Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             shX,shY,shZ,rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
69     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     int              nvdwtype;
74     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
75     int              *vdwtype;
76     real             *vdwparam;
77     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
78     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
79     __m128i          ewitab;
80     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
104     ewtab            = fr->ic->tabq_coul_FDV0;
105     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
106     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm_set1_ps(rcutoff_scalar);
111     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
112
113     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
114     rvdw             = _mm_set1_ps(fr->rvdw);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131         shX              = shiftvec[i_shift_offset+XX];
132         shY              = shiftvec[i_shift_offset+YY];
133         shZ              = shiftvec[i_shift_offset+ZZ];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
145         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
146         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
147
148         fix0             = _mm_setzero_ps();
149         fiy0             = _mm_setzero_ps();
150         fiz0             = _mm_setzero_ps();
151
152         /* Load parameters for i particles */
153         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
154         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_ps();
158         vvdwsum          = _mm_setzero_ps();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               x+j_coord_offsetC,x+j_coord_offsetD,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_ps(ix0,jx0);
182             dy00             = _mm_sub_ps(iy0,jy0);
183             dz00             = _mm_sub_ps(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_ps(rsq00);
189
190             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
194                                                               charge+jnrC+0,charge+jnrD+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197             vdwjidx0C        = 2*vdwtype[jnrC+0];
198             vdwjidx0D        = 2*vdwtype[jnrD+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             if (gmx_mm_any_lt(rsq00,rcutoff2))
205             {
206
207             r00              = _mm_mul_ps(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_ps(iq0,jq0);
211             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,
213                                          vdwparam+vdwioffset0+vdwjidx0C,
214                                          vdwparam+vdwioffset0+vdwjidx0D,
215                                          &c6_00,&c12_00);
216
217             /* EWALD ELECTROSTATICS */
218
219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
220             ewrt             = _mm_mul_ps(r00,ewtabscale);
221             ewitab           = _mm_cvttps_epi32(ewrt);
222             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
223             ewitab           = _mm_slli_epi32(ewitab,2);
224             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
225             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
226             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
227             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
228             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
229             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
230             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
231             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
232             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
233
234             /* LENNARD-JONES DISPERSION/REPULSION */
235
236             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
237             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
238             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
239             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
240                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
241             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
242
243             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm_and_ps(velec,cutoff_mask);
247             velecsum         = _mm_add_ps(velecsum,velec);
248             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = _mm_add_ps(felec,fvdw);
252
253             fscal            = _mm_and_ps(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_ps(fscal,dx00);
257             ty               = _mm_mul_ps(fscal,dy00);
258             tz               = _mm_mul_ps(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm_add_ps(fix0,tx);
262             fiy0             = _mm_add_ps(fiy0,ty);
263             fiz0             = _mm_add_ps(fiz0,tz);
264
265             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
266                                                    f+j_coord_offsetC,f+j_coord_offsetD,
267                                                    tx,ty,tz);
268
269             }
270
271             /* Inner loop uses 64 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrA             = jjnr[jidx];
279             jnrB             = jjnr[jidx+1];
280             jnrC             = jjnr[jidx+2];
281             jnrD             = jjnr[jidx+3];
282
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
286              */
287             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288             jnrA       = (jnrA>=0) ? jnrA : 0;
289             jnrB       = (jnrB>=0) ? jnrB : 0;
290             jnrC       = (jnrC>=0) ? jnrC : 0;
291             jnrD       = (jnrD>=0) ? jnrD : 0;
292
293             j_coord_offsetA  = DIM*jnrA;
294             j_coord_offsetB  = DIM*jnrB;
295             j_coord_offsetC  = DIM*jnrC;
296             j_coord_offsetD  = DIM*jnrD;
297
298             /* load j atom coordinates */
299             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
300                                               x+j_coord_offsetC,x+j_coord_offsetD,
301                                               &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm_sub_ps(ix0,jx0);
305             dy00             = _mm_sub_ps(iy0,jy0);
306             dz00             = _mm_sub_ps(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm_invsqrt_ps(rsq00);
312
313             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
317                                                               charge+jnrC+0,charge+jnrD+0);
318             vdwjidx0A        = 2*vdwtype[jnrA+0];
319             vdwjidx0B        = 2*vdwtype[jnrB+0];
320             vdwjidx0C        = 2*vdwtype[jnrC+0];
321             vdwjidx0D        = 2*vdwtype[jnrD+0];
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             if (gmx_mm_any_lt(rsq00,rcutoff2))
328             {
329
330             r00              = _mm_mul_ps(rsq00,rinv00);
331             r00              = _mm_andnot_ps(dummy_mask,r00);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq00             = _mm_mul_ps(iq0,jq0);
335             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
336                                          vdwparam+vdwioffset0+vdwjidx0B,
337                                          vdwparam+vdwioffset0+vdwjidx0C,
338                                          vdwparam+vdwioffset0+vdwjidx0D,
339                                          &c6_00,&c12_00);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm_mul_ps(r00,ewtabscale);
345             ewitab           = _mm_cvttps_epi32(ewrt);
346             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
350             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
351             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
352             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
353             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
354             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
355             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
356             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
357
358             /* LENNARD-JONES DISPERSION/REPULSION */
359
360             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
361             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
362             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
363             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
364                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
365             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
366
367             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_ps(velec,cutoff_mask);
371             velec            = _mm_andnot_ps(dummy_mask,velec);
372             velecsum         = _mm_add_ps(velecsum,velec);
373             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
374             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
375             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
376
377             fscal            = _mm_add_ps(felec,fvdw);
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381             fscal            = _mm_andnot_ps(dummy_mask,fscal);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm_mul_ps(fscal,dx00);
385             ty               = _mm_mul_ps(fscal,dy00);
386             tz               = _mm_mul_ps(fscal,dz00);
387
388             /* Update vectorial force */
389             fix0             = _mm_add_ps(fix0,tx);
390             fiy0             = _mm_add_ps(fiy0,ty);
391             fiz0             = _mm_add_ps(fiz0,tz);
392
393             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
394                                                    f+j_coord_offsetC,f+j_coord_offsetD,
395                                                    tx,ty,tz);
396
397             }
398
399             /* Inner loop uses 65 flops */
400         }
401
402         /* End of innermost loop */
403
404         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
405                                               f+i_coord_offset,fshift+i_shift_offset);
406
407         ggid                        = gid[iidx];
408         /* Update potential energies */
409         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
410         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
411
412         /* Increment number of inner iterations */
413         inneriter                  += j_index_end - j_index_start;
414
415         /* Outer loop uses 12 flops */
416     }
417
418     /* Increment number of outer iterations */
419     outeriter        += nri;
420
421     /* Update outer/inner flops */
422
423     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*12 + inneriter*65);
424 }
425 /*
426  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse2_single
427  * Electrostatics interaction: Ewald
428  * VdW interaction:            LennardJones
429  * Geometry:                   Particle-Particle
430  * Calculate force/pot:        Force
431  */
432 void
433 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_sse2_single
434                     (t_nblist * gmx_restrict                nlist,
435                      rvec * gmx_restrict                    xx,
436                      rvec * gmx_restrict                    ff,
437                      t_forcerec * gmx_restrict              fr,
438                      t_mdatoms * gmx_restrict               mdatoms,
439                      nb_kernel_data_t * gmx_restrict        kernel_data,
440                      t_nrnb * gmx_restrict                  nrnb)
441 {
442     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
443      * just 0 for non-waters.
444      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
445      * jnr indices corresponding to data put in the four positions in the SIMD register.
446      */
447     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
448     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
449     int              jnrA,jnrB,jnrC,jnrD;
450     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
451     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
452     real             shX,shY,shZ,rcutoff_scalar;
453     real             *shiftvec,*fshift,*x,*f;
454     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     int              vdwioffset0;
456     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
458     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
467     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
468     __m128i          ewitab;
469     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
470     real             *ewtab;
471     __m128           dummy_mask,cutoff_mask;
472     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
473     __m128           one     = _mm_set1_ps(1.0);
474     __m128           two     = _mm_set1_ps(2.0);
475     x                = xx[0];
476     f                = ff[0];
477
478     nri              = nlist->nri;
479     iinr             = nlist->iinr;
480     jindex           = nlist->jindex;
481     jjnr             = nlist->jjnr;
482     shiftidx         = nlist->shift;
483     gid              = nlist->gid;
484     shiftvec         = fr->shift_vec[0];
485     fshift           = fr->fshift[0];
486     facel            = _mm_set1_ps(fr->epsfac);
487     charge           = mdatoms->chargeA;
488     nvdwtype         = fr->ntype;
489     vdwparam         = fr->nbfp;
490     vdwtype          = mdatoms->typeA;
491
492     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
493     ewtab            = fr->ic->tabq_coul_F;
494     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
495     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
496
497     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
498     rcutoff_scalar   = fr->rcoulomb;
499     rcutoff          = _mm_set1_ps(rcutoff_scalar);
500     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
501
502     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
503     rvdw             = _mm_set1_ps(fr->rvdw);
504
505     /* Avoid stupid compiler warnings */
506     jnrA = jnrB = jnrC = jnrD = 0;
507     j_coord_offsetA = 0;
508     j_coord_offsetB = 0;
509     j_coord_offsetC = 0;
510     j_coord_offsetD = 0;
511
512     outeriter        = 0;
513     inneriter        = 0;
514
515     /* Start outer loop over neighborlists */
516     for(iidx=0; iidx<nri; iidx++)
517     {
518         /* Load shift vector for this list */
519         i_shift_offset   = DIM*shiftidx[iidx];
520         shX              = shiftvec[i_shift_offset+XX];
521         shY              = shiftvec[i_shift_offset+YY];
522         shZ              = shiftvec[i_shift_offset+ZZ];
523
524         /* Load limits for loop over neighbors */
525         j_index_start    = jindex[iidx];
526         j_index_end      = jindex[iidx+1];
527
528         /* Get outer coordinate index */
529         inr              = iinr[iidx];
530         i_coord_offset   = DIM*inr;
531
532         /* Load i particle coords and add shift vector */
533         ix0              = _mm_set1_ps(shX + x[i_coord_offset+DIM*0+XX]);
534         iy0              = _mm_set1_ps(shY + x[i_coord_offset+DIM*0+YY]);
535         iz0              = _mm_set1_ps(shZ + x[i_coord_offset+DIM*0+ZZ]);
536
537         fix0             = _mm_setzero_ps();
538         fiy0             = _mm_setzero_ps();
539         fiz0             = _mm_setzero_ps();
540
541         /* Load parameters for i particles */
542         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
543         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
544
545         /* Start inner kernel loop */
546         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
547         {
548
549             /* Get j neighbor index, and coordinate index */
550             jnrA             = jjnr[jidx];
551             jnrB             = jjnr[jidx+1];
552             jnrC             = jjnr[jidx+2];
553             jnrD             = jjnr[jidx+3];
554
555             j_coord_offsetA  = DIM*jnrA;
556             j_coord_offsetB  = DIM*jnrB;
557             j_coord_offsetC  = DIM*jnrC;
558             j_coord_offsetD  = DIM*jnrD;
559
560             /* load j atom coordinates */
561             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
562                                               x+j_coord_offsetC,x+j_coord_offsetD,
563                                               &jx0,&jy0,&jz0);
564
565             /* Calculate displacement vector */
566             dx00             = _mm_sub_ps(ix0,jx0);
567             dy00             = _mm_sub_ps(iy0,jy0);
568             dz00             = _mm_sub_ps(iz0,jz0);
569
570             /* Calculate squared distance and things based on it */
571             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
572
573             rinv00           = gmx_mm_invsqrt_ps(rsq00);
574
575             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
576
577             /* Load parameters for j particles */
578             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
579                                                               charge+jnrC+0,charge+jnrD+0);
580             vdwjidx0A        = 2*vdwtype[jnrA+0];
581             vdwjidx0B        = 2*vdwtype[jnrB+0];
582             vdwjidx0C        = 2*vdwtype[jnrC+0];
583             vdwjidx0D        = 2*vdwtype[jnrD+0];
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             if (gmx_mm_any_lt(rsq00,rcutoff2))
590             {
591
592             r00              = _mm_mul_ps(rsq00,rinv00);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq00             = _mm_mul_ps(iq0,jq0);
596             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
597                                          vdwparam+vdwioffset0+vdwjidx0B,
598                                          vdwparam+vdwioffset0+vdwjidx0C,
599                                          vdwparam+vdwioffset0+vdwjidx0D,
600                                          &c6_00,&c12_00);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_ps(r00,ewtabscale);
606             ewitab           = _mm_cvttps_epi32(ewrt);
607             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
608             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
609                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
610                                          &ewtabF,&ewtabFn);
611             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
612             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
613
614             /* LENNARD-JONES DISPERSION/REPULSION */
615
616             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
617             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
618
619             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
620
621             fscal            = _mm_add_ps(felec,fvdw);
622
623             fscal            = _mm_and_ps(fscal,cutoff_mask);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_ps(fscal,dx00);
627             ty               = _mm_mul_ps(fscal,dy00);
628             tz               = _mm_mul_ps(fscal,dz00);
629
630             /* Update vectorial force */
631             fix0             = _mm_add_ps(fix0,tx);
632             fiy0             = _mm_add_ps(fiy0,ty);
633             fiz0             = _mm_add_ps(fiz0,tz);
634
635             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
636                                                    f+j_coord_offsetC,f+j_coord_offsetD,
637                                                    tx,ty,tz);
638
639             }
640
641             /* Inner loop uses 46 flops */
642         }
643
644         if(jidx<j_index_end)
645         {
646
647             /* Get j neighbor index, and coordinate index */
648             jnrA             = jjnr[jidx];
649             jnrB             = jjnr[jidx+1];
650             jnrC             = jjnr[jidx+2];
651             jnrD             = jjnr[jidx+3];
652
653             /* Sign of each element will be negative for non-real atoms.
654              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
655              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
656              */
657             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
658             jnrA       = (jnrA>=0) ? jnrA : 0;
659             jnrB       = (jnrB>=0) ? jnrB : 0;
660             jnrC       = (jnrC>=0) ? jnrC : 0;
661             jnrD       = (jnrD>=0) ? jnrD : 0;
662
663             j_coord_offsetA  = DIM*jnrA;
664             j_coord_offsetB  = DIM*jnrB;
665             j_coord_offsetC  = DIM*jnrC;
666             j_coord_offsetD  = DIM*jnrD;
667
668             /* load j atom coordinates */
669             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
670                                               x+j_coord_offsetC,x+j_coord_offsetD,
671                                               &jx0,&jy0,&jz0);
672
673             /* Calculate displacement vector */
674             dx00             = _mm_sub_ps(ix0,jx0);
675             dy00             = _mm_sub_ps(iy0,jy0);
676             dz00             = _mm_sub_ps(iz0,jz0);
677
678             /* Calculate squared distance and things based on it */
679             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
680
681             rinv00           = gmx_mm_invsqrt_ps(rsq00);
682
683             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
684
685             /* Load parameters for j particles */
686             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
687                                                               charge+jnrC+0,charge+jnrD+0);
688             vdwjidx0A        = 2*vdwtype[jnrA+0];
689             vdwjidx0B        = 2*vdwtype[jnrB+0];
690             vdwjidx0C        = 2*vdwtype[jnrC+0];
691             vdwjidx0D        = 2*vdwtype[jnrD+0];
692
693             /**************************
694              * CALCULATE INTERACTIONS *
695              **************************/
696
697             if (gmx_mm_any_lt(rsq00,rcutoff2))
698             {
699
700             r00              = _mm_mul_ps(rsq00,rinv00);
701             r00              = _mm_andnot_ps(dummy_mask,r00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq00             = _mm_mul_ps(iq0,jq0);
705             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
706                                          vdwparam+vdwioffset0+vdwjidx0B,
707                                          vdwparam+vdwioffset0+vdwjidx0C,
708                                          vdwparam+vdwioffset0+vdwjidx0D,
709                                          &c6_00,&c12_00);
710
711             /* EWALD ELECTROSTATICS */
712
713             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
714             ewrt             = _mm_mul_ps(r00,ewtabscale);
715             ewitab           = _mm_cvttps_epi32(ewrt);
716             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
717             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
718                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
719                                          &ewtabF,&ewtabFn);
720             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
721             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
722
723             /* LENNARD-JONES DISPERSION/REPULSION */
724
725             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
726             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
727
728             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
729
730             fscal            = _mm_add_ps(felec,fvdw);
731
732             fscal            = _mm_and_ps(fscal,cutoff_mask);
733
734             fscal            = _mm_andnot_ps(dummy_mask,fscal);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm_mul_ps(fscal,dx00);
738             ty               = _mm_mul_ps(fscal,dy00);
739             tz               = _mm_mul_ps(fscal,dz00);
740
741             /* Update vectorial force */
742             fix0             = _mm_add_ps(fix0,tx);
743             fiy0             = _mm_add_ps(fiy0,ty);
744             fiz0             = _mm_add_ps(fiz0,tz);
745
746             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(f+j_coord_offsetA,f+j_coord_offsetB,
747                                                    f+j_coord_offsetC,f+j_coord_offsetD,
748                                                    tx,ty,tz);
749
750             }
751
752             /* Inner loop uses 47 flops */
753         }
754
755         /* End of innermost loop */
756
757         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
758                                               f+i_coord_offset,fshift+i_shift_offset);
759
760         /* Increment number of inner iterations */
761         inneriter                  += j_index_end - j_index_start;
762
763         /* Outer loop uses 10 flops */
764     }
765
766     /* Increment number of outer iterations */
767     outeriter        += nri;
768
769     /* Update outer/inner flops */
770
771     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*10 + inneriter*47);
772 }