150
1151             /* Update vectorial force */
1152             fix0             = _mm_add_ps(fix0,tx);
1153             fiy0             = _mm_add_ps(fiy0,ty);
1154             fiz0             = _mm_add_ps(fiz0,tz);
1155
1156             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1157                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1158                                                    tx,ty,tz);
1159
1160             }
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             if (gmx_mm_any_lt(rsq10,rcutoff2))
1167             {
1168
1169             r10              = _mm_mul_ps(rsq10,rinv10);
1170             r10              = _mm_andnot_ps(dummy_mask,r10);
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq10             = _mm_mul_ps(iq1,jq0);
1174
1175             /* EWALD ELECTROSTATICS */
1176
1177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178             ewrt             = _mm_mul_ps(r10,ewtabscale);
1179             ewitab           = _mm_cvttps_epi32(ewrt);
1180             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1181             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1182                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1183                                          &ewtabF,&ewtabFn);
1184             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1185             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1186
1187             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1188
1189             fscal            = felec;
1190
1191             fscal            = _mm_and_ps(fscal,cutoff_mask);
1192
1193             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1194
1195             /* Calculate temporary vectorial force */
1196             tx               = _mm_mul_ps(fscal,dx10);
1197             ty               = _mm_mul_ps(fscal,dy10);
1198             tz               = _mm_mul_ps(fscal,dz10);
1199
1200             /* Update vectorial force */
1201             fix1             = _mm_add_ps(fix1,tx);
1202             fiy1             = _mm_add_ps(fiy1,ty);
1203             fiz1             = _mm_add_ps(fiz1,tz);
1204
1205             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1206                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1207                                                    tx,ty,tz);
1208
1209             }
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             if (gmx_mm_any_lt(rsq20,rcutoff2))
1216             {
1217
1218             r20              = _mm_mul_ps(rsq20,rinv20);
1219             r20              = _mm_andnot_ps(dummy_mask,r20);
1220
1221             /* Compute parameters for interactions between i and j atoms */
1222             qq20             = _mm_mul_ps(iq2,jq0);
1223
1224             /* EWALD ELECTROSTATICS */
1225
1226             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1227             ewrt             = _mm_mul_ps(r20,ewtabscale);
1228             ewitab           = _mm_cvttps_epi32(ewrt);
1229             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1230             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1231                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1232                                          &ewtabF,&ewtabFn);
1233             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1234             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1235
1236             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1237
1238             fscal            = felec;
1239
1240             fscal            = _mm_and_ps(fscal,cutoff_mask);
1241
1242             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm_mul_ps(fscal,dx20);
1246             ty               = _mm_mul_ps(fscal,dy20);
1247             tz               = _mm_mul_ps(fscal,dz20);
1248
1249             /* Update vectorial force */
1250             fix2             = _mm_add_ps(fix2,tx);
1251             fiy2             = _mm_add_ps(fiy2,ty);
1252             fiz2             = _mm_add_ps(fiz2,tz);
1253
1254             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
1255                                                    f+j_coord_offsetC,f+j_coord_offsetD,
1256                                                    tx,ty,tz);
1257
1258             }
1259
1260             /* Inner loop uses 127 flops */
1261         }
1262
1263         /* End of innermost loop */
1264
1265         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1266                                               f+i_coord_offset,fshift+i_shift_offset);
1267
1268         /* Increment number of inner iterations */
1269         inneriter                  += j_index_end - j_index_start;
1270
1271         /* Outer loop uses 27 flops */
1272     }
1273
1274     /* Increment number of outer iterations */
1275     outeriter        += nri;
1276
1277     /* Update outer/inner flops */
1278
1279     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*27 + inneriter*127);
1280 }