Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128           c6grid_00;
106     __m128           c6grid_10;
107     __m128           c6grid_20;
108     __m128           c6grid_30;
109     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     real             *vdwgridparam;
111     __m128           one_half = _mm_set1_ps(0.5);
112     __m128           minus_one = _mm_set1_ps(-1.0);
113     __m128i          ewitab;
114     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
115     real             *ewtab;
116     __m128           dummy_mask,cutoff_mask;
117     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
118     __m128           one     = _mm_set1_ps(1.0);
119     __m128           two     = _mm_set1_ps(2.0);
120     x                = xx[0];
121     f                = ff[0];
122
123     nri              = nlist->nri;
124     iinr             = nlist->iinr;
125     jindex           = nlist->jindex;
126     jjnr             = nlist->jjnr;
127     shiftidx         = nlist->shift;
128     gid              = nlist->gid;
129     shiftvec         = fr->shift_vec[0];
130     fshift           = fr->fshift[0];
131     facel            = _mm_set1_ps(fr->epsfac);
132     charge           = mdatoms->chargeA;
133     nvdwtype         = fr->ntype;
134     vdwparam         = fr->nbfp;
135     vdwtype          = mdatoms->typeA;
136     vdwgridparam     = fr->ljpme_c6grid;
137     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
138     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
139     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
140
141     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
142     ewtab            = fr->ic->tabq_coul_FDV0;
143     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
144     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
145
146     /* Setup water-specific parameters */
147     inr              = nlist->iinr[0];
148     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
149     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
150     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
151     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
154     rcutoff_scalar   = fr->rcoulomb;
155     rcutoff          = _mm_set1_ps(rcutoff_scalar);
156     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
157
158     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
159     rvdw             = _mm_set1_ps(fr->rvdw);
160
161     /* Avoid stupid compiler warnings */
162     jnrA = jnrB = jnrC = jnrD = 0;
163     j_coord_offsetA = 0;
164     j_coord_offsetB = 0;
165     j_coord_offsetC = 0;
166     j_coord_offsetD = 0;
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     for(iidx=0;iidx<4*DIM;iidx++)
172     {
173         scratch[iidx] = 0.0;
174     }  
175
176     /* Start outer loop over neighborlists */
177     for(iidx=0; iidx<nri; iidx++)
178     {
179         /* Load shift vector for this list */
180         i_shift_offset   = DIM*shiftidx[iidx];
181
182         /* Load limits for loop over neighbors */
183         j_index_start    = jindex[iidx];
184         j_index_end      = jindex[iidx+1];
185
186         /* Get outer coordinate index */
187         inr              = iinr[iidx];
188         i_coord_offset   = DIM*inr;
189
190         /* Load i particle coords and add shift vector */
191         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
192                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
193         
194         fix0             = _mm_setzero_ps();
195         fiy0             = _mm_setzero_ps();
196         fiz0             = _mm_setzero_ps();
197         fix1             = _mm_setzero_ps();
198         fiy1             = _mm_setzero_ps();
199         fiz1             = _mm_setzero_ps();
200         fix2             = _mm_setzero_ps();
201         fiy2             = _mm_setzero_ps();
202         fiz2             = _mm_setzero_ps();
203         fix3             = _mm_setzero_ps();
204         fiy3             = _mm_setzero_ps();
205         fiz3             = _mm_setzero_ps();
206
207         /* Reset potential sums */
208         velecsum         = _mm_setzero_ps();
209         vvdwsum          = _mm_setzero_ps();
210
211         /* Start inner kernel loop */
212         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
213         {
214
215             /* Get j neighbor index, and coordinate index */
216             jnrA             = jjnr[jidx];
217             jnrB             = jjnr[jidx+1];
218             jnrC             = jjnr[jidx+2];
219             jnrD             = jjnr[jidx+3];
220             j_coord_offsetA  = DIM*jnrA;
221             j_coord_offsetB  = DIM*jnrB;
222             j_coord_offsetC  = DIM*jnrC;
223             j_coord_offsetD  = DIM*jnrD;
224
225             /* load j atom coordinates */
226             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
227                                               x+j_coord_offsetC,x+j_coord_offsetD,
228                                               &jx0,&jy0,&jz0);
229
230             /* Calculate displacement vector */
231             dx00             = _mm_sub_ps(ix0,jx0);
232             dy00             = _mm_sub_ps(iy0,jy0);
233             dz00             = _mm_sub_ps(iz0,jz0);
234             dx10             = _mm_sub_ps(ix1,jx0);
235             dy10             = _mm_sub_ps(iy1,jy0);
236             dz10             = _mm_sub_ps(iz1,jz0);
237             dx20             = _mm_sub_ps(ix2,jx0);
238             dy20             = _mm_sub_ps(iy2,jy0);
239             dz20             = _mm_sub_ps(iz2,jz0);
240             dx30             = _mm_sub_ps(ix3,jx0);
241             dy30             = _mm_sub_ps(iy3,jy0);
242             dz30             = _mm_sub_ps(iz3,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
246             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
247             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
248             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
249
250             rinv00           = gmx_mm_invsqrt_ps(rsq00);
251             rinv10           = gmx_mm_invsqrt_ps(rsq10);
252             rinv20           = gmx_mm_invsqrt_ps(rsq20);
253             rinv30           = gmx_mm_invsqrt_ps(rsq30);
254
255             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
256             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
257             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
258             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
259
260             /* Load parameters for j particles */
261             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
262                                                               charge+jnrC+0,charge+jnrD+0);
263             vdwjidx0A        = 2*vdwtype[jnrA+0];
264             vdwjidx0B        = 2*vdwtype[jnrB+0];
265             vdwjidx0C        = 2*vdwtype[jnrC+0];
266             vdwjidx0D        = 2*vdwtype[jnrD+0];
267
268             fjx0             = _mm_setzero_ps();
269             fjy0             = _mm_setzero_ps();
270             fjz0             = _mm_setzero_ps();
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (gmx_mm_any_lt(rsq00,rcutoff2))
277             {
278
279             r00              = _mm_mul_ps(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
283                                          vdwparam+vdwioffset0+vdwjidx0B,
284                                          vdwparam+vdwioffset0+vdwjidx0C,
285                                          vdwparam+vdwioffset0+vdwjidx0D,
286                                          &c6_00,&c12_00);
287             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
288                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
289                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
290                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
291
292             /* Analytical LJ-PME */
293             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
294             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
295             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
296             exponent         = gmx_simd_exp_r(ewcljrsq);
297             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
298             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
299             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
300             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
301             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
302             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
303                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
304             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
305             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
306
307             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
311             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
312
313             fscal            = fvdw;
314
315             fscal            = _mm_and_ps(fscal,cutoff_mask);
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx00);
319             ty               = _mm_mul_ps(fscal,dy00);
320             tz               = _mm_mul_ps(fscal,dz00);
321
322             /* Update vectorial force */
323             fix0             = _mm_add_ps(fix0,tx);
324             fiy0             = _mm_add_ps(fiy0,ty);
325             fiz0             = _mm_add_ps(fiz0,tz);
326
327             fjx0             = _mm_add_ps(fjx0,tx);
328             fjy0             = _mm_add_ps(fjy0,ty);
329             fjz0             = _mm_add_ps(fjz0,tz);
330             
331             }
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             if (gmx_mm_any_lt(rsq10,rcutoff2))
338             {
339
340             r10              = _mm_mul_ps(rsq10,rinv10);
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq10             = _mm_mul_ps(iq1,jq0);
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = _mm_mul_ps(r10,ewtabscale);
349             ewitab           = _mm_cvttps_epi32(ewrt);
350             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
354             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
355             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
356             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
357             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
358             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
359             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
360             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
361
362             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_ps(velec,cutoff_mask);
366             velecsum         = _mm_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_ps(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_ps(fscal,dx10);
374             ty               = _mm_mul_ps(fscal,dy10);
375             tz               = _mm_mul_ps(fscal,dz10);
376
377             /* Update vectorial force */
378             fix1             = _mm_add_ps(fix1,tx);
379             fiy1             = _mm_add_ps(fiy1,ty);
380             fiz1             = _mm_add_ps(fiz1,tz);
381
382             fjx0             = _mm_add_ps(fjx0,tx);
383             fjy0             = _mm_add_ps(fjy0,ty);
384             fjz0             = _mm_add_ps(fjz0,tz);
385             
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm_any_lt(rsq20,rcutoff2))
393             {
394
395             r20              = _mm_mul_ps(rsq20,rinv20);
396
397             /* Compute parameters for interactions between i and j atoms */
398             qq20             = _mm_mul_ps(iq2,jq0);
399
400             /* EWALD ELECTROSTATICS */
401
402             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
403             ewrt             = _mm_mul_ps(r20,ewtabscale);
404             ewitab           = _mm_cvttps_epi32(ewrt);
405             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
406             ewitab           = _mm_slli_epi32(ewitab,2);
407             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
408             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
409             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
410             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
411             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
412             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
413             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
414             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
415             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
416
417             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_and_ps(velec,cutoff_mask);
421             velecsum         = _mm_add_ps(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_and_ps(fscal,cutoff_mask);
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_ps(fscal,dx20);
429             ty               = _mm_mul_ps(fscal,dy20);
430             tz               = _mm_mul_ps(fscal,dz20);
431
432             /* Update vectorial force */
433             fix2             = _mm_add_ps(fix2,tx);
434             fiy2             = _mm_add_ps(fiy2,ty);
435             fiz2             = _mm_add_ps(fiz2,tz);
436
437             fjx0             = _mm_add_ps(fjx0,tx);
438             fjy0             = _mm_add_ps(fjy0,ty);
439             fjz0             = _mm_add_ps(fjz0,tz);
440             
441             }
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             if (gmx_mm_any_lt(rsq30,rcutoff2))
448             {
449
450             r30              = _mm_mul_ps(rsq30,rinv30);
451
452             /* Compute parameters for interactions between i and j atoms */
453             qq30             = _mm_mul_ps(iq3,jq0);
454
455             /* EWALD ELECTROSTATICS */
456
457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
458             ewrt             = _mm_mul_ps(r30,ewtabscale);
459             ewitab           = _mm_cvttps_epi32(ewrt);
460             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
464             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
465             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
466             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
467             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
468             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
469             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
470             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
471
472             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velec            = _mm_and_ps(velec,cutoff_mask);
476             velecsum         = _mm_add_ps(velecsum,velec);
477
478             fscal            = felec;
479
480             fscal            = _mm_and_ps(fscal,cutoff_mask);
481
482             /* Calculate temporary vectorial force */
483             tx               = _mm_mul_ps(fscal,dx30);
484             ty               = _mm_mul_ps(fscal,dy30);
485             tz               = _mm_mul_ps(fscal,dz30);
486
487             /* Update vectorial force */
488             fix3             = _mm_add_ps(fix3,tx);
489             fiy3             = _mm_add_ps(fiy3,ty);
490             fiz3             = _mm_add_ps(fiz3,tz);
491
492             fjx0             = _mm_add_ps(fjx0,tx);
493             fjy0             = _mm_add_ps(fjy0,ty);
494             fjz0             = _mm_add_ps(fjz0,tz);
495             
496             }
497
498             fjptrA             = f+j_coord_offsetA;
499             fjptrB             = f+j_coord_offsetB;
500             fjptrC             = f+j_coord_offsetC;
501             fjptrD             = f+j_coord_offsetD;
502
503             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
504
505             /* Inner loop uses 200 flops */
506         }
507
508         if(jidx<j_index_end)
509         {
510
511             /* Get j neighbor index, and coordinate index */
512             jnrlistA         = jjnr[jidx];
513             jnrlistB         = jjnr[jidx+1];
514             jnrlistC         = jjnr[jidx+2];
515             jnrlistD         = jjnr[jidx+3];
516             /* Sign of each element will be negative for non-real atoms.
517              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
518              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
519              */
520             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
521             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
522             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
523             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
524             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
525             j_coord_offsetA  = DIM*jnrA;
526             j_coord_offsetB  = DIM*jnrB;
527             j_coord_offsetC  = DIM*jnrC;
528             j_coord_offsetD  = DIM*jnrD;
529
530             /* load j atom coordinates */
531             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
532                                               x+j_coord_offsetC,x+j_coord_offsetD,
533                                               &jx0,&jy0,&jz0);
534
535             /* Calculate displacement vector */
536             dx00             = _mm_sub_ps(ix0,jx0);
537             dy00             = _mm_sub_ps(iy0,jy0);
538             dz00             = _mm_sub_ps(iz0,jz0);
539             dx10             = _mm_sub_ps(ix1,jx0);
540             dy10             = _mm_sub_ps(iy1,jy0);
541             dz10             = _mm_sub_ps(iz1,jz0);
542             dx20             = _mm_sub_ps(ix2,jx0);
543             dy20             = _mm_sub_ps(iy2,jy0);
544             dz20             = _mm_sub_ps(iz2,jz0);
545             dx30             = _mm_sub_ps(ix3,jx0);
546             dy30             = _mm_sub_ps(iy3,jy0);
547             dz30             = _mm_sub_ps(iz3,jz0);
548
549             /* Calculate squared distance and things based on it */
550             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
551             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
552             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
553             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
554
555             rinv00           = gmx_mm_invsqrt_ps(rsq00);
556             rinv10           = gmx_mm_invsqrt_ps(rsq10);
557             rinv20           = gmx_mm_invsqrt_ps(rsq20);
558             rinv30           = gmx_mm_invsqrt_ps(rsq30);
559
560             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
561             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
562             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
563             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
564
565             /* Load parameters for j particles */
566             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
567                                                               charge+jnrC+0,charge+jnrD+0);
568             vdwjidx0A        = 2*vdwtype[jnrA+0];
569             vdwjidx0B        = 2*vdwtype[jnrB+0];
570             vdwjidx0C        = 2*vdwtype[jnrC+0];
571             vdwjidx0D        = 2*vdwtype[jnrD+0];
572
573             fjx0             = _mm_setzero_ps();
574             fjy0             = _mm_setzero_ps();
575             fjz0             = _mm_setzero_ps();
576
577             /**************************
578              * CALCULATE INTERACTIONS *
579              **************************/
580
581             if (gmx_mm_any_lt(rsq00,rcutoff2))
582             {
583
584             r00              = _mm_mul_ps(rsq00,rinv00);
585             r00              = _mm_andnot_ps(dummy_mask,r00);
586
587             /* Compute parameters for interactions between i and j atoms */
588             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
589                                          vdwparam+vdwioffset0+vdwjidx0B,
590                                          vdwparam+vdwioffset0+vdwjidx0C,
591                                          vdwparam+vdwioffset0+vdwjidx0D,
592                                          &c6_00,&c12_00);
593             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
594                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
595                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
596                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
597
598             /* Analytical LJ-PME */
599             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
600             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
601             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
602             exponent         = gmx_simd_exp_r(ewcljrsq);
603             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
604             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
605             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
606             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
607             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
608             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
609                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
610             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
611             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
612
613             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
617             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
618             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
619
620             fscal            = fvdw;
621
622             fscal            = _mm_and_ps(fscal,cutoff_mask);
623
624             fscal            = _mm_andnot_ps(dummy_mask,fscal);
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_ps(fscal,dx00);
628             ty               = _mm_mul_ps(fscal,dy00);
629             tz               = _mm_mul_ps(fscal,dz00);
630
631             /* Update vectorial force */
632             fix0             = _mm_add_ps(fix0,tx);
633             fiy0             = _mm_add_ps(fiy0,ty);
634             fiz0             = _mm_add_ps(fiz0,tz);
635
636             fjx0             = _mm_add_ps(fjx0,tx);
637             fjy0             = _mm_add_ps(fjy0,ty);
638             fjz0             = _mm_add_ps(fjz0,tz);
639             
640             }
641
642             /**************************
643              * CALCULATE INTERACTIONS *
644              **************************/
645
646             if (gmx_mm_any_lt(rsq10,rcutoff2))
647             {
648
649             r10              = _mm_mul_ps(rsq10,rinv10);
650             r10              = _mm_andnot_ps(dummy_mask,r10);
651
652             /* Compute parameters for interactions between i and j atoms */
653             qq10             = _mm_mul_ps(iq1,jq0);
654
655             /* EWALD ELECTROSTATICS */
656
657             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
658             ewrt             = _mm_mul_ps(r10,ewtabscale);
659             ewitab           = _mm_cvttps_epi32(ewrt);
660             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
661             ewitab           = _mm_slli_epi32(ewitab,2);
662             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
663             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
664             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
665             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
666             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
667             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
668             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
669             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
670             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
671
672             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
673
674             /* Update potential sum for this i atom from the interaction with this j atom. */
675             velec            = _mm_and_ps(velec,cutoff_mask);
676             velec            = _mm_andnot_ps(dummy_mask,velec);
677             velecsum         = _mm_add_ps(velecsum,velec);
678
679             fscal            = felec;
680
681             fscal            = _mm_and_ps(fscal,cutoff_mask);
682
683             fscal            = _mm_andnot_ps(dummy_mask,fscal);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_ps(fscal,dx10);
687             ty               = _mm_mul_ps(fscal,dy10);
688             tz               = _mm_mul_ps(fscal,dz10);
689
690             /* Update vectorial force */
691             fix1             = _mm_add_ps(fix1,tx);
692             fiy1             = _mm_add_ps(fiy1,ty);
693             fiz1             = _mm_add_ps(fiz1,tz);
694
695             fjx0             = _mm_add_ps(fjx0,tx);
696             fjy0             = _mm_add_ps(fjy0,ty);
697             fjz0             = _mm_add_ps(fjz0,tz);
698             
699             }
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             if (gmx_mm_any_lt(rsq20,rcutoff2))
706             {
707
708             r20              = _mm_mul_ps(rsq20,rinv20);
709             r20              = _mm_andnot_ps(dummy_mask,r20);
710
711             /* Compute parameters for interactions between i and j atoms */
712             qq20             = _mm_mul_ps(iq2,jq0);
713
714             /* EWALD ELECTROSTATICS */
715
716             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
717             ewrt             = _mm_mul_ps(r20,ewtabscale);
718             ewitab           = _mm_cvttps_epi32(ewrt);
719             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
720             ewitab           = _mm_slli_epi32(ewitab,2);
721             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
722             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
723             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
724             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
725             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
726             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
727             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
728             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
729             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
730
731             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
732
733             /* Update potential sum for this i atom from the interaction with this j atom. */
734             velec            = _mm_and_ps(velec,cutoff_mask);
735             velec            = _mm_andnot_ps(dummy_mask,velec);
736             velecsum         = _mm_add_ps(velecsum,velec);
737
738             fscal            = felec;
739
740             fscal            = _mm_and_ps(fscal,cutoff_mask);
741
742             fscal            = _mm_andnot_ps(dummy_mask,fscal);
743
744             /* Calculate temporary vectorial force */
745             tx               = _mm_mul_ps(fscal,dx20);
746             ty               = _mm_mul_ps(fscal,dy20);
747             tz               = _mm_mul_ps(fscal,dz20);
748
749             /* Update vectorial force */
750             fix2             = _mm_add_ps(fix2,tx);
751             fiy2             = _mm_add_ps(fiy2,ty);
752             fiz2             = _mm_add_ps(fiz2,tz);
753
754             fjx0             = _mm_add_ps(fjx0,tx);
755             fjy0             = _mm_add_ps(fjy0,ty);
756             fjz0             = _mm_add_ps(fjz0,tz);
757             
758             }
759
760             /**************************
761              * CALCULATE INTERACTIONS *
762              **************************/
763
764             if (gmx_mm_any_lt(rsq30,rcutoff2))
765             {
766
767             r30              = _mm_mul_ps(rsq30,rinv30);
768             r30              = _mm_andnot_ps(dummy_mask,r30);
769
770             /* Compute parameters for interactions between i and j atoms */
771             qq30             = _mm_mul_ps(iq3,jq0);
772
773             /* EWALD ELECTROSTATICS */
774
775             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
776             ewrt             = _mm_mul_ps(r30,ewtabscale);
777             ewitab           = _mm_cvttps_epi32(ewrt);
778             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
779             ewitab           = _mm_slli_epi32(ewitab,2);
780             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
781             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
782             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
783             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
784             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
785             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
786             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
787             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
788             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
789
790             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
791
792             /* Update potential sum for this i atom from the interaction with this j atom. */
793             velec            = _mm_and_ps(velec,cutoff_mask);
794             velec            = _mm_andnot_ps(dummy_mask,velec);
795             velecsum         = _mm_add_ps(velecsum,velec);
796
797             fscal            = felec;
798
799             fscal            = _mm_and_ps(fscal,cutoff_mask);
800
801             fscal            = _mm_andnot_ps(dummy_mask,fscal);
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_ps(fscal,dx30);
805             ty               = _mm_mul_ps(fscal,dy30);
806             tz               = _mm_mul_ps(fscal,dz30);
807
808             /* Update vectorial force */
809             fix3             = _mm_add_ps(fix3,tx);
810             fiy3             = _mm_add_ps(fiy3,ty);
811             fiz3             = _mm_add_ps(fiz3,tz);
812
813             fjx0             = _mm_add_ps(fjx0,tx);
814             fjy0             = _mm_add_ps(fjy0,ty);
815             fjz0             = _mm_add_ps(fjz0,tz);
816             
817             }
818
819             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
820             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
821             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
822             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
823
824             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
825
826             /* Inner loop uses 204 flops */
827         }
828
829         /* End of innermost loop */
830
831         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
832                                               f+i_coord_offset,fshift+i_shift_offset);
833
834         ggid                        = gid[iidx];
835         /* Update potential energies */
836         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
837         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
838
839         /* Increment number of inner iterations */
840         inneriter                  += j_index_end - j_index_start;
841
842         /* Outer loop uses 26 flops */
843     }
844
845     /* Increment number of outer iterations */
846     outeriter        += nri;
847
848     /* Update outer/inner flops */
849
850     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*204);
851 }
852 /*
853  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
854  * Electrostatics interaction: Ewald
855  * VdW interaction:            LJEwald
856  * Geometry:                   Water4-Particle
857  * Calculate force/pot:        Force
858  */
859 void
860 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
861                     (t_nblist                    * gmx_restrict       nlist,
862                      rvec                        * gmx_restrict          xx,
863                      rvec                        * gmx_restrict          ff,
864                      t_forcerec                  * gmx_restrict          fr,
865                      t_mdatoms                   * gmx_restrict     mdatoms,
866                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
867                      t_nrnb                      * gmx_restrict        nrnb)
868 {
869     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
870      * just 0 for non-waters.
871      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
872      * jnr indices corresponding to data put in the four positions in the SIMD register.
873      */
874     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
875     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
876     int              jnrA,jnrB,jnrC,jnrD;
877     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
878     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
879     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
880     real             rcutoff_scalar;
881     real             *shiftvec,*fshift,*x,*f;
882     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
883     real             scratch[4*DIM];
884     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
885     int              vdwioffset0;
886     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
887     int              vdwioffset1;
888     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
889     int              vdwioffset2;
890     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
891     int              vdwioffset3;
892     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
893     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
894     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
895     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
896     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
897     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
898     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
899     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
900     real             *charge;
901     int              nvdwtype;
902     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
903     int              *vdwtype;
904     real             *vdwparam;
905     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
906     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
907     __m128           c6grid_00;
908     __m128           c6grid_10;
909     __m128           c6grid_20;
910     __m128           c6grid_30;
911     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
912     real             *vdwgridparam;
913     __m128           one_half = _mm_set1_ps(0.5);
914     __m128           minus_one = _mm_set1_ps(-1.0);
915     __m128i          ewitab;
916     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
917     real             *ewtab;
918     __m128           dummy_mask,cutoff_mask;
919     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
920     __m128           one     = _mm_set1_ps(1.0);
921     __m128           two     = _mm_set1_ps(2.0);
922     x                = xx[0];
923     f                = ff[0];
924
925     nri              = nlist->nri;
926     iinr             = nlist->iinr;
927     jindex           = nlist->jindex;
928     jjnr             = nlist->jjnr;
929     shiftidx         = nlist->shift;
930     gid              = nlist->gid;
931     shiftvec         = fr->shift_vec[0];
932     fshift           = fr->fshift[0];
933     facel            = _mm_set1_ps(fr->epsfac);
934     charge           = mdatoms->chargeA;
935     nvdwtype         = fr->ntype;
936     vdwparam         = fr->nbfp;
937     vdwtype          = mdatoms->typeA;
938     vdwgridparam     = fr->ljpme_c6grid;
939     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
940     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
941     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
942
943     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
944     ewtab            = fr->ic->tabq_coul_F;
945     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
946     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
947
948     /* Setup water-specific parameters */
949     inr              = nlist->iinr[0];
950     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
951     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
952     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
953     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
954
955     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
956     rcutoff_scalar   = fr->rcoulomb;
957     rcutoff          = _mm_set1_ps(rcutoff_scalar);
958     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
959
960     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
961     rvdw             = _mm_set1_ps(fr->rvdw);
962
963     /* Avoid stupid compiler warnings */
964     jnrA = jnrB = jnrC = jnrD = 0;
965     j_coord_offsetA = 0;
966     j_coord_offsetB = 0;
967     j_coord_offsetC = 0;
968     j_coord_offsetD = 0;
969
970     outeriter        = 0;
971     inneriter        = 0;
972
973     for(iidx=0;iidx<4*DIM;iidx++)
974     {
975         scratch[iidx] = 0.0;
976     }  
977
978     /* Start outer loop over neighborlists */
979     for(iidx=0; iidx<nri; iidx++)
980     {
981         /* Load shift vector for this list */
982         i_shift_offset   = DIM*shiftidx[iidx];
983
984         /* Load limits for loop over neighbors */
985         j_index_start    = jindex[iidx];
986         j_index_end      = jindex[iidx+1];
987
988         /* Get outer coordinate index */
989         inr              = iinr[iidx];
990         i_coord_offset   = DIM*inr;
991
992         /* Load i particle coords and add shift vector */
993         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
994                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
995         
996         fix0             = _mm_setzero_ps();
997         fiy0             = _mm_setzero_ps();
998         fiz0             = _mm_setzero_ps();
999         fix1             = _mm_setzero_ps();
1000         fiy1             = _mm_setzero_ps();
1001         fiz1             = _mm_setzero_ps();
1002         fix2             = _mm_setzero_ps();
1003         fiy2             = _mm_setzero_ps();
1004         fiz2             = _mm_setzero_ps();
1005         fix3             = _mm_setzero_ps();
1006         fiy3             = _mm_setzero_ps();
1007         fiz3             = _mm_setzero_ps();
1008
1009         /* Start inner kernel loop */
1010         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1011         {
1012
1013             /* Get j neighbor index, and coordinate index */
1014             jnrA             = jjnr[jidx];
1015             jnrB             = jjnr[jidx+1];
1016             jnrC             = jjnr[jidx+2];
1017             jnrD             = jjnr[jidx+3];
1018             j_coord_offsetA  = DIM*jnrA;
1019             j_coord_offsetB  = DIM*jnrB;
1020             j_coord_offsetC  = DIM*jnrC;
1021             j_coord_offsetD  = DIM*jnrD;
1022
1023             /* load j atom coordinates */
1024             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1025                                               x+j_coord_offsetC,x+j_coord_offsetD,
1026                                               &jx0,&jy0,&jz0);
1027
1028             /* Calculate displacement vector */
1029             dx00             = _mm_sub_ps(ix0,jx0);
1030             dy00             = _mm_sub_ps(iy0,jy0);
1031             dz00             = _mm_sub_ps(iz0,jz0);
1032             dx10             = _mm_sub_ps(ix1,jx0);
1033             dy10             = _mm_sub_ps(iy1,jy0);
1034             dz10             = _mm_sub_ps(iz1,jz0);
1035             dx20             = _mm_sub_ps(ix2,jx0);
1036             dy20             = _mm_sub_ps(iy2,jy0);
1037             dz20             = _mm_sub_ps(iz2,jz0);
1038             dx30             = _mm_sub_ps(ix3,jx0);
1039             dy30             = _mm_sub_ps(iy3,jy0);
1040             dz30             = _mm_sub_ps(iz3,jz0);
1041
1042             /* Calculate squared distance and things based on it */
1043             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1044             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1045             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1046             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1047
1048             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1049             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1050             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1051             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1052
1053             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1054             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1055             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1056             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1057
1058             /* Load parameters for j particles */
1059             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1060                                                               charge+jnrC+0,charge+jnrD+0);
1061             vdwjidx0A        = 2*vdwtype[jnrA+0];
1062             vdwjidx0B        = 2*vdwtype[jnrB+0];
1063             vdwjidx0C        = 2*vdwtype[jnrC+0];
1064             vdwjidx0D        = 2*vdwtype[jnrD+0];
1065
1066             fjx0             = _mm_setzero_ps();
1067             fjy0             = _mm_setzero_ps();
1068             fjz0             = _mm_setzero_ps();
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             if (gmx_mm_any_lt(rsq00,rcutoff2))
1075             {
1076
1077             r00              = _mm_mul_ps(rsq00,rinv00);
1078
1079             /* Compute parameters for interactions between i and j atoms */
1080             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1081                                          vdwparam+vdwioffset0+vdwjidx0B,
1082                                          vdwparam+vdwioffset0+vdwjidx0C,
1083                                          vdwparam+vdwioffset0+vdwjidx0D,
1084                                          &c6_00,&c12_00);
1085             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1086                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1087                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1088                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1089
1090             /* Analytical LJ-PME */
1091             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1092             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1093             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1094             exponent         = gmx_simd_exp_r(ewcljrsq);
1095             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1096             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1097             /* f6A = 6 * C6grid * (1 - poly) */
1098             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1099             /* f6B = C6grid * exponent * beta^6 */
1100             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1101             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1102             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1105
1106             fscal            = fvdw;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_ps(fscal,dx00);
1112             ty               = _mm_mul_ps(fscal,dy00);
1113             tz               = _mm_mul_ps(fscal,dz00);
1114
1115             /* Update vectorial force */
1116             fix0             = _mm_add_ps(fix0,tx);
1117             fiy0             = _mm_add_ps(fiy0,ty);
1118             fiz0             = _mm_add_ps(fiz0,tz);
1119
1120             fjx0             = _mm_add_ps(fjx0,tx);
1121             fjy0             = _mm_add_ps(fjy0,ty);
1122             fjz0             = _mm_add_ps(fjz0,tz);
1123             
1124             }
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             if (gmx_mm_any_lt(rsq10,rcutoff2))
1131             {
1132
1133             r10              = _mm_mul_ps(rsq10,rinv10);
1134
1135             /* Compute parameters for interactions between i and j atoms */
1136             qq10             = _mm_mul_ps(iq1,jq0);
1137
1138             /* EWALD ELECTROSTATICS */
1139
1140             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1141             ewrt             = _mm_mul_ps(r10,ewtabscale);
1142             ewitab           = _mm_cvttps_epi32(ewrt);
1143             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1144             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1145                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1146                                          &ewtabF,&ewtabFn);
1147             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1148             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1149
1150             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm_and_ps(fscal,cutoff_mask);
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm_mul_ps(fscal,dx10);
1158             ty               = _mm_mul_ps(fscal,dy10);
1159             tz               = _mm_mul_ps(fscal,dz10);
1160
1161             /* Update vectorial force */
1162             fix1             = _mm_add_ps(fix1,tx);
1163             fiy1             = _mm_add_ps(fiy1,ty);
1164             fiz1             = _mm_add_ps(fiz1,tz);
1165
1166             fjx0             = _mm_add_ps(fjx0,tx);
1167             fjy0             = _mm_add_ps(fjy0,ty);
1168             fjz0             = _mm_add_ps(fjz0,tz);
1169             
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (gmx_mm_any_lt(rsq20,rcutoff2))
1177             {
1178
1179             r20              = _mm_mul_ps(rsq20,rinv20);
1180
1181             /* Compute parameters for interactions between i and j atoms */
1182             qq20             = _mm_mul_ps(iq2,jq0);
1183
1184             /* EWALD ELECTROSTATICS */
1185
1186             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1187             ewrt             = _mm_mul_ps(r20,ewtabscale);
1188             ewitab           = _mm_cvttps_epi32(ewrt);
1189             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1190             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1191                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1192                                          &ewtabF,&ewtabFn);
1193             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1194             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1195
1196             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm_and_ps(fscal,cutoff_mask);
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm_mul_ps(fscal,dx20);
1204             ty               = _mm_mul_ps(fscal,dy20);
1205             tz               = _mm_mul_ps(fscal,dz20);
1206
1207             /* Update vectorial force */
1208             fix2             = _mm_add_ps(fix2,tx);
1209             fiy2             = _mm_add_ps(fiy2,ty);
1210             fiz2             = _mm_add_ps(fiz2,tz);
1211
1212             fjx0             = _mm_add_ps(fjx0,tx);
1213             fjy0             = _mm_add_ps(fjy0,ty);
1214             fjz0             = _mm_add_ps(fjz0,tz);
1215             
1216             }
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             if (gmx_mm_any_lt(rsq30,rcutoff2))
1223             {
1224
1225             r30              = _mm_mul_ps(rsq30,rinv30);
1226
1227             /* Compute parameters for interactions between i and j atoms */
1228             qq30             = _mm_mul_ps(iq3,jq0);
1229
1230             /* EWALD ELECTROSTATICS */
1231
1232             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1233             ewrt             = _mm_mul_ps(r30,ewtabscale);
1234             ewitab           = _mm_cvttps_epi32(ewrt);
1235             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1236             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1237                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1238                                          &ewtabF,&ewtabFn);
1239             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1240             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1241
1242             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_and_ps(fscal,cutoff_mask);
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm_mul_ps(fscal,dx30);
1250             ty               = _mm_mul_ps(fscal,dy30);
1251             tz               = _mm_mul_ps(fscal,dz30);
1252
1253             /* Update vectorial force */
1254             fix3             = _mm_add_ps(fix3,tx);
1255             fiy3             = _mm_add_ps(fiy3,ty);
1256             fiz3             = _mm_add_ps(fiz3,tz);
1257
1258             fjx0             = _mm_add_ps(fjx0,tx);
1259             fjy0             = _mm_add_ps(fjy0,ty);
1260             fjz0             = _mm_add_ps(fjz0,tz);
1261             
1262             }
1263
1264             fjptrA             = f+j_coord_offsetA;
1265             fjptrB             = f+j_coord_offsetB;
1266             fjptrC             = f+j_coord_offsetC;
1267             fjptrD             = f+j_coord_offsetD;
1268
1269             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1270
1271             /* Inner loop uses 166 flops */
1272         }
1273
1274         if(jidx<j_index_end)
1275         {
1276
1277             /* Get j neighbor index, and coordinate index */
1278             jnrlistA         = jjnr[jidx];
1279             jnrlistB         = jjnr[jidx+1];
1280             jnrlistC         = jjnr[jidx+2];
1281             jnrlistD         = jjnr[jidx+3];
1282             /* Sign of each element will be negative for non-real atoms.
1283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1284              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1285              */
1286             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1287             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1288             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1289             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1290             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1291             j_coord_offsetA  = DIM*jnrA;
1292             j_coord_offsetB  = DIM*jnrB;
1293             j_coord_offsetC  = DIM*jnrC;
1294             j_coord_offsetD  = DIM*jnrD;
1295
1296             /* load j atom coordinates */
1297             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1298                                               x+j_coord_offsetC,x+j_coord_offsetD,
1299                                               &jx0,&jy0,&jz0);
1300
1301             /* Calculate displacement vector */
1302             dx00             = _mm_sub_ps(ix0,jx0);
1303             dy00             = _mm_sub_ps(iy0,jy0);
1304             dz00             = _mm_sub_ps(iz0,jz0);
1305             dx10             = _mm_sub_ps(ix1,jx0);
1306             dy10             = _mm_sub_ps(iy1,jy0);
1307             dz10             = _mm_sub_ps(iz1,jz0);
1308             dx20             = _mm_sub_ps(ix2,jx0);
1309             dy20             = _mm_sub_ps(iy2,jy0);
1310             dz20             = _mm_sub_ps(iz2,jz0);
1311             dx30             = _mm_sub_ps(ix3,jx0);
1312             dy30             = _mm_sub_ps(iy3,jy0);
1313             dz30             = _mm_sub_ps(iz3,jz0);
1314
1315             /* Calculate squared distance and things based on it */
1316             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1317             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1318             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1319             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1320
1321             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1322             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1323             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1324             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1325
1326             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1327             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1328             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1329             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1330
1331             /* Load parameters for j particles */
1332             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1333                                                               charge+jnrC+0,charge+jnrD+0);
1334             vdwjidx0A        = 2*vdwtype[jnrA+0];
1335             vdwjidx0B        = 2*vdwtype[jnrB+0];
1336             vdwjidx0C        = 2*vdwtype[jnrC+0];
1337             vdwjidx0D        = 2*vdwtype[jnrD+0];
1338
1339             fjx0             = _mm_setzero_ps();
1340             fjy0             = _mm_setzero_ps();
1341             fjz0             = _mm_setzero_ps();
1342
1343             /**************************
1344              * CALCULATE INTERACTIONS *
1345              **************************/
1346
1347             if (gmx_mm_any_lt(rsq00,rcutoff2))
1348             {
1349
1350             r00              = _mm_mul_ps(rsq00,rinv00);
1351             r00              = _mm_andnot_ps(dummy_mask,r00);
1352
1353             /* Compute parameters for interactions between i and j atoms */
1354             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1355                                          vdwparam+vdwioffset0+vdwjidx0B,
1356                                          vdwparam+vdwioffset0+vdwjidx0C,
1357                                          vdwparam+vdwioffset0+vdwjidx0D,
1358                                          &c6_00,&c12_00);
1359             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1360                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1361                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1362                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1363
1364             /* Analytical LJ-PME */
1365             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1366             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1367             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1368             exponent         = gmx_simd_exp_r(ewcljrsq);
1369             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1370             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1371             /* f6A = 6 * C6grid * (1 - poly) */
1372             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1373             /* f6B = C6grid * exponent * beta^6 */
1374             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1375             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1376             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1377
1378             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1379
1380             fscal            = fvdw;
1381
1382             fscal            = _mm_and_ps(fscal,cutoff_mask);
1383
1384             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1385
1386             /* Calculate temporary vectorial force */
1387             tx               = _mm_mul_ps(fscal,dx00);
1388             ty               = _mm_mul_ps(fscal,dy00);
1389             tz               = _mm_mul_ps(fscal,dz00);
1390
1391             /* Update vectorial force */
1392             fix0             = _mm_add_ps(fix0,tx);
1393             fiy0             = _mm_add_ps(fiy0,ty);
1394             fiz0             = _mm_add_ps(fiz0,tz);
1395
1396             fjx0             = _mm_add_ps(fjx0,tx);
1397             fjy0             = _mm_add_ps(fjy0,ty);
1398             fjz0             = _mm_add_ps(fjz0,tz);
1399             
1400             }
1401
1402             /**************************
1403              * CALCULATE INTERACTIONS *
1404              **************************/
1405
1406             if (gmx_mm_any_lt(rsq10,rcutoff2))
1407             {
1408
1409             r10              = _mm_mul_ps(rsq10,rinv10);
1410             r10              = _mm_andnot_ps(dummy_mask,r10);
1411
1412             /* Compute parameters for interactions between i and j atoms */
1413             qq10             = _mm_mul_ps(iq1,jq0);
1414
1415             /* EWALD ELECTROSTATICS */
1416
1417             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1418             ewrt             = _mm_mul_ps(r10,ewtabscale);
1419             ewitab           = _mm_cvttps_epi32(ewrt);
1420             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1421             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1422                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1423                                          &ewtabF,&ewtabFn);
1424             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1425             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1426
1427             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1428
1429             fscal            = felec;
1430
1431             fscal            = _mm_and_ps(fscal,cutoff_mask);
1432
1433             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1434
1435             /* Calculate temporary vectorial force */
1436             tx               = _mm_mul_ps(fscal,dx10);
1437             ty               = _mm_mul_ps(fscal,dy10);
1438             tz               = _mm_mul_ps(fscal,dz10);
1439
1440             /* Update vectorial force */
1441             fix1             = _mm_add_ps(fix1,tx);
1442             fiy1             = _mm_add_ps(fiy1,ty);
1443             fiz1             = _mm_add_ps(fiz1,tz);
1444
1445             fjx0             = _mm_add_ps(fjx0,tx);
1446             fjy0             = _mm_add_ps(fjy0,ty);
1447             fjz0             = _mm_add_ps(fjz0,tz);
1448             
1449             }
1450
1451             /**************************
1452              * CALCULATE INTERACTIONS *
1453              **************************/
1454
1455             if (gmx_mm_any_lt(rsq20,rcutoff2))
1456             {
1457
1458             r20              = _mm_mul_ps(rsq20,rinv20);
1459             r20              = _mm_andnot_ps(dummy_mask,r20);
1460
1461             /* Compute parameters for interactions between i and j atoms */
1462             qq20             = _mm_mul_ps(iq2,jq0);
1463
1464             /* EWALD ELECTROSTATICS */
1465
1466             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1467             ewrt             = _mm_mul_ps(r20,ewtabscale);
1468             ewitab           = _mm_cvttps_epi32(ewrt);
1469             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1470             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1471                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1472                                          &ewtabF,&ewtabFn);
1473             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1474             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1475
1476             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1477
1478             fscal            = felec;
1479
1480             fscal            = _mm_and_ps(fscal,cutoff_mask);
1481
1482             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1483
1484             /* Calculate temporary vectorial force */
1485             tx               = _mm_mul_ps(fscal,dx20);
1486             ty               = _mm_mul_ps(fscal,dy20);
1487             tz               = _mm_mul_ps(fscal,dz20);
1488
1489             /* Update vectorial force */
1490             fix2             = _mm_add_ps(fix2,tx);
1491             fiy2             = _mm_add_ps(fiy2,ty);
1492             fiz2             = _mm_add_ps(fiz2,tz);
1493
1494             fjx0             = _mm_add_ps(fjx0,tx);
1495             fjy0             = _mm_add_ps(fjy0,ty);
1496             fjz0             = _mm_add_ps(fjz0,tz);
1497             
1498             }
1499
1500             /**************************
1501              * CALCULATE INTERACTIONS *
1502              **************************/
1503
1504             if (gmx_mm_any_lt(rsq30,rcutoff2))
1505             {
1506
1507             r30              = _mm_mul_ps(rsq30,rinv30);
1508             r30              = _mm_andnot_ps(dummy_mask,r30);
1509
1510             /* Compute parameters for interactions between i and j atoms */
1511             qq30             = _mm_mul_ps(iq3,jq0);
1512
1513             /* EWALD ELECTROSTATICS */
1514
1515             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1516             ewrt             = _mm_mul_ps(r30,ewtabscale);
1517             ewitab           = _mm_cvttps_epi32(ewrt);
1518             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1519             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1520                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1521                                          &ewtabF,&ewtabFn);
1522             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1523             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1524
1525             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1526
1527             fscal            = felec;
1528
1529             fscal            = _mm_and_ps(fscal,cutoff_mask);
1530
1531             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1532
1533             /* Calculate temporary vectorial force */
1534             tx               = _mm_mul_ps(fscal,dx30);
1535             ty               = _mm_mul_ps(fscal,dy30);
1536             tz               = _mm_mul_ps(fscal,dz30);
1537
1538             /* Update vectorial force */
1539             fix3             = _mm_add_ps(fix3,tx);
1540             fiy3             = _mm_add_ps(fiy3,ty);
1541             fiz3             = _mm_add_ps(fiz3,tz);
1542
1543             fjx0             = _mm_add_ps(fjx0,tx);
1544             fjy0             = _mm_add_ps(fjy0,ty);
1545             fjz0             = _mm_add_ps(fjz0,tz);
1546             
1547             }
1548
1549             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1550             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1551             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1552             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1553
1554             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1555
1556             /* Inner loop uses 170 flops */
1557         }
1558
1559         /* End of innermost loop */
1560
1561         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1562                                               f+i_coord_offset,fshift+i_shift_offset);
1563
1564         /* Increment number of inner iterations */
1565         inneriter                  += j_index_end - j_index_start;
1566
1567         /* Outer loop uses 24 flops */
1568     }
1569
1570     /* Increment number of outer iterations */
1571     outeriter        += nri;
1572
1573     /* Update outer/inner flops */
1574
1575     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*170);
1576 }