Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           c6grid_30;
108     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128           one_half = _mm_set1_ps(0.5);
111     __m128           minus_one = _mm_set1_ps(-1.0);
112     __m128i          ewitab;
113     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128           dummy_mask,cutoff_mask;
116     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
117     __m128           one     = _mm_set1_ps(1.0);
118     __m128           two     = _mm_set1_ps(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_ps(fr->ic->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
153     rcutoff_scalar   = fr->ic->rcoulomb;
154     rcutoff          = _mm_set1_ps(rcutoff_scalar);
155     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
156
157     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
158     rvdw             = _mm_set1_ps(fr->ic->rvdw);
159
160     /* Avoid stupid compiler warnings */
161     jnrA = jnrB = jnrC = jnrD = 0;
162     j_coord_offsetA = 0;
163     j_coord_offsetB = 0;
164     j_coord_offsetC = 0;
165     j_coord_offsetD = 0;
166
167     outeriter        = 0;
168     inneriter        = 0;
169
170     for(iidx=0;iidx<4*DIM;iidx++)
171     {
172         scratch[iidx] = 0.0;
173     }  
174
175     /* Start outer loop over neighborlists */
176     for(iidx=0; iidx<nri; iidx++)
177     {
178         /* Load shift vector for this list */
179         i_shift_offset   = DIM*shiftidx[iidx];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
191                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
192         
193         fix0             = _mm_setzero_ps();
194         fiy0             = _mm_setzero_ps();
195         fiz0             = _mm_setzero_ps();
196         fix1             = _mm_setzero_ps();
197         fiy1             = _mm_setzero_ps();
198         fiz1             = _mm_setzero_ps();
199         fix2             = _mm_setzero_ps();
200         fiy2             = _mm_setzero_ps();
201         fiz2             = _mm_setzero_ps();
202         fix3             = _mm_setzero_ps();
203         fiy3             = _mm_setzero_ps();
204         fiz3             = _mm_setzero_ps();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_ps();
208         vvdwsum          = _mm_setzero_ps();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             jnrC             = jjnr[jidx+2];
218             jnrD             = jjnr[jidx+3];
219             j_coord_offsetA  = DIM*jnrA;
220             j_coord_offsetB  = DIM*jnrB;
221             j_coord_offsetC  = DIM*jnrC;
222             j_coord_offsetD  = DIM*jnrD;
223
224             /* load j atom coordinates */
225             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
226                                               x+j_coord_offsetC,x+j_coord_offsetD,
227                                               &jx0,&jy0,&jz0);
228
229             /* Calculate displacement vector */
230             dx00             = _mm_sub_ps(ix0,jx0);
231             dy00             = _mm_sub_ps(iy0,jy0);
232             dz00             = _mm_sub_ps(iz0,jz0);
233             dx10             = _mm_sub_ps(ix1,jx0);
234             dy10             = _mm_sub_ps(iy1,jy0);
235             dz10             = _mm_sub_ps(iz1,jz0);
236             dx20             = _mm_sub_ps(ix2,jx0);
237             dy20             = _mm_sub_ps(iy2,jy0);
238             dz20             = _mm_sub_ps(iz2,jz0);
239             dx30             = _mm_sub_ps(ix3,jx0);
240             dy30             = _mm_sub_ps(iy3,jy0);
241             dz30             = _mm_sub_ps(iz3,jz0);
242
243             /* Calculate squared distance and things based on it */
244             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
245             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
246             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
247             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
248
249             rinv00           = sse2_invsqrt_f(rsq00);
250             rinv10           = sse2_invsqrt_f(rsq10);
251             rinv20           = sse2_invsqrt_f(rsq20);
252             rinv30           = sse2_invsqrt_f(rsq30);
253
254             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
255             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
256             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
257             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
258
259             /* Load parameters for j particles */
260             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
261                                                               charge+jnrC+0,charge+jnrD+0);
262             vdwjidx0A        = 2*vdwtype[jnrA+0];
263             vdwjidx0B        = 2*vdwtype[jnrB+0];
264             vdwjidx0C        = 2*vdwtype[jnrC+0];
265             vdwjidx0D        = 2*vdwtype[jnrD+0];
266
267             fjx0             = _mm_setzero_ps();
268             fjy0             = _mm_setzero_ps();
269             fjz0             = _mm_setzero_ps();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             if (gmx_mm_any_lt(rsq00,rcutoff2))
276             {
277
278             r00              = _mm_mul_ps(rsq00,rinv00);
279
280             /* Compute parameters for interactions between i and j atoms */
281             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
282                                          vdwparam+vdwioffset0+vdwjidx0B,
283                                          vdwparam+vdwioffset0+vdwjidx0C,
284                                          vdwparam+vdwioffset0+vdwjidx0D,
285                                          &c6_00,&c12_00);
286             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
287                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
288                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
289                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
290
291             /* Analytical LJ-PME */
292             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
293             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
294             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
295             exponent         = sse2_exp_f(ewcljrsq);
296             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
297             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
298             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
299             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
300             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
301             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
302                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
303             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
304             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
305
306             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
310             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
311
312             fscal            = fvdw;
313
314             fscal            = _mm_and_ps(fscal,cutoff_mask);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_ps(fscal,dx00);
318             ty               = _mm_mul_ps(fscal,dy00);
319             tz               = _mm_mul_ps(fscal,dz00);
320
321             /* Update vectorial force */
322             fix0             = _mm_add_ps(fix0,tx);
323             fiy0             = _mm_add_ps(fiy0,ty);
324             fiz0             = _mm_add_ps(fiz0,tz);
325
326             fjx0             = _mm_add_ps(fjx0,tx);
327             fjy0             = _mm_add_ps(fjy0,ty);
328             fjz0             = _mm_add_ps(fjz0,tz);
329             
330             }
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             if (gmx_mm_any_lt(rsq10,rcutoff2))
337             {
338
339             r10              = _mm_mul_ps(rsq10,rinv10);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq10             = _mm_mul_ps(iq1,jq0);
343
344             /* EWALD ELECTROSTATICS */
345
346             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
347             ewrt             = _mm_mul_ps(r10,ewtabscale);
348             ewitab           = _mm_cvttps_epi32(ewrt);
349             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
350             ewitab           = _mm_slli_epi32(ewitab,2);
351             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
352             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
353             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
354             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
355             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
356             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
357             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
358             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
359             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
360
361             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm_and_ps(velec,cutoff_mask);
365             velecsum         = _mm_add_ps(velecsum,velec);
366
367             fscal            = felec;
368
369             fscal            = _mm_and_ps(fscal,cutoff_mask);
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_ps(fscal,dx10);
373             ty               = _mm_mul_ps(fscal,dy10);
374             tz               = _mm_mul_ps(fscal,dz10);
375
376             /* Update vectorial force */
377             fix1             = _mm_add_ps(fix1,tx);
378             fiy1             = _mm_add_ps(fiy1,ty);
379             fiz1             = _mm_add_ps(fiz1,tz);
380
381             fjx0             = _mm_add_ps(fjx0,tx);
382             fjy0             = _mm_add_ps(fjy0,ty);
383             fjz0             = _mm_add_ps(fjz0,tz);
384             
385             }
386
387             /**************************
388              * CALCULATE INTERACTIONS *
389              **************************/
390
391             if (gmx_mm_any_lt(rsq20,rcutoff2))
392             {
393
394             r20              = _mm_mul_ps(rsq20,rinv20);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq20             = _mm_mul_ps(iq2,jq0);
398
399             /* EWALD ELECTROSTATICS */
400
401             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
402             ewrt             = _mm_mul_ps(r20,ewtabscale);
403             ewitab           = _mm_cvttps_epi32(ewrt);
404             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
405             ewitab           = _mm_slli_epi32(ewitab,2);
406             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
407             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
408             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
409             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
410             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
411             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
412             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
413             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
414             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
415
416             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm_and_ps(velec,cutoff_mask);
420             velecsum         = _mm_add_ps(velecsum,velec);
421
422             fscal            = felec;
423
424             fscal            = _mm_and_ps(fscal,cutoff_mask);
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm_mul_ps(fscal,dx20);
428             ty               = _mm_mul_ps(fscal,dy20);
429             tz               = _mm_mul_ps(fscal,dz20);
430
431             /* Update vectorial force */
432             fix2             = _mm_add_ps(fix2,tx);
433             fiy2             = _mm_add_ps(fiy2,ty);
434             fiz2             = _mm_add_ps(fiz2,tz);
435
436             fjx0             = _mm_add_ps(fjx0,tx);
437             fjy0             = _mm_add_ps(fjy0,ty);
438             fjz0             = _mm_add_ps(fjz0,tz);
439             
440             }
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             if (gmx_mm_any_lt(rsq30,rcutoff2))
447             {
448
449             r30              = _mm_mul_ps(rsq30,rinv30);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq30             = _mm_mul_ps(iq3,jq0);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_ps(r30,ewtabscale);
458             ewitab           = _mm_cvttps_epi32(ewrt);
459             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
460             ewitab           = _mm_slli_epi32(ewitab,2);
461             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
462             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
463             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
464             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
465             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
466             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
467             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
468             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
469             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
470
471             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm_and_ps(velec,cutoff_mask);
475             velecsum         = _mm_add_ps(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm_and_ps(fscal,cutoff_mask);
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm_mul_ps(fscal,dx30);
483             ty               = _mm_mul_ps(fscal,dy30);
484             tz               = _mm_mul_ps(fscal,dz30);
485
486             /* Update vectorial force */
487             fix3             = _mm_add_ps(fix3,tx);
488             fiy3             = _mm_add_ps(fiy3,ty);
489             fiz3             = _mm_add_ps(fiz3,tz);
490
491             fjx0             = _mm_add_ps(fjx0,tx);
492             fjy0             = _mm_add_ps(fjy0,ty);
493             fjz0             = _mm_add_ps(fjz0,tz);
494             
495             }
496
497             fjptrA             = f+j_coord_offsetA;
498             fjptrB             = f+j_coord_offsetB;
499             fjptrC             = f+j_coord_offsetC;
500             fjptrD             = f+j_coord_offsetD;
501
502             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
503
504             /* Inner loop uses 200 flops */
505         }
506
507         if(jidx<j_index_end)
508         {
509
510             /* Get j neighbor index, and coordinate index */
511             jnrlistA         = jjnr[jidx];
512             jnrlistB         = jjnr[jidx+1];
513             jnrlistC         = jjnr[jidx+2];
514             jnrlistD         = jjnr[jidx+3];
515             /* Sign of each element will be negative for non-real atoms.
516              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
517              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
518              */
519             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
520             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
521             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
522             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
523             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
524             j_coord_offsetA  = DIM*jnrA;
525             j_coord_offsetB  = DIM*jnrB;
526             j_coord_offsetC  = DIM*jnrC;
527             j_coord_offsetD  = DIM*jnrD;
528
529             /* load j atom coordinates */
530             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
531                                               x+j_coord_offsetC,x+j_coord_offsetD,
532                                               &jx0,&jy0,&jz0);
533
534             /* Calculate displacement vector */
535             dx00             = _mm_sub_ps(ix0,jx0);
536             dy00             = _mm_sub_ps(iy0,jy0);
537             dz00             = _mm_sub_ps(iz0,jz0);
538             dx10             = _mm_sub_ps(ix1,jx0);
539             dy10             = _mm_sub_ps(iy1,jy0);
540             dz10             = _mm_sub_ps(iz1,jz0);
541             dx20             = _mm_sub_ps(ix2,jx0);
542             dy20             = _mm_sub_ps(iy2,jy0);
543             dz20             = _mm_sub_ps(iz2,jz0);
544             dx30             = _mm_sub_ps(ix3,jx0);
545             dy30             = _mm_sub_ps(iy3,jy0);
546             dz30             = _mm_sub_ps(iz3,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
550             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
551             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
552             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
553
554             rinv00           = sse2_invsqrt_f(rsq00);
555             rinv10           = sse2_invsqrt_f(rsq10);
556             rinv20           = sse2_invsqrt_f(rsq20);
557             rinv30           = sse2_invsqrt_f(rsq30);
558
559             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
560             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
561             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
562             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
563
564             /* Load parameters for j particles */
565             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
566                                                               charge+jnrC+0,charge+jnrD+0);
567             vdwjidx0A        = 2*vdwtype[jnrA+0];
568             vdwjidx0B        = 2*vdwtype[jnrB+0];
569             vdwjidx0C        = 2*vdwtype[jnrC+0];
570             vdwjidx0D        = 2*vdwtype[jnrD+0];
571
572             fjx0             = _mm_setzero_ps();
573             fjy0             = _mm_setzero_ps();
574             fjz0             = _mm_setzero_ps();
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (gmx_mm_any_lt(rsq00,rcutoff2))
581             {
582
583             r00              = _mm_mul_ps(rsq00,rinv00);
584             r00              = _mm_andnot_ps(dummy_mask,r00);
585
586             /* Compute parameters for interactions between i and j atoms */
587             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
588                                          vdwparam+vdwioffset0+vdwjidx0B,
589                                          vdwparam+vdwioffset0+vdwjidx0C,
590                                          vdwparam+vdwioffset0+vdwjidx0D,
591                                          &c6_00,&c12_00);
592             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
593                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
594                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
595                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
596
597             /* Analytical LJ-PME */
598             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
599             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
600             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
601             exponent         = sse2_exp_f(ewcljrsq);
602             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
603             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
604             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
605             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
606             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
607             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
608                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
609             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
610             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
611
612             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
613
614             /* Update potential sum for this i atom from the interaction with this j atom. */
615             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
616             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
617             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
618
619             fscal            = fvdw;
620
621             fscal            = _mm_and_ps(fscal,cutoff_mask);
622
623             fscal            = _mm_andnot_ps(dummy_mask,fscal);
624
625             /* Calculate temporary vectorial force */
626             tx               = _mm_mul_ps(fscal,dx00);
627             ty               = _mm_mul_ps(fscal,dy00);
628             tz               = _mm_mul_ps(fscal,dz00);
629
630             /* Update vectorial force */
631             fix0             = _mm_add_ps(fix0,tx);
632             fiy0             = _mm_add_ps(fiy0,ty);
633             fiz0             = _mm_add_ps(fiz0,tz);
634
635             fjx0             = _mm_add_ps(fjx0,tx);
636             fjy0             = _mm_add_ps(fjy0,ty);
637             fjz0             = _mm_add_ps(fjz0,tz);
638             
639             }
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             if (gmx_mm_any_lt(rsq10,rcutoff2))
646             {
647
648             r10              = _mm_mul_ps(rsq10,rinv10);
649             r10              = _mm_andnot_ps(dummy_mask,r10);
650
651             /* Compute parameters for interactions between i and j atoms */
652             qq10             = _mm_mul_ps(iq1,jq0);
653
654             /* EWALD ELECTROSTATICS */
655
656             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
657             ewrt             = _mm_mul_ps(r10,ewtabscale);
658             ewitab           = _mm_cvttps_epi32(ewrt);
659             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
660             ewitab           = _mm_slli_epi32(ewitab,2);
661             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
662             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
663             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
664             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
665             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
666             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
667             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
668             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
669             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
670
671             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
672
673             /* Update potential sum for this i atom from the interaction with this j atom. */
674             velec            = _mm_and_ps(velec,cutoff_mask);
675             velec            = _mm_andnot_ps(dummy_mask,velec);
676             velecsum         = _mm_add_ps(velecsum,velec);
677
678             fscal            = felec;
679
680             fscal            = _mm_and_ps(fscal,cutoff_mask);
681
682             fscal            = _mm_andnot_ps(dummy_mask,fscal);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_ps(fscal,dx10);
686             ty               = _mm_mul_ps(fscal,dy10);
687             tz               = _mm_mul_ps(fscal,dz10);
688
689             /* Update vectorial force */
690             fix1             = _mm_add_ps(fix1,tx);
691             fiy1             = _mm_add_ps(fiy1,ty);
692             fiz1             = _mm_add_ps(fiz1,tz);
693
694             fjx0             = _mm_add_ps(fjx0,tx);
695             fjy0             = _mm_add_ps(fjy0,ty);
696             fjz0             = _mm_add_ps(fjz0,tz);
697             
698             }
699
700             /**************************
701              * CALCULATE INTERACTIONS *
702              **************************/
703
704             if (gmx_mm_any_lt(rsq20,rcutoff2))
705             {
706
707             r20              = _mm_mul_ps(rsq20,rinv20);
708             r20              = _mm_andnot_ps(dummy_mask,r20);
709
710             /* Compute parameters for interactions between i and j atoms */
711             qq20             = _mm_mul_ps(iq2,jq0);
712
713             /* EWALD ELECTROSTATICS */
714
715             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
716             ewrt             = _mm_mul_ps(r20,ewtabscale);
717             ewitab           = _mm_cvttps_epi32(ewrt);
718             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
719             ewitab           = _mm_slli_epi32(ewitab,2);
720             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
721             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
722             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
723             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
724             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
725             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
726             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
727             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
728             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
729
730             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
731
732             /* Update potential sum for this i atom from the interaction with this j atom. */
733             velec            = _mm_and_ps(velec,cutoff_mask);
734             velec            = _mm_andnot_ps(dummy_mask,velec);
735             velecsum         = _mm_add_ps(velecsum,velec);
736
737             fscal            = felec;
738
739             fscal            = _mm_and_ps(fscal,cutoff_mask);
740
741             fscal            = _mm_andnot_ps(dummy_mask,fscal);
742
743             /* Calculate temporary vectorial force */
744             tx               = _mm_mul_ps(fscal,dx20);
745             ty               = _mm_mul_ps(fscal,dy20);
746             tz               = _mm_mul_ps(fscal,dz20);
747
748             /* Update vectorial force */
749             fix2             = _mm_add_ps(fix2,tx);
750             fiy2             = _mm_add_ps(fiy2,ty);
751             fiz2             = _mm_add_ps(fiz2,tz);
752
753             fjx0             = _mm_add_ps(fjx0,tx);
754             fjy0             = _mm_add_ps(fjy0,ty);
755             fjz0             = _mm_add_ps(fjz0,tz);
756             
757             }
758
759             /**************************
760              * CALCULATE INTERACTIONS *
761              **************************/
762
763             if (gmx_mm_any_lt(rsq30,rcutoff2))
764             {
765
766             r30              = _mm_mul_ps(rsq30,rinv30);
767             r30              = _mm_andnot_ps(dummy_mask,r30);
768
769             /* Compute parameters for interactions between i and j atoms */
770             qq30             = _mm_mul_ps(iq3,jq0);
771
772             /* EWALD ELECTROSTATICS */
773
774             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
775             ewrt             = _mm_mul_ps(r30,ewtabscale);
776             ewitab           = _mm_cvttps_epi32(ewrt);
777             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
778             ewitab           = _mm_slli_epi32(ewitab,2);
779             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
780             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
781             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
782             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
783             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
784             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
785             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
786             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
787             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
788
789             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
790
791             /* Update potential sum for this i atom from the interaction with this j atom. */
792             velec            = _mm_and_ps(velec,cutoff_mask);
793             velec            = _mm_andnot_ps(dummy_mask,velec);
794             velecsum         = _mm_add_ps(velecsum,velec);
795
796             fscal            = felec;
797
798             fscal            = _mm_and_ps(fscal,cutoff_mask);
799
800             fscal            = _mm_andnot_ps(dummy_mask,fscal);
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm_mul_ps(fscal,dx30);
804             ty               = _mm_mul_ps(fscal,dy30);
805             tz               = _mm_mul_ps(fscal,dz30);
806
807             /* Update vectorial force */
808             fix3             = _mm_add_ps(fix3,tx);
809             fiy3             = _mm_add_ps(fiy3,ty);
810             fiz3             = _mm_add_ps(fiz3,tz);
811
812             fjx0             = _mm_add_ps(fjx0,tx);
813             fjy0             = _mm_add_ps(fjy0,ty);
814             fjz0             = _mm_add_ps(fjz0,tz);
815             
816             }
817
818             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
819             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
820             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
821             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
822
823             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
824
825             /* Inner loop uses 204 flops */
826         }
827
828         /* End of innermost loop */
829
830         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
831                                               f+i_coord_offset,fshift+i_shift_offset);
832
833         ggid                        = gid[iidx];
834         /* Update potential energies */
835         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
836         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
837
838         /* Increment number of inner iterations */
839         inneriter                  += j_index_end - j_index_start;
840
841         /* Outer loop uses 26 flops */
842     }
843
844     /* Increment number of outer iterations */
845     outeriter        += nri;
846
847     /* Update outer/inner flops */
848
849     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*204);
850 }
851 /*
852  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
853  * Electrostatics interaction: Ewald
854  * VdW interaction:            LJEwald
855  * Geometry:                   Water4-Particle
856  * Calculate force/pot:        Force
857  */
858 void
859 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_sse2_single
860                     (t_nblist                    * gmx_restrict       nlist,
861                      rvec                        * gmx_restrict          xx,
862                      rvec                        * gmx_restrict          ff,
863                      struct t_forcerec           * gmx_restrict          fr,
864                      t_mdatoms                   * gmx_restrict     mdatoms,
865                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
866                      t_nrnb                      * gmx_restrict        nrnb)
867 {
868     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
869      * just 0 for non-waters.
870      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
871      * jnr indices corresponding to data put in the four positions in the SIMD register.
872      */
873     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
874     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
875     int              jnrA,jnrB,jnrC,jnrD;
876     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
877     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
878     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
879     real             rcutoff_scalar;
880     real             *shiftvec,*fshift,*x,*f;
881     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
882     real             scratch[4*DIM];
883     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
884     int              vdwioffset0;
885     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
886     int              vdwioffset1;
887     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
888     int              vdwioffset2;
889     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
890     int              vdwioffset3;
891     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
892     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
893     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
894     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
895     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
896     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
897     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
898     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
899     real             *charge;
900     int              nvdwtype;
901     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
902     int              *vdwtype;
903     real             *vdwparam;
904     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
905     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
906     __m128           c6grid_00;
907     __m128           c6grid_10;
908     __m128           c6grid_20;
909     __m128           c6grid_30;
910     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
911     real             *vdwgridparam;
912     __m128           one_half = _mm_set1_ps(0.5);
913     __m128           minus_one = _mm_set1_ps(-1.0);
914     __m128i          ewitab;
915     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
916     real             *ewtab;
917     __m128           dummy_mask,cutoff_mask;
918     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
919     __m128           one     = _mm_set1_ps(1.0);
920     __m128           two     = _mm_set1_ps(2.0);
921     x                = xx[0];
922     f                = ff[0];
923
924     nri              = nlist->nri;
925     iinr             = nlist->iinr;
926     jindex           = nlist->jindex;
927     jjnr             = nlist->jjnr;
928     shiftidx         = nlist->shift;
929     gid              = nlist->gid;
930     shiftvec         = fr->shift_vec[0];
931     fshift           = fr->fshift[0];
932     facel            = _mm_set1_ps(fr->ic->epsfac);
933     charge           = mdatoms->chargeA;
934     nvdwtype         = fr->ntype;
935     vdwparam         = fr->nbfp;
936     vdwtype          = mdatoms->typeA;
937     vdwgridparam     = fr->ljpme_c6grid;
938     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
939     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
940     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
941
942     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
943     ewtab            = fr->ic->tabq_coul_F;
944     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
945     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
946
947     /* Setup water-specific parameters */
948     inr              = nlist->iinr[0];
949     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
950     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
951     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
952     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
953
954     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
955     rcutoff_scalar   = fr->ic->rcoulomb;
956     rcutoff          = _mm_set1_ps(rcutoff_scalar);
957     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
958
959     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
960     rvdw             = _mm_set1_ps(fr->ic->rvdw);
961
962     /* Avoid stupid compiler warnings */
963     jnrA = jnrB = jnrC = jnrD = 0;
964     j_coord_offsetA = 0;
965     j_coord_offsetB = 0;
966     j_coord_offsetC = 0;
967     j_coord_offsetD = 0;
968
969     outeriter        = 0;
970     inneriter        = 0;
971
972     for(iidx=0;iidx<4*DIM;iidx++)
973     {
974         scratch[iidx] = 0.0;
975     }  
976
977     /* Start outer loop over neighborlists */
978     for(iidx=0; iidx<nri; iidx++)
979     {
980         /* Load shift vector for this list */
981         i_shift_offset   = DIM*shiftidx[iidx];
982
983         /* Load limits for loop over neighbors */
984         j_index_start    = jindex[iidx];
985         j_index_end      = jindex[iidx+1];
986
987         /* Get outer coordinate index */
988         inr              = iinr[iidx];
989         i_coord_offset   = DIM*inr;
990
991         /* Load i particle coords and add shift vector */
992         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
993                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
994         
995         fix0             = _mm_setzero_ps();
996         fiy0             = _mm_setzero_ps();
997         fiz0             = _mm_setzero_ps();
998         fix1             = _mm_setzero_ps();
999         fiy1             = _mm_setzero_ps();
1000         fiz1             = _mm_setzero_ps();
1001         fix2             = _mm_setzero_ps();
1002         fiy2             = _mm_setzero_ps();
1003         fiz2             = _mm_setzero_ps();
1004         fix3             = _mm_setzero_ps();
1005         fiy3             = _mm_setzero_ps();
1006         fiz3             = _mm_setzero_ps();
1007
1008         /* Start inner kernel loop */
1009         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1010         {
1011
1012             /* Get j neighbor index, and coordinate index */
1013             jnrA             = jjnr[jidx];
1014             jnrB             = jjnr[jidx+1];
1015             jnrC             = jjnr[jidx+2];
1016             jnrD             = jjnr[jidx+3];
1017             j_coord_offsetA  = DIM*jnrA;
1018             j_coord_offsetB  = DIM*jnrB;
1019             j_coord_offsetC  = DIM*jnrC;
1020             j_coord_offsetD  = DIM*jnrD;
1021
1022             /* load j atom coordinates */
1023             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1024                                               x+j_coord_offsetC,x+j_coord_offsetD,
1025                                               &jx0,&jy0,&jz0);
1026
1027             /* Calculate displacement vector */
1028             dx00             = _mm_sub_ps(ix0,jx0);
1029             dy00             = _mm_sub_ps(iy0,jy0);
1030             dz00             = _mm_sub_ps(iz0,jz0);
1031             dx10             = _mm_sub_ps(ix1,jx0);
1032             dy10             = _mm_sub_ps(iy1,jy0);
1033             dz10             = _mm_sub_ps(iz1,jz0);
1034             dx20             = _mm_sub_ps(ix2,jx0);
1035             dy20             = _mm_sub_ps(iy2,jy0);
1036             dz20             = _mm_sub_ps(iz2,jz0);
1037             dx30             = _mm_sub_ps(ix3,jx0);
1038             dy30             = _mm_sub_ps(iy3,jy0);
1039             dz30             = _mm_sub_ps(iz3,jz0);
1040
1041             /* Calculate squared distance and things based on it */
1042             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1043             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1044             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1045             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1046
1047             rinv00           = sse2_invsqrt_f(rsq00);
1048             rinv10           = sse2_invsqrt_f(rsq10);
1049             rinv20           = sse2_invsqrt_f(rsq20);
1050             rinv30           = sse2_invsqrt_f(rsq30);
1051
1052             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1053             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1054             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1055             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1056
1057             /* Load parameters for j particles */
1058             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1059                                                               charge+jnrC+0,charge+jnrD+0);
1060             vdwjidx0A        = 2*vdwtype[jnrA+0];
1061             vdwjidx0B        = 2*vdwtype[jnrB+0];
1062             vdwjidx0C        = 2*vdwtype[jnrC+0];
1063             vdwjidx0D        = 2*vdwtype[jnrD+0];
1064
1065             fjx0             = _mm_setzero_ps();
1066             fjy0             = _mm_setzero_ps();
1067             fjz0             = _mm_setzero_ps();
1068
1069             /**************************
1070              * CALCULATE INTERACTIONS *
1071              **************************/
1072
1073             if (gmx_mm_any_lt(rsq00,rcutoff2))
1074             {
1075
1076             r00              = _mm_mul_ps(rsq00,rinv00);
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1080                                          vdwparam+vdwioffset0+vdwjidx0B,
1081                                          vdwparam+vdwioffset0+vdwjidx0C,
1082                                          vdwparam+vdwioffset0+vdwjidx0D,
1083                                          &c6_00,&c12_00);
1084             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1085                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1086                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1087                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1088
1089             /* Analytical LJ-PME */
1090             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1091             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1092             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1093             exponent         = sse2_exp_f(ewcljrsq);
1094             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1095             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1096             /* f6A = 6 * C6grid * (1 - poly) */
1097             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1098             /* f6B = C6grid * exponent * beta^6 */
1099             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1100             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1101             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1102
1103             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1104
1105             fscal            = fvdw;
1106
1107             fscal            = _mm_and_ps(fscal,cutoff_mask);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm_mul_ps(fscal,dx00);
1111             ty               = _mm_mul_ps(fscal,dy00);
1112             tz               = _mm_mul_ps(fscal,dz00);
1113
1114             /* Update vectorial force */
1115             fix0             = _mm_add_ps(fix0,tx);
1116             fiy0             = _mm_add_ps(fiy0,ty);
1117             fiz0             = _mm_add_ps(fiz0,tz);
1118
1119             fjx0             = _mm_add_ps(fjx0,tx);
1120             fjy0             = _mm_add_ps(fjy0,ty);
1121             fjz0             = _mm_add_ps(fjz0,tz);
1122             
1123             }
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             if (gmx_mm_any_lt(rsq10,rcutoff2))
1130             {
1131
1132             r10              = _mm_mul_ps(rsq10,rinv10);
1133
1134             /* Compute parameters for interactions between i and j atoms */
1135             qq10             = _mm_mul_ps(iq1,jq0);
1136
1137             /* EWALD ELECTROSTATICS */
1138
1139             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1140             ewrt             = _mm_mul_ps(r10,ewtabscale);
1141             ewitab           = _mm_cvttps_epi32(ewrt);
1142             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1143             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1144                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1145                                          &ewtabF,&ewtabFn);
1146             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1147             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1148
1149             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm_and_ps(fscal,cutoff_mask);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm_mul_ps(fscal,dx10);
1157             ty               = _mm_mul_ps(fscal,dy10);
1158             tz               = _mm_mul_ps(fscal,dz10);
1159
1160             /* Update vectorial force */
1161             fix1             = _mm_add_ps(fix1,tx);
1162             fiy1             = _mm_add_ps(fiy1,ty);
1163             fiz1             = _mm_add_ps(fiz1,tz);
1164
1165             fjx0             = _mm_add_ps(fjx0,tx);
1166             fjy0             = _mm_add_ps(fjy0,ty);
1167             fjz0             = _mm_add_ps(fjz0,tz);
1168             
1169             }
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             if (gmx_mm_any_lt(rsq20,rcutoff2))
1176             {
1177
1178             r20              = _mm_mul_ps(rsq20,rinv20);
1179
1180             /* Compute parameters for interactions between i and j atoms */
1181             qq20             = _mm_mul_ps(iq2,jq0);
1182
1183             /* EWALD ELECTROSTATICS */
1184
1185             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186             ewrt             = _mm_mul_ps(r20,ewtabscale);
1187             ewitab           = _mm_cvttps_epi32(ewrt);
1188             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1189             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1190                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1191                                          &ewtabF,&ewtabFn);
1192             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1193             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1194
1195             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1196
1197             fscal            = felec;
1198
1199             fscal            = _mm_and_ps(fscal,cutoff_mask);
1200
1201             /* Calculate temporary vectorial force */
1202             tx               = _mm_mul_ps(fscal,dx20);
1203             ty               = _mm_mul_ps(fscal,dy20);
1204             tz               = _mm_mul_ps(fscal,dz20);
1205
1206             /* Update vectorial force */
1207             fix2             = _mm_add_ps(fix2,tx);
1208             fiy2             = _mm_add_ps(fiy2,ty);
1209             fiz2             = _mm_add_ps(fiz2,tz);
1210
1211             fjx0             = _mm_add_ps(fjx0,tx);
1212             fjy0             = _mm_add_ps(fjy0,ty);
1213             fjz0             = _mm_add_ps(fjz0,tz);
1214             
1215             }
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             if (gmx_mm_any_lt(rsq30,rcutoff2))
1222             {
1223
1224             r30              = _mm_mul_ps(rsq30,rinv30);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _mm_mul_ps(iq3,jq0);
1228
1229             /* EWALD ELECTROSTATICS */
1230
1231             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1232             ewrt             = _mm_mul_ps(r30,ewtabscale);
1233             ewitab           = _mm_cvttps_epi32(ewrt);
1234             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1235             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1236                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1237                                          &ewtabF,&ewtabFn);
1238             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1239             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1240
1241             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1242
1243             fscal            = felec;
1244
1245             fscal            = _mm_and_ps(fscal,cutoff_mask);
1246
1247             /* Calculate temporary vectorial force */
1248             tx               = _mm_mul_ps(fscal,dx30);
1249             ty               = _mm_mul_ps(fscal,dy30);
1250             tz               = _mm_mul_ps(fscal,dz30);
1251
1252             /* Update vectorial force */
1253             fix3             = _mm_add_ps(fix3,tx);
1254             fiy3             = _mm_add_ps(fiy3,ty);
1255             fiz3             = _mm_add_ps(fiz3,tz);
1256
1257             fjx0             = _mm_add_ps(fjx0,tx);
1258             fjy0             = _mm_add_ps(fjy0,ty);
1259             fjz0             = _mm_add_ps(fjz0,tz);
1260             
1261             }
1262
1263             fjptrA             = f+j_coord_offsetA;
1264             fjptrB             = f+j_coord_offsetB;
1265             fjptrC             = f+j_coord_offsetC;
1266             fjptrD             = f+j_coord_offsetD;
1267
1268             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1269
1270             /* Inner loop uses 166 flops */
1271         }
1272
1273         if(jidx<j_index_end)
1274         {
1275
1276             /* Get j neighbor index, and coordinate index */
1277             jnrlistA         = jjnr[jidx];
1278             jnrlistB         = jjnr[jidx+1];
1279             jnrlistC         = jjnr[jidx+2];
1280             jnrlistD         = jjnr[jidx+3];
1281             /* Sign of each element will be negative for non-real atoms.
1282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1283              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1284              */
1285             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1286             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1287             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1288             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1289             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1290             j_coord_offsetA  = DIM*jnrA;
1291             j_coord_offsetB  = DIM*jnrB;
1292             j_coord_offsetC  = DIM*jnrC;
1293             j_coord_offsetD  = DIM*jnrD;
1294
1295             /* load j atom coordinates */
1296             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1297                                               x+j_coord_offsetC,x+j_coord_offsetD,
1298                                               &jx0,&jy0,&jz0);
1299
1300             /* Calculate displacement vector */
1301             dx00             = _mm_sub_ps(ix0,jx0);
1302             dy00             = _mm_sub_ps(iy0,jy0);
1303             dz00             = _mm_sub_ps(iz0,jz0);
1304             dx10             = _mm_sub_ps(ix1,jx0);
1305             dy10             = _mm_sub_ps(iy1,jy0);
1306             dz10             = _mm_sub_ps(iz1,jz0);
1307             dx20             = _mm_sub_ps(ix2,jx0);
1308             dy20             = _mm_sub_ps(iy2,jy0);
1309             dz20             = _mm_sub_ps(iz2,jz0);
1310             dx30             = _mm_sub_ps(ix3,jx0);
1311             dy30             = _mm_sub_ps(iy3,jy0);
1312             dz30             = _mm_sub_ps(iz3,jz0);
1313
1314             /* Calculate squared distance and things based on it */
1315             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1316             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1317             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1318             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1319
1320             rinv00           = sse2_invsqrt_f(rsq00);
1321             rinv10           = sse2_invsqrt_f(rsq10);
1322             rinv20           = sse2_invsqrt_f(rsq20);
1323             rinv30           = sse2_invsqrt_f(rsq30);
1324
1325             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1326             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1327             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1328             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1329
1330             /* Load parameters for j particles */
1331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1332                                                               charge+jnrC+0,charge+jnrD+0);
1333             vdwjidx0A        = 2*vdwtype[jnrA+0];
1334             vdwjidx0B        = 2*vdwtype[jnrB+0];
1335             vdwjidx0C        = 2*vdwtype[jnrC+0];
1336             vdwjidx0D        = 2*vdwtype[jnrD+0];
1337
1338             fjx0             = _mm_setzero_ps();
1339             fjy0             = _mm_setzero_ps();
1340             fjz0             = _mm_setzero_ps();
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             if (gmx_mm_any_lt(rsq00,rcutoff2))
1347             {
1348
1349             r00              = _mm_mul_ps(rsq00,rinv00);
1350             r00              = _mm_andnot_ps(dummy_mask,r00);
1351
1352             /* Compute parameters for interactions between i and j atoms */
1353             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1354                                          vdwparam+vdwioffset0+vdwjidx0B,
1355                                          vdwparam+vdwioffset0+vdwjidx0C,
1356                                          vdwparam+vdwioffset0+vdwjidx0D,
1357                                          &c6_00,&c12_00);
1358             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1359                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1360                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1361                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1362
1363             /* Analytical LJ-PME */
1364             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1365             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1366             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1367             exponent         = sse2_exp_f(ewcljrsq);
1368             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1369             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1370             /* f6A = 6 * C6grid * (1 - poly) */
1371             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1372             /* f6B = C6grid * exponent * beta^6 */
1373             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1374             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1375             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1376
1377             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1378
1379             fscal            = fvdw;
1380
1381             fscal            = _mm_and_ps(fscal,cutoff_mask);
1382
1383             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1384
1385             /* Calculate temporary vectorial force */
1386             tx               = _mm_mul_ps(fscal,dx00);
1387             ty               = _mm_mul_ps(fscal,dy00);
1388             tz               = _mm_mul_ps(fscal,dz00);
1389
1390             /* Update vectorial force */
1391             fix0             = _mm_add_ps(fix0,tx);
1392             fiy0             = _mm_add_ps(fiy0,ty);
1393             fiz0             = _mm_add_ps(fiz0,tz);
1394
1395             fjx0             = _mm_add_ps(fjx0,tx);
1396             fjy0             = _mm_add_ps(fjy0,ty);
1397             fjz0             = _mm_add_ps(fjz0,tz);
1398             
1399             }
1400
1401             /**************************
1402              * CALCULATE INTERACTIONS *
1403              **************************/
1404
1405             if (gmx_mm_any_lt(rsq10,rcutoff2))
1406             {
1407
1408             r10              = _mm_mul_ps(rsq10,rinv10);
1409             r10              = _mm_andnot_ps(dummy_mask,r10);
1410
1411             /* Compute parameters for interactions between i and j atoms */
1412             qq10             = _mm_mul_ps(iq1,jq0);
1413
1414             /* EWALD ELECTROSTATICS */
1415
1416             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1417             ewrt             = _mm_mul_ps(r10,ewtabscale);
1418             ewitab           = _mm_cvttps_epi32(ewrt);
1419             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1420             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1421                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1422                                          &ewtabF,&ewtabFn);
1423             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1424             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1425
1426             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1427
1428             fscal            = felec;
1429
1430             fscal            = _mm_and_ps(fscal,cutoff_mask);
1431
1432             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1433
1434             /* Calculate temporary vectorial force */
1435             tx               = _mm_mul_ps(fscal,dx10);
1436             ty               = _mm_mul_ps(fscal,dy10);
1437             tz               = _mm_mul_ps(fscal,dz10);
1438
1439             /* Update vectorial force */
1440             fix1             = _mm_add_ps(fix1,tx);
1441             fiy1             = _mm_add_ps(fiy1,ty);
1442             fiz1             = _mm_add_ps(fiz1,tz);
1443
1444             fjx0             = _mm_add_ps(fjx0,tx);
1445             fjy0             = _mm_add_ps(fjy0,ty);
1446             fjz0             = _mm_add_ps(fjz0,tz);
1447             
1448             }
1449
1450             /**************************
1451              * CALCULATE INTERACTIONS *
1452              **************************/
1453
1454             if (gmx_mm_any_lt(rsq20,rcutoff2))
1455             {
1456
1457             r20              = _mm_mul_ps(rsq20,rinv20);
1458             r20              = _mm_andnot_ps(dummy_mask,r20);
1459
1460             /* Compute parameters for interactions between i and j atoms */
1461             qq20             = _mm_mul_ps(iq2,jq0);
1462
1463             /* EWALD ELECTROSTATICS */
1464
1465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1466             ewrt             = _mm_mul_ps(r20,ewtabscale);
1467             ewitab           = _mm_cvttps_epi32(ewrt);
1468             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1469             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1470                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1471                                          &ewtabF,&ewtabFn);
1472             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1473             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1474
1475             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1476
1477             fscal            = felec;
1478
1479             fscal            = _mm_and_ps(fscal,cutoff_mask);
1480
1481             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1482
1483             /* Calculate temporary vectorial force */
1484             tx               = _mm_mul_ps(fscal,dx20);
1485             ty               = _mm_mul_ps(fscal,dy20);
1486             tz               = _mm_mul_ps(fscal,dz20);
1487
1488             /* Update vectorial force */
1489             fix2             = _mm_add_ps(fix2,tx);
1490             fiy2             = _mm_add_ps(fiy2,ty);
1491             fiz2             = _mm_add_ps(fiz2,tz);
1492
1493             fjx0             = _mm_add_ps(fjx0,tx);
1494             fjy0             = _mm_add_ps(fjy0,ty);
1495             fjz0             = _mm_add_ps(fjz0,tz);
1496             
1497             }
1498
1499             /**************************
1500              * CALCULATE INTERACTIONS *
1501              **************************/
1502
1503             if (gmx_mm_any_lt(rsq30,rcutoff2))
1504             {
1505
1506             r30              = _mm_mul_ps(rsq30,rinv30);
1507             r30              = _mm_andnot_ps(dummy_mask,r30);
1508
1509             /* Compute parameters for interactions between i and j atoms */
1510             qq30             = _mm_mul_ps(iq3,jq0);
1511
1512             /* EWALD ELECTROSTATICS */
1513
1514             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1515             ewrt             = _mm_mul_ps(r30,ewtabscale);
1516             ewitab           = _mm_cvttps_epi32(ewrt);
1517             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1518             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1519                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1520                                          &ewtabF,&ewtabFn);
1521             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1522             felec            = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1523
1524             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1525
1526             fscal            = felec;
1527
1528             fscal            = _mm_and_ps(fscal,cutoff_mask);
1529
1530             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1531
1532             /* Calculate temporary vectorial force */
1533             tx               = _mm_mul_ps(fscal,dx30);
1534             ty               = _mm_mul_ps(fscal,dy30);
1535             tz               = _mm_mul_ps(fscal,dz30);
1536
1537             /* Update vectorial force */
1538             fix3             = _mm_add_ps(fix3,tx);
1539             fiy3             = _mm_add_ps(fiy3,ty);
1540             fiz3             = _mm_add_ps(fiz3,tz);
1541
1542             fjx0             = _mm_add_ps(fjx0,tx);
1543             fjy0             = _mm_add_ps(fjy0,ty);
1544             fjz0             = _mm_add_ps(fjz0,tz);
1545             
1546             }
1547
1548             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1549             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1550             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1551             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1552
1553             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1554
1555             /* Inner loop uses 170 flops */
1556         }
1557
1558         /* End of innermost loop */
1559
1560         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1561                                               f+i_coord_offset,fshift+i_shift_offset);
1562
1563         /* Increment number of inner iterations */
1564         inneriter                  += j_index_end - j_index_start;
1565
1566         /* Outer loop uses 24 flops */
1567     }
1568
1569     /* Increment number of outer iterations */
1570     outeriter        += nri;
1571
1572     /* Update outer/inner flops */
1573
1574     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*170);
1575 }