Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           c6grid_00;
108     __m128           c6grid_10;
109     __m128           c6grid_20;
110     __m128           c6grid_30;
111     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
112     real             *vdwgridparam;
113     __m128           one_half = _mm_set1_ps(0.5);
114     __m128           minus_one = _mm_set1_ps(-1.0);
115     __m128i          ewitab;
116     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128           dummy_mask,cutoff_mask;
119     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
120     __m128           one     = _mm_set1_ps(1.0);
121     __m128           two     = _mm_set1_ps(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_ps(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138     vdwgridparam     = fr->ljpme_c6grid;
139     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
140     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
141     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
142
143     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
144     ewtab            = fr->ic->tabq_coul_FDV0;
145     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
146     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
147
148     /* Setup water-specific parameters */
149     inr              = nlist->iinr[0];
150     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
151     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
152     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
153     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
156     rcutoff_scalar   = fr->rcoulomb;
157     rcutoff          = _mm_set1_ps(rcutoff_scalar);
158     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
159
160     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
161     rvdw             = _mm_set1_ps(fr->rvdw);
162
163     /* Avoid stupid compiler warnings */
164     jnrA = jnrB = jnrC = jnrD = 0;
165     j_coord_offsetA = 0;
166     j_coord_offsetB = 0;
167     j_coord_offsetC = 0;
168     j_coord_offsetD = 0;
169
170     outeriter        = 0;
171     inneriter        = 0;
172
173     for(iidx=0;iidx<4*DIM;iidx++)
174     {
175         scratch[iidx] = 0.0;
176     }  
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
194                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
195         
196         fix0             = _mm_setzero_ps();
197         fiy0             = _mm_setzero_ps();
198         fiz0             = _mm_setzero_ps();
199         fix1             = _mm_setzero_ps();
200         fiy1             = _mm_setzero_ps();
201         fiz1             = _mm_setzero_ps();
202         fix2             = _mm_setzero_ps();
203         fiy2             = _mm_setzero_ps();
204         fiz2             = _mm_setzero_ps();
205         fix3             = _mm_setzero_ps();
206         fiy3             = _mm_setzero_ps();
207         fiz3             = _mm_setzero_ps();
208
209         /* Reset potential sums */
210         velecsum         = _mm_setzero_ps();
211         vvdwsum          = _mm_setzero_ps();
212
213         /* Start inner kernel loop */
214         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
215         {
216
217             /* Get j neighbor index, and coordinate index */
218             jnrA             = jjnr[jidx];
219             jnrB             = jjnr[jidx+1];
220             jnrC             = jjnr[jidx+2];
221             jnrD             = jjnr[jidx+3];
222             j_coord_offsetA  = DIM*jnrA;
223             j_coord_offsetB  = DIM*jnrB;
224             j_coord_offsetC  = DIM*jnrC;
225             j_coord_offsetD  = DIM*jnrD;
226
227             /* load j atom coordinates */
228             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
229                                               x+j_coord_offsetC,x+j_coord_offsetD,
230                                               &jx0,&jy0,&jz0);
231
232             /* Calculate displacement vector */
233             dx00             = _mm_sub_ps(ix0,jx0);
234             dy00             = _mm_sub_ps(iy0,jy0);
235             dz00             = _mm_sub_ps(iz0,jz0);
236             dx10             = _mm_sub_ps(ix1,jx0);
237             dy10             = _mm_sub_ps(iy1,jy0);
238             dz10             = _mm_sub_ps(iz1,jz0);
239             dx20             = _mm_sub_ps(ix2,jx0);
240             dy20             = _mm_sub_ps(iy2,jy0);
241             dz20             = _mm_sub_ps(iz2,jz0);
242             dx30             = _mm_sub_ps(ix3,jx0);
243             dy30             = _mm_sub_ps(iy3,jy0);
244             dz30             = _mm_sub_ps(iz3,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
248             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
249             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
250             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
251
252             rinv00           = gmx_mm_invsqrt_ps(rsq00);
253             rinv10           = gmx_mm_invsqrt_ps(rsq10);
254             rinv20           = gmx_mm_invsqrt_ps(rsq20);
255             rinv30           = gmx_mm_invsqrt_ps(rsq30);
256
257             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
258             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
259             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
260             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
261
262             /* Load parameters for j particles */
263             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
264                                                               charge+jnrC+0,charge+jnrD+0);
265             vdwjidx0A        = 2*vdwtype[jnrA+0];
266             vdwjidx0B        = 2*vdwtype[jnrB+0];
267             vdwjidx0C        = 2*vdwtype[jnrC+0];
268             vdwjidx0D        = 2*vdwtype[jnrD+0];
269
270             fjx0             = _mm_setzero_ps();
271             fjy0             = _mm_setzero_ps();
272             fjz0             = _mm_setzero_ps();
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             if (gmx_mm_any_lt(rsq00,rcutoff2))
279             {
280
281             r00              = _mm_mul_ps(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
285                                          vdwparam+vdwioffset0+vdwjidx0B,
286                                          vdwparam+vdwioffset0+vdwjidx0C,
287                                          vdwparam+vdwioffset0+vdwjidx0D,
288                                          &c6_00,&c12_00);
289             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
290                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
291                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
292                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
293
294             /* Analytical LJ-PME */
295             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
296             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
297             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
298             exponent         = gmx_simd_exp_r(ewcljrsq);
299             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
300             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
301             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
302             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
303             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
304             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
305                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
306             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
307             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
308
309             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
313             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
314
315             fscal            = fvdw;
316
317             fscal            = _mm_and_ps(fscal,cutoff_mask);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_ps(fscal,dx00);
321             ty               = _mm_mul_ps(fscal,dy00);
322             tz               = _mm_mul_ps(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm_add_ps(fix0,tx);
326             fiy0             = _mm_add_ps(fiy0,ty);
327             fiz0             = _mm_add_ps(fiz0,tz);
328
329             fjx0             = _mm_add_ps(fjx0,tx);
330             fjy0             = _mm_add_ps(fjy0,ty);
331             fjz0             = _mm_add_ps(fjz0,tz);
332             
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm_any_lt(rsq10,rcutoff2))
340             {
341
342             r10              = _mm_mul_ps(rsq10,rinv10);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq10             = _mm_mul_ps(iq1,jq0);
346
347             /* EWALD ELECTROSTATICS */
348
349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
350             ewrt             = _mm_mul_ps(r10,ewtabscale);
351             ewitab           = _mm_cvttps_epi32(ewrt);
352             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
353             ewitab           = _mm_slli_epi32(ewitab,2);
354             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
355             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
356             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
357             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
358             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
359             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
360             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
361             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
362             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
363
364             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velec            = _mm_and_ps(velec,cutoff_mask);
368             velecsum         = _mm_add_ps(velecsum,velec);
369
370             fscal            = felec;
371
372             fscal            = _mm_and_ps(fscal,cutoff_mask);
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm_mul_ps(fscal,dx10);
376             ty               = _mm_mul_ps(fscal,dy10);
377             tz               = _mm_mul_ps(fscal,dz10);
378
379             /* Update vectorial force */
380             fix1             = _mm_add_ps(fix1,tx);
381             fiy1             = _mm_add_ps(fiy1,ty);
382             fiz1             = _mm_add_ps(fiz1,tz);
383
384             fjx0             = _mm_add_ps(fjx0,tx);
385             fjy0             = _mm_add_ps(fjy0,ty);
386             fjz0             = _mm_add_ps(fjz0,tz);
387             
388             }
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             if (gmx_mm_any_lt(rsq20,rcutoff2))
395             {
396
397             r20              = _mm_mul_ps(rsq20,rinv20);
398
399             /* Compute parameters for interactions between i and j atoms */
400             qq20             = _mm_mul_ps(iq2,jq0);
401
402             /* EWALD ELECTROSTATICS */
403
404             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
405             ewrt             = _mm_mul_ps(r20,ewtabscale);
406             ewitab           = _mm_cvttps_epi32(ewrt);
407             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
408             ewitab           = _mm_slli_epi32(ewitab,2);
409             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
410             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
411             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
412             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
413             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
414             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
415             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
416             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
417             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
418
419             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_and_ps(velec,cutoff_mask);
423             velecsum         = _mm_add_ps(velecsum,velec);
424
425             fscal            = felec;
426
427             fscal            = _mm_and_ps(fscal,cutoff_mask);
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm_mul_ps(fscal,dx20);
431             ty               = _mm_mul_ps(fscal,dy20);
432             tz               = _mm_mul_ps(fscal,dz20);
433
434             /* Update vectorial force */
435             fix2             = _mm_add_ps(fix2,tx);
436             fiy2             = _mm_add_ps(fiy2,ty);
437             fiz2             = _mm_add_ps(fiz2,tz);
438
439             fjx0             = _mm_add_ps(fjx0,tx);
440             fjy0             = _mm_add_ps(fjy0,ty);
441             fjz0             = _mm_add_ps(fjz0,tz);
442             
443             }
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             if (gmx_mm_any_lt(rsq30,rcutoff2))
450             {
451
452             r30              = _mm_mul_ps(rsq30,rinv30);
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq30             = _mm_mul_ps(iq3,jq0);
456
457             /* EWALD ELECTROSTATICS */
458
459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
460             ewrt             = _mm_mul_ps(r30,ewtabscale);
461             ewitab           = _mm_cvttps_epi32(ewrt);
462             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
463             ewitab           = _mm_slli_epi32(ewitab,2);
464             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
465             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
466             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
467             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
468             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
469             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
470             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
471             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
472             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
473
474             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_and_ps(velec,cutoff_mask);
478             velecsum         = _mm_add_ps(velecsum,velec);
479
480             fscal            = felec;
481
482             fscal            = _mm_and_ps(fscal,cutoff_mask);
483
484             /* Calculate temporary vectorial force */
485             tx               = _mm_mul_ps(fscal,dx30);
486             ty               = _mm_mul_ps(fscal,dy30);
487             tz               = _mm_mul_ps(fscal,dz30);
488
489             /* Update vectorial force */
490             fix3             = _mm_add_ps(fix3,tx);
491             fiy3             = _mm_add_ps(fiy3,ty);
492             fiz3             = _mm_add_ps(fiz3,tz);
493
494             fjx0             = _mm_add_ps(fjx0,tx);
495             fjy0             = _mm_add_ps(fjy0,ty);
496             fjz0             = _mm_add_ps(fjz0,tz);
497             
498             }
499
500             fjptrA             = f+j_coord_offsetA;
501             fjptrB             = f+j_coord_offsetB;
502             fjptrC             = f+j_coord_offsetC;
503             fjptrD             = f+j_coord_offsetD;
504
505             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
506
507             /* Inner loop uses 200 flops */
508         }
509
510         if(jidx<j_index_end)
511         {
512
513             /* Get j neighbor index, and coordinate index */
514             jnrlistA         = jjnr[jidx];
515             jnrlistB         = jjnr[jidx+1];
516             jnrlistC         = jjnr[jidx+2];
517             jnrlistD         = jjnr[jidx+3];
518             /* Sign of each element will be negative for non-real atoms.
519              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
520              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
521              */
522             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
523             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
524             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
525             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
526             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
527             j_coord_offsetA  = DIM*jnrA;
528             j_coord_offsetB  = DIM*jnrB;
529             j_coord_offsetC  = DIM*jnrC;
530             j_coord_offsetD  = DIM*jnrD;
531
532             /* load j atom coordinates */
533             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
534                                               x+j_coord_offsetC,x+j_coord_offsetD,
535                                               &jx0,&jy0,&jz0);
536
537             /* Calculate displacement vector */
538             dx00             = _mm_sub_ps(ix0,jx0);
539             dy00             = _mm_sub_ps(iy0,jy0);
540             dz00             = _mm_sub_ps(iz0,jz0);
541             dx10             = _mm_sub_ps(ix1,jx0);
542             dy10             = _mm_sub_ps(iy1,jy0);
543             dz10             = _mm_sub_ps(iz1,jz0);
544             dx20             = _mm_sub_ps(ix2,jx0);
545             dy20             = _mm_sub_ps(iy2,jy0);
546             dz20             = _mm_sub_ps(iz2,jz0);
547             dx30             = _mm_sub_ps(ix3,jx0);
548             dy30             = _mm_sub_ps(iy3,jy0);
549             dz30             = _mm_sub_ps(iz3,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
554             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
555             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
556
557             rinv00           = gmx_mm_invsqrt_ps(rsq00);
558             rinv10           = gmx_mm_invsqrt_ps(rsq10);
559             rinv20           = gmx_mm_invsqrt_ps(rsq20);
560             rinv30           = gmx_mm_invsqrt_ps(rsq30);
561
562             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
563             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
564             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
565             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
569                                                               charge+jnrC+0,charge+jnrD+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572             vdwjidx0C        = 2*vdwtype[jnrC+0];
573             vdwjidx0D        = 2*vdwtype[jnrD+0];
574
575             fjx0             = _mm_setzero_ps();
576             fjy0             = _mm_setzero_ps();
577             fjz0             = _mm_setzero_ps();
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (gmx_mm_any_lt(rsq00,rcutoff2))
584             {
585
586             r00              = _mm_mul_ps(rsq00,rinv00);
587             r00              = _mm_andnot_ps(dummy_mask,r00);
588
589             /* Compute parameters for interactions between i and j atoms */
590             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
591                                          vdwparam+vdwioffset0+vdwjidx0B,
592                                          vdwparam+vdwioffset0+vdwjidx0C,
593                                          vdwparam+vdwioffset0+vdwjidx0D,
594                                          &c6_00,&c12_00);
595             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
596                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
597                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
598                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
599
600             /* Analytical LJ-PME */
601             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
602             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
603             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
604             exponent         = gmx_simd_exp_r(ewcljrsq);
605             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
606             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
607             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
608             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
609             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
610             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
611                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
612             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
613             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
614
615             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
619             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
620             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
621
622             fscal            = fvdw;
623
624             fscal            = _mm_and_ps(fscal,cutoff_mask);
625
626             fscal            = _mm_andnot_ps(dummy_mask,fscal);
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm_mul_ps(fscal,dx00);
630             ty               = _mm_mul_ps(fscal,dy00);
631             tz               = _mm_mul_ps(fscal,dz00);
632
633             /* Update vectorial force */
634             fix0             = _mm_add_ps(fix0,tx);
635             fiy0             = _mm_add_ps(fiy0,ty);
636             fiz0             = _mm_add_ps(fiz0,tz);
637
638             fjx0             = _mm_add_ps(fjx0,tx);
639             fjy0             = _mm_add_ps(fjy0,ty);
640             fjz0             = _mm_add_ps(fjz0,tz);
641             
642             }
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             if (gmx_mm_any_lt(rsq10,rcutoff2))
649             {
650
651             r10              = _mm_mul_ps(rsq10,rinv10);
652             r10              = _mm_andnot_ps(dummy_mask,r10);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq10             = _mm_mul_ps(iq1,jq0);
656
657             /* EWALD ELECTROSTATICS */
658
659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
660             ewrt             = _mm_mul_ps(r10,ewtabscale);
661             ewitab           = _mm_cvttps_epi32(ewrt);
662             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
663             ewitab           = _mm_slli_epi32(ewitab,2);
664             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
665             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
666             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
667             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
668             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
669             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
670             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
671             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
672             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
673
674             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm_and_ps(velec,cutoff_mask);
678             velec            = _mm_andnot_ps(dummy_mask,velec);
679             velecsum         = _mm_add_ps(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm_and_ps(fscal,cutoff_mask);
684
685             fscal            = _mm_andnot_ps(dummy_mask,fscal);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm_mul_ps(fscal,dx10);
689             ty               = _mm_mul_ps(fscal,dy10);
690             tz               = _mm_mul_ps(fscal,dz10);
691
692             /* Update vectorial force */
693             fix1             = _mm_add_ps(fix1,tx);
694             fiy1             = _mm_add_ps(fiy1,ty);
695             fiz1             = _mm_add_ps(fiz1,tz);
696
697             fjx0             = _mm_add_ps(fjx0,tx);
698             fjy0             = _mm_add_ps(fjy0,ty);
699             fjz0             = _mm_add_ps(fjz0,tz);
700             
701             }
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (gmx_mm_any_lt(rsq20,rcutoff2))
708             {
709
710             r20              = _mm_mul_ps(rsq20,rinv20);
711             r20              = _mm_andnot_ps(dummy_mask,r20);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq20             = _mm_mul_ps(iq2,jq0);
715
716             /* EWALD ELECTROSTATICS */
717
718             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
719             ewrt             = _mm_mul_ps(r20,ewtabscale);
720             ewitab           = _mm_cvttps_epi32(ewrt);
721             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
722             ewitab           = _mm_slli_epi32(ewitab,2);
723             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
724             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
725             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
726             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
727             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
728             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
729             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
730             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
731             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
732
733             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
734
735             /* Update potential sum for this i atom from the interaction with this j atom. */
736             velec            = _mm_and_ps(velec,cutoff_mask);
737             velec            = _mm_andnot_ps(dummy_mask,velec);
738             velecsum         = _mm_add_ps(velecsum,velec);
739
740             fscal            = felec;
741
742             fscal            = _mm_and_ps(fscal,cutoff_mask);
743
744             fscal            = _mm_andnot_ps(dummy_mask,fscal);
745
746             /* Calculate temporary vectorial force */
747             tx               = _mm_mul_ps(fscal,dx20);
748             ty               = _mm_mul_ps(fscal,dy20);
749             tz               = _mm_mul_ps(fscal,dz20);
750
751             /* Update vectorial force */
752             fix2             = _mm_add_ps(fix2,tx);
753             fiy2             = _mm_add_ps(fiy2,ty);
754             fiz2             = _mm_add_ps(fiz2,tz);
755
756             fjx0             = _mm_add_ps(fjx0,tx);
757             fjy0             = _mm_add_ps(fjy0,ty);
758             fjz0             = _mm_add_ps(fjz0,tz);
759             
760             }
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             if (gmx_mm_any_lt(rsq30,rcutoff2))
767             {
768
769             r30              = _mm_mul_ps(rsq30,rinv30);
770             r30              = _mm_andnot_ps(dummy_mask,r30);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq30             = _mm_mul_ps(iq3,jq0);
774
775             /* EWALD ELECTROSTATICS */
776
777             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
778             ewrt             = _mm_mul_ps(r30,ewtabscale);
779             ewitab           = _mm_cvttps_epi32(ewrt);
780             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
781             ewitab           = _mm_slli_epi32(ewitab,2);
782             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
783             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
784             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
785             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
786             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
787             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
788             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
789             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
790             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
791
792             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
793
794             /* Update potential sum for this i atom from the interaction with this j atom. */
795             velec            = _mm_and_ps(velec,cutoff_mask);
796             velec            = _mm_andnot_ps(dummy_mask,velec);
797             velecsum         = _mm_add_ps(velecsum,velec);
798
799             fscal            = felec;
800
801             fscal            = _mm_and_ps(fscal,cutoff_mask);
802
803             fscal            = _mm_andnot_ps(dummy_mask,fscal);
804
805             /* Calculate temporary vectorial force */
806             tx               = _mm_mul_ps(fscal,dx30);
807             ty               = _mm_mul_ps(fscal,dy30);
808             tz               = _mm_mul_ps(fscal,dz30);
809
810             /* Update vectorial force */
811             fix3             = _mm_add_ps(fix3,tx);
812             fiy3             = _mm_add_ps(fiy3,ty);
813             fiz3             = _mm_add_ps(fiz3,tz);
814
815             fjx0             = _mm_add_ps(fjx0,tx);
816             fjy0             = _mm_add_ps(fjy0,ty);
817             fjz0             = _mm_add_ps(fjz0,tz);
818             
819             }
820
821             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
822             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
823             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
824             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
825
826             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
827
828             /* Inner loop uses 204 flops */
829         }
830
831         /* End of innermost loop */
832
833         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
834                                               f+i_coord_offset,fshift+i_shift_offset);
835
836         ggid                        = gid[iidx];
837         /* Update potential energies */
838         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
839         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
840
841         /* Increment number of inner iterations */
842         inneriter                  += j_index_end - j_index_start;
843
844         /* Outer loop uses 26 flops */
845     }
846
847     /* Increment number of outer iterations */
848     outeriter        += nri;
849
850     /* Update outer/inner flops */
851
852     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*204);
853 }
854 /*
855  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
856  * Electrostatics interaction: Ewald
857  * VdW interaction:            LJEwald
858  * Geometry:                   Water4-Particle
859  * Calculate force/pot:        Force
860  */
861 void
862 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
863                     (t_nblist                    * gmx_restrict       nlist,
864                      rvec                        * gmx_restrict          xx,
865                      rvec                        * gmx_restrict          ff,
866                      t_forcerec                  * gmx_restrict          fr,
867                      t_mdatoms                   * gmx_restrict     mdatoms,
868                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
869                      t_nrnb                      * gmx_restrict        nrnb)
870 {
871     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
872      * just 0 for non-waters.
873      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
874      * jnr indices corresponding to data put in the four positions in the SIMD register.
875      */
876     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
877     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
878     int              jnrA,jnrB,jnrC,jnrD;
879     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
880     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
881     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
882     real             rcutoff_scalar;
883     real             *shiftvec,*fshift,*x,*f;
884     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
885     real             scratch[4*DIM];
886     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
887     int              vdwioffset0;
888     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
889     int              vdwioffset1;
890     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
891     int              vdwioffset2;
892     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
893     int              vdwioffset3;
894     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
895     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
896     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
897     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
898     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
899     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
900     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
901     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
902     real             *charge;
903     int              nvdwtype;
904     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
905     int              *vdwtype;
906     real             *vdwparam;
907     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
908     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
909     __m128           c6grid_00;
910     __m128           c6grid_10;
911     __m128           c6grid_20;
912     __m128           c6grid_30;
913     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
914     real             *vdwgridparam;
915     __m128           one_half = _mm_set1_ps(0.5);
916     __m128           minus_one = _mm_set1_ps(-1.0);
917     __m128i          ewitab;
918     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
919     real             *ewtab;
920     __m128           dummy_mask,cutoff_mask;
921     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
922     __m128           one     = _mm_set1_ps(1.0);
923     __m128           two     = _mm_set1_ps(2.0);
924     x                = xx[0];
925     f                = ff[0];
926
927     nri              = nlist->nri;
928     iinr             = nlist->iinr;
929     jindex           = nlist->jindex;
930     jjnr             = nlist->jjnr;
931     shiftidx         = nlist->shift;
932     gid              = nlist->gid;
933     shiftvec         = fr->shift_vec[0];
934     fshift           = fr->fshift[0];
935     facel            = _mm_set1_ps(fr->epsfac);
936     charge           = mdatoms->chargeA;
937     nvdwtype         = fr->ntype;
938     vdwparam         = fr->nbfp;
939     vdwtype          = mdatoms->typeA;
940     vdwgridparam     = fr->ljpme_c6grid;
941     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
942     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
943     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
944
945     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
946     ewtab            = fr->ic->tabq_coul_F;
947     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
948     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
949
950     /* Setup water-specific parameters */
951     inr              = nlist->iinr[0];
952     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
953     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
954     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
955     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
956
957     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
958     rcutoff_scalar   = fr->rcoulomb;
959     rcutoff          = _mm_set1_ps(rcutoff_scalar);
960     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
961
962     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
963     rvdw             = _mm_set1_ps(fr->rvdw);
964
965     /* Avoid stupid compiler warnings */
966     jnrA = jnrB = jnrC = jnrD = 0;
967     j_coord_offsetA = 0;
968     j_coord_offsetB = 0;
969     j_coord_offsetC = 0;
970     j_coord_offsetD = 0;
971
972     outeriter        = 0;
973     inneriter        = 0;
974
975     for(iidx=0;iidx<4*DIM;iidx++)
976     {
977         scratch[iidx] = 0.0;
978     }  
979
980     /* Start outer loop over neighborlists */
981     for(iidx=0; iidx<nri; iidx++)
982     {
983         /* Load shift vector for this list */
984         i_shift_offset   = DIM*shiftidx[iidx];
985
986         /* Load limits for loop over neighbors */
987         j_index_start    = jindex[iidx];
988         j_index_end      = jindex[iidx+1];
989
990         /* Get outer coordinate index */
991         inr              = iinr[iidx];
992         i_coord_offset   = DIM*inr;
993
994         /* Load i particle coords and add shift vector */
995         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
996                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
997         
998         fix0             = _mm_setzero_ps();
999         fiy0             = _mm_setzero_ps();
1000         fiz0             = _mm_setzero_ps();
1001         fix1             = _mm_setzero_ps();
1002         fiy1             = _mm_setzero_ps();
1003         fiz1             = _mm_setzero_ps();
1004         fix2             = _mm_setzero_ps();
1005         fiy2             = _mm_setzero_ps();
1006         fiz2             = _mm_setzero_ps();
1007         fix3             = _mm_setzero_ps();
1008         fiy3             = _mm_setzero_ps();
1009         fiz3             = _mm_setzero_ps();
1010
1011         /* Start inner kernel loop */
1012         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1013         {
1014
1015             /* Get j neighbor index, and coordinate index */
1016             jnrA             = jjnr[jidx];
1017             jnrB             = jjnr[jidx+1];
1018             jnrC             = jjnr[jidx+2];
1019             jnrD             = jjnr[jidx+3];
1020             j_coord_offsetA  = DIM*jnrA;
1021             j_coord_offsetB  = DIM*jnrB;
1022             j_coord_offsetC  = DIM*jnrC;
1023             j_coord_offsetD  = DIM*jnrD;
1024
1025             /* load j atom coordinates */
1026             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1027                                               x+j_coord_offsetC,x+j_coord_offsetD,
1028                                               &jx0,&jy0,&jz0);
1029
1030             /* Calculate displacement vector */
1031             dx00             = _mm_sub_ps(ix0,jx0);
1032             dy00             = _mm_sub_ps(iy0,jy0);
1033             dz00             = _mm_sub_ps(iz0,jz0);
1034             dx10             = _mm_sub_ps(ix1,jx0);
1035             dy10             = _mm_sub_ps(iy1,jy0);
1036             dz10             = _mm_sub_ps(iz1,jz0);
1037             dx20             = _mm_sub_ps(ix2,jx0);
1038             dy20             = _mm_sub_ps(iy2,jy0);
1039             dz20             = _mm_sub_ps(iz2,jz0);
1040             dx30             = _mm_sub_ps(ix3,jx0);
1041             dy30             = _mm_sub_ps(iy3,jy0);
1042             dz30             = _mm_sub_ps(iz3,jz0);
1043
1044             /* Calculate squared distance and things based on it */
1045             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1046             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1047             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1048             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1049
1050             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1051             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1052             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1053             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1054
1055             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1056             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1057             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1058             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1059
1060             /* Load parameters for j particles */
1061             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1062                                                               charge+jnrC+0,charge+jnrD+0);
1063             vdwjidx0A        = 2*vdwtype[jnrA+0];
1064             vdwjidx0B        = 2*vdwtype[jnrB+0];
1065             vdwjidx0C        = 2*vdwtype[jnrC+0];
1066             vdwjidx0D        = 2*vdwtype[jnrD+0];
1067
1068             fjx0             = _mm_setzero_ps();
1069             fjy0             = _mm_setzero_ps();
1070             fjz0             = _mm_setzero_ps();
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             if (gmx_mm_any_lt(rsq00,rcutoff2))
1077             {
1078
1079             r00              = _mm_mul_ps(rsq00,rinv00);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1083                                          vdwparam+vdwioffset0+vdwjidx0B,
1084                                          vdwparam+vdwioffset0+vdwjidx0C,
1085                                          vdwparam+vdwioffset0+vdwjidx0D,
1086                                          &c6_00,&c12_00);
1087             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1088                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1089                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1090                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1091
1092             /* Analytical LJ-PME */
1093             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1094             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1095             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1096             exponent         = gmx_simd_exp_r(ewcljrsq);
1097             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1098             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1099             /* f6A = 6 * C6grid * (1 - poly) */
1100             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1101             /* f6B = C6grid * exponent * beta^6 */
1102             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1103             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1104             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1105
1106             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1107
1108             fscal            = fvdw;
1109
1110             fscal            = _mm_and_ps(fscal,cutoff_mask);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx00);
1114             ty               = _mm_mul_ps(fscal,dy00);
1115             tz               = _mm_mul_ps(fscal,dz00);
1116
1117             /* Update vectorial force */
1118             fix0             = _mm_add_ps(fix0,tx);
1119             fiy0             = _mm_add_ps(fiy0,ty);
1120             fiz0             = _mm_add_ps(fiz0,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125             
1126             }
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             if (gmx_mm_any_lt(rsq10,rcutoff2))
1133             {
1134
1135             r10              = _mm_mul_ps(rsq10,rinv10);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq10             = _mm_mul_ps(iq1,jq0);
1139
1140             /* EWALD ELECTROSTATICS */
1141
1142             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1143             ewrt             = _mm_mul_ps(r10,ewtabscale);
1144             ewitab           = _mm_cvttps_epi32(ewrt);
1145             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1146             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1147                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1148                                          &ewtabF,&ewtabFn);
1149             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1150             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1151
1152             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1153
1154             fscal            = felec;
1155
1156             fscal            = _mm_and_ps(fscal,cutoff_mask);
1157
1158             /* Calculate temporary vectorial force */
1159             tx               = _mm_mul_ps(fscal,dx10);
1160             ty               = _mm_mul_ps(fscal,dy10);
1161             tz               = _mm_mul_ps(fscal,dz10);
1162
1163             /* Update vectorial force */
1164             fix1             = _mm_add_ps(fix1,tx);
1165             fiy1             = _mm_add_ps(fiy1,ty);
1166             fiz1             = _mm_add_ps(fiz1,tz);
1167
1168             fjx0             = _mm_add_ps(fjx0,tx);
1169             fjy0             = _mm_add_ps(fjy0,ty);
1170             fjz0             = _mm_add_ps(fjz0,tz);
1171             
1172             }
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (gmx_mm_any_lt(rsq20,rcutoff2))
1179             {
1180
1181             r20              = _mm_mul_ps(rsq20,rinv20);
1182
1183             /* Compute parameters for interactions between i and j atoms */
1184             qq20             = _mm_mul_ps(iq2,jq0);
1185
1186             /* EWALD ELECTROSTATICS */
1187
1188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1189             ewrt             = _mm_mul_ps(r20,ewtabscale);
1190             ewitab           = _mm_cvttps_epi32(ewrt);
1191             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1192             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1193                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1194                                          &ewtabF,&ewtabFn);
1195             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1196             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1197
1198             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1199
1200             fscal            = felec;
1201
1202             fscal            = _mm_and_ps(fscal,cutoff_mask);
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm_mul_ps(fscal,dx20);
1206             ty               = _mm_mul_ps(fscal,dy20);
1207             tz               = _mm_mul_ps(fscal,dz20);
1208
1209             /* Update vectorial force */
1210             fix2             = _mm_add_ps(fix2,tx);
1211             fiy2             = _mm_add_ps(fiy2,ty);
1212             fiz2             = _mm_add_ps(fiz2,tz);
1213
1214             fjx0             = _mm_add_ps(fjx0,tx);
1215             fjy0             = _mm_add_ps(fjy0,ty);
1216             fjz0             = _mm_add_ps(fjz0,tz);
1217             
1218             }
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             if (gmx_mm_any_lt(rsq30,rcutoff2))
1225             {
1226
1227             r30              = _mm_mul_ps(rsq30,rinv30);
1228
1229             /* Compute parameters for interactions between i and j atoms */
1230             qq30             = _mm_mul_ps(iq3,jq0);
1231
1232             /* EWALD ELECTROSTATICS */
1233
1234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1235             ewrt             = _mm_mul_ps(r30,ewtabscale);
1236             ewitab           = _mm_cvttps_epi32(ewrt);
1237             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1238             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1239                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1240                                          &ewtabF,&ewtabFn);
1241             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1242             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1243
1244             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1245
1246             fscal            = felec;
1247
1248             fscal            = _mm_and_ps(fscal,cutoff_mask);
1249
1250             /* Calculate temporary vectorial force */
1251             tx               = _mm_mul_ps(fscal,dx30);
1252             ty               = _mm_mul_ps(fscal,dy30);
1253             tz               = _mm_mul_ps(fscal,dz30);
1254
1255             /* Update vectorial force */
1256             fix3             = _mm_add_ps(fix3,tx);
1257             fiy3             = _mm_add_ps(fiy3,ty);
1258             fiz3             = _mm_add_ps(fiz3,tz);
1259
1260             fjx0             = _mm_add_ps(fjx0,tx);
1261             fjy0             = _mm_add_ps(fjy0,ty);
1262             fjz0             = _mm_add_ps(fjz0,tz);
1263             
1264             }
1265
1266             fjptrA             = f+j_coord_offsetA;
1267             fjptrB             = f+j_coord_offsetB;
1268             fjptrC             = f+j_coord_offsetC;
1269             fjptrD             = f+j_coord_offsetD;
1270
1271             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1272
1273             /* Inner loop uses 166 flops */
1274         }
1275
1276         if(jidx<j_index_end)
1277         {
1278
1279             /* Get j neighbor index, and coordinate index */
1280             jnrlistA         = jjnr[jidx];
1281             jnrlistB         = jjnr[jidx+1];
1282             jnrlistC         = jjnr[jidx+2];
1283             jnrlistD         = jjnr[jidx+3];
1284             /* Sign of each element will be negative for non-real atoms.
1285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1286              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1287              */
1288             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1289             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1290             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1291             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1292             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1293             j_coord_offsetA  = DIM*jnrA;
1294             j_coord_offsetB  = DIM*jnrB;
1295             j_coord_offsetC  = DIM*jnrC;
1296             j_coord_offsetD  = DIM*jnrD;
1297
1298             /* load j atom coordinates */
1299             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1300                                               x+j_coord_offsetC,x+j_coord_offsetD,
1301                                               &jx0,&jy0,&jz0);
1302
1303             /* Calculate displacement vector */
1304             dx00             = _mm_sub_ps(ix0,jx0);
1305             dy00             = _mm_sub_ps(iy0,jy0);
1306             dz00             = _mm_sub_ps(iz0,jz0);
1307             dx10             = _mm_sub_ps(ix1,jx0);
1308             dy10             = _mm_sub_ps(iy1,jy0);
1309             dz10             = _mm_sub_ps(iz1,jz0);
1310             dx20             = _mm_sub_ps(ix2,jx0);
1311             dy20             = _mm_sub_ps(iy2,jy0);
1312             dz20             = _mm_sub_ps(iz2,jz0);
1313             dx30             = _mm_sub_ps(ix3,jx0);
1314             dy30             = _mm_sub_ps(iy3,jy0);
1315             dz30             = _mm_sub_ps(iz3,jz0);
1316
1317             /* Calculate squared distance and things based on it */
1318             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1319             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1320             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1321             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1322
1323             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1324             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1325             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1326             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1327
1328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1329             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1330             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1331             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1332
1333             /* Load parameters for j particles */
1334             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1335                                                               charge+jnrC+0,charge+jnrD+0);
1336             vdwjidx0A        = 2*vdwtype[jnrA+0];
1337             vdwjidx0B        = 2*vdwtype[jnrB+0];
1338             vdwjidx0C        = 2*vdwtype[jnrC+0];
1339             vdwjidx0D        = 2*vdwtype[jnrD+0];
1340
1341             fjx0             = _mm_setzero_ps();
1342             fjy0             = _mm_setzero_ps();
1343             fjz0             = _mm_setzero_ps();
1344
1345             /**************************
1346              * CALCULATE INTERACTIONS *
1347              **************************/
1348
1349             if (gmx_mm_any_lt(rsq00,rcutoff2))
1350             {
1351
1352             r00              = _mm_mul_ps(rsq00,rinv00);
1353             r00              = _mm_andnot_ps(dummy_mask,r00);
1354
1355             /* Compute parameters for interactions between i and j atoms */
1356             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1357                                          vdwparam+vdwioffset0+vdwjidx0B,
1358                                          vdwparam+vdwioffset0+vdwjidx0C,
1359                                          vdwparam+vdwioffset0+vdwjidx0D,
1360                                          &c6_00,&c12_00);
1361             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1362                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1363                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1364                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1365
1366             /* Analytical LJ-PME */
1367             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1368             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1369             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1370             exponent         = gmx_simd_exp_r(ewcljrsq);
1371             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1372             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1373             /* f6A = 6 * C6grid * (1 - poly) */
1374             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1375             /* f6B = C6grid * exponent * beta^6 */
1376             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1377             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1378             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1379
1380             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1381
1382             fscal            = fvdw;
1383
1384             fscal            = _mm_and_ps(fscal,cutoff_mask);
1385
1386             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1387
1388             /* Calculate temporary vectorial force */
1389             tx               = _mm_mul_ps(fscal,dx00);
1390             ty               = _mm_mul_ps(fscal,dy00);
1391             tz               = _mm_mul_ps(fscal,dz00);
1392
1393             /* Update vectorial force */
1394             fix0             = _mm_add_ps(fix0,tx);
1395             fiy0             = _mm_add_ps(fiy0,ty);
1396             fiz0             = _mm_add_ps(fiz0,tz);
1397
1398             fjx0             = _mm_add_ps(fjx0,tx);
1399             fjy0             = _mm_add_ps(fjy0,ty);
1400             fjz0             = _mm_add_ps(fjz0,tz);
1401             
1402             }
1403
1404             /**************************
1405              * CALCULATE INTERACTIONS *
1406              **************************/
1407
1408             if (gmx_mm_any_lt(rsq10,rcutoff2))
1409             {
1410
1411             r10              = _mm_mul_ps(rsq10,rinv10);
1412             r10              = _mm_andnot_ps(dummy_mask,r10);
1413
1414             /* Compute parameters for interactions between i and j atoms */
1415             qq10             = _mm_mul_ps(iq1,jq0);
1416
1417             /* EWALD ELECTROSTATICS */
1418
1419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1420             ewrt             = _mm_mul_ps(r10,ewtabscale);
1421             ewitab           = _mm_cvttps_epi32(ewrt);
1422             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1423             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1424                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1425                                          &ewtabF,&ewtabFn);
1426             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1427             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1428
1429             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1430
1431             fscal            = felec;
1432
1433             fscal            = _mm_and_ps(fscal,cutoff_mask);
1434
1435             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1436
1437             /* Calculate temporary vectorial force */
1438             tx               = _mm_mul_ps(fscal,dx10);
1439             ty               = _mm_mul_ps(fscal,dy10);
1440             tz               = _mm_mul_ps(fscal,dz10);
1441
1442             /* Update vectorial force */
1443             fix1             = _mm_add_ps(fix1,tx);
1444             fiy1             = _mm_add_ps(fiy1,ty);
1445             fiz1             = _mm_add_ps(fiz1,tz);
1446
1447             fjx0             = _mm_add_ps(fjx0,tx);
1448             fjy0             = _mm_add_ps(fjy0,ty);
1449             fjz0             = _mm_add_ps(fjz0,tz);
1450             
1451             }
1452
1453             /**************************
1454              * CALCULATE INTERACTIONS *
1455              **************************/
1456
1457             if (gmx_mm_any_lt(rsq20,rcutoff2))
1458             {
1459
1460             r20              = _mm_mul_ps(rsq20,rinv20);
1461             r20              = _mm_andnot_ps(dummy_mask,r20);
1462
1463             /* Compute parameters for interactions between i and j atoms */
1464             qq20             = _mm_mul_ps(iq2,jq0);
1465
1466             /* EWALD ELECTROSTATICS */
1467
1468             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1469             ewrt             = _mm_mul_ps(r20,ewtabscale);
1470             ewitab           = _mm_cvttps_epi32(ewrt);
1471             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1472             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1473                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1474                                          &ewtabF,&ewtabFn);
1475             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1476             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1477
1478             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1479
1480             fscal            = felec;
1481
1482             fscal            = _mm_and_ps(fscal,cutoff_mask);
1483
1484             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1485
1486             /* Calculate temporary vectorial force */
1487             tx               = _mm_mul_ps(fscal,dx20);
1488             ty               = _mm_mul_ps(fscal,dy20);
1489             tz               = _mm_mul_ps(fscal,dz20);
1490
1491             /* Update vectorial force */
1492             fix2             = _mm_add_ps(fix2,tx);
1493             fiy2             = _mm_add_ps(fiy2,ty);
1494             fiz2             = _mm_add_ps(fiz2,tz);
1495
1496             fjx0             = _mm_add_ps(fjx0,tx);
1497             fjy0             = _mm_add_ps(fjy0,ty);
1498             fjz0             = _mm_add_ps(fjz0,tz);
1499             
1500             }
1501
1502             /**************************
1503              * CALCULATE INTERACTIONS *
1504              **************************/
1505
1506             if (gmx_mm_any_lt(rsq30,rcutoff2))
1507             {
1508
1509             r30              = _mm_mul_ps(rsq30,rinv30);
1510             r30              = _mm_andnot_ps(dummy_mask,r30);
1511
1512             /* Compute parameters for interactions between i and j atoms */
1513             qq30             = _mm_mul_ps(iq3,jq0);
1514
1515             /* EWALD ELECTROSTATICS */
1516
1517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1518             ewrt             = _mm_mul_ps(r30,ewtabscale);
1519             ewitab           = _mm_cvttps_epi32(ewrt);
1520             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1521             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1522                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1523                                          &ewtabF,&ewtabFn);
1524             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1525             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1526
1527             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1528
1529             fscal            = felec;
1530
1531             fscal            = _mm_and_ps(fscal,cutoff_mask);
1532
1533             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1534
1535             /* Calculate temporary vectorial force */
1536             tx               = _mm_mul_ps(fscal,dx30);
1537             ty               = _mm_mul_ps(fscal,dy30);
1538             tz               = _mm_mul_ps(fscal,dz30);
1539
1540             /* Update vectorial force */
1541             fix3             = _mm_add_ps(fix3,tx);
1542             fiy3             = _mm_add_ps(fiy3,ty);
1543             fiz3             = _mm_add_ps(fiz3,tz);
1544
1545             fjx0             = _mm_add_ps(fjx0,tx);
1546             fjy0             = _mm_add_ps(fjy0,ty);
1547             fjz0             = _mm_add_ps(fjz0,tz);
1548             
1549             }
1550
1551             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1552             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1553             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1554             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1555
1556             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1557
1558             /* Inner loop uses 170 flops */
1559         }
1560
1561         /* End of innermost loop */
1562
1563         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1564                                               f+i_coord_offset,fshift+i_shift_offset);
1565
1566         /* Increment number of inner iterations */
1567         inneriter                  += j_index_end - j_index_start;
1568
1569         /* Outer loop uses 24 flops */
1570     }
1571
1572     /* Increment number of outer iterations */
1573     outeriter        += nri;
1574
1575     /* Update outer/inner flops */
1576
1577     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*170);
1578 }