Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           c6grid_00;
105     __m128           c6grid_10;
106     __m128           c6grid_20;
107     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     real             *vdwgridparam;
109     __m128           one_half = _mm_set1_ps(0.5);
110     __m128           minus_one = _mm_set1_ps(-1.0);
111     __m128i          ewitab;
112     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113     real             *ewtab;
114     __m128           dummy_mask,cutoff_mask;
115     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116     __m128           one     = _mm_set1_ps(1.0);
117     __m128           two     = _mm_set1_ps(2.0);
118     x                = xx[0];
119     f                = ff[0];
120
121     nri              = nlist->nri;
122     iinr             = nlist->iinr;
123     jindex           = nlist->jindex;
124     jjnr             = nlist->jjnr;
125     shiftidx         = nlist->shift;
126     gid              = nlist->gid;
127     shiftvec         = fr->shift_vec[0];
128     fshift           = fr->fshift[0];
129     facel            = _mm_set1_ps(fr->epsfac);
130     charge           = mdatoms->chargeA;
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134     vdwgridparam     = fr->ljpme_c6grid;
135     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
136     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
137     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
140     ewtab            = fr->ic->tabq_coul_FDV0;
141     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
142     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144     /* Setup water-specific parameters */
145     inr              = nlist->iinr[0];
146     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
152     rcutoff_scalar   = fr->rcoulomb;
153     rcutoff          = _mm_set1_ps(rcutoff_scalar);
154     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
155
156     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
157     rvdw             = _mm_set1_ps(fr->rvdw);
158
159     /* Avoid stupid compiler warnings */
160     jnrA = jnrB = jnrC = jnrD = 0;
161     j_coord_offsetA = 0;
162     j_coord_offsetB = 0;
163     j_coord_offsetC = 0;
164     j_coord_offsetD = 0;
165
166     outeriter        = 0;
167     inneriter        = 0;
168
169     for(iidx=0;iidx<4*DIM;iidx++)
170     {
171         scratch[iidx] = 0.0;
172     }  
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191         
192         fix0             = _mm_setzero_ps();
193         fiy0             = _mm_setzero_ps();
194         fiz0             = _mm_setzero_ps();
195         fix1             = _mm_setzero_ps();
196         fiy1             = _mm_setzero_ps();
197         fiz1             = _mm_setzero_ps();
198         fix2             = _mm_setzero_ps();
199         fiy2             = _mm_setzero_ps();
200         fiz2             = _mm_setzero_ps();
201
202         /* Reset potential sums */
203         velecsum         = _mm_setzero_ps();
204         vvdwsum          = _mm_setzero_ps();
205
206         /* Start inner kernel loop */
207         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208         {
209
210             /* Get j neighbor index, and coordinate index */
211             jnrA             = jjnr[jidx];
212             jnrB             = jjnr[jidx+1];
213             jnrC             = jjnr[jidx+2];
214             jnrD             = jjnr[jidx+3];
215             j_coord_offsetA  = DIM*jnrA;
216             j_coord_offsetB  = DIM*jnrB;
217             j_coord_offsetC  = DIM*jnrC;
218             j_coord_offsetD  = DIM*jnrD;
219
220             /* load j atom coordinates */
221             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               x+j_coord_offsetC,x+j_coord_offsetD,
223                                               &jx0,&jy0,&jz0);
224
225             /* Calculate displacement vector */
226             dx00             = _mm_sub_ps(ix0,jx0);
227             dy00             = _mm_sub_ps(iy0,jy0);
228             dz00             = _mm_sub_ps(iz0,jz0);
229             dx10             = _mm_sub_ps(ix1,jx0);
230             dy10             = _mm_sub_ps(iy1,jy0);
231             dz10             = _mm_sub_ps(iz1,jz0);
232             dx20             = _mm_sub_ps(ix2,jx0);
233             dy20             = _mm_sub_ps(iy2,jy0);
234             dz20             = _mm_sub_ps(iz2,jz0);
235
236             /* Calculate squared distance and things based on it */
237             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
238             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
239             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
240
241             rinv00           = gmx_mm_invsqrt_ps(rsq00);
242             rinv10           = gmx_mm_invsqrt_ps(rsq10);
243             rinv20           = gmx_mm_invsqrt_ps(rsq20);
244
245             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
246             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
247             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
248
249             /* Load parameters for j particles */
250             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251                                                               charge+jnrC+0,charge+jnrD+0);
252             vdwjidx0A        = 2*vdwtype[jnrA+0];
253             vdwjidx0B        = 2*vdwtype[jnrB+0];
254             vdwjidx0C        = 2*vdwtype[jnrC+0];
255             vdwjidx0D        = 2*vdwtype[jnrD+0];
256
257             fjx0             = _mm_setzero_ps();
258             fjy0             = _mm_setzero_ps();
259             fjz0             = _mm_setzero_ps();
260
261             /**************************
262              * CALCULATE INTERACTIONS *
263              **************************/
264
265             if (gmx_mm_any_lt(rsq00,rcutoff2))
266             {
267
268             r00              = _mm_mul_ps(rsq00,rinv00);
269
270             /* Compute parameters for interactions between i and j atoms */
271             qq00             = _mm_mul_ps(iq0,jq0);
272             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
273                                          vdwparam+vdwioffset0+vdwjidx0B,
274                                          vdwparam+vdwioffset0+vdwjidx0C,
275                                          vdwparam+vdwioffset0+vdwjidx0D,
276                                          &c6_00,&c12_00);
277             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
279                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
280                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
281
282             /* EWALD ELECTROSTATICS */
283
284             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
285             ewrt             = _mm_mul_ps(r00,ewtabscale);
286             ewitab           = _mm_cvttps_epi32(ewrt);
287             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
288             ewitab           = _mm_slli_epi32(ewitab,2);
289             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
290             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
291             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
292             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
293             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
294             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
295             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
296             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
297             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
298
299             /* Analytical LJ-PME */
300             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
301             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
302             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
303             exponent         = gmx_simd_exp_r(ewcljrsq);
304             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
305             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
306             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
307             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
308             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
309             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
310                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
311             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
312             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
313
314             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm_and_ps(velec,cutoff_mask);
318             velecsum         = _mm_add_ps(velecsum,velec);
319             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
320             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
321
322             fscal            = _mm_add_ps(felec,fvdw);
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm_mul_ps(fscal,dx00);
328             ty               = _mm_mul_ps(fscal,dy00);
329             tz               = _mm_mul_ps(fscal,dz00);
330
331             /* Update vectorial force */
332             fix0             = _mm_add_ps(fix0,tx);
333             fiy0             = _mm_add_ps(fiy0,ty);
334             fiz0             = _mm_add_ps(fiz0,tz);
335
336             fjx0             = _mm_add_ps(fjx0,tx);
337             fjy0             = _mm_add_ps(fjy0,ty);
338             fjz0             = _mm_add_ps(fjz0,tz);
339             
340             }
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm_any_lt(rsq10,rcutoff2))
347             {
348
349             r10              = _mm_mul_ps(rsq10,rinv10);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq10             = _mm_mul_ps(iq1,jq0);
353
354             /* EWALD ELECTROSTATICS */
355
356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357             ewrt             = _mm_mul_ps(r10,ewtabscale);
358             ewitab           = _mm_cvttps_epi32(ewrt);
359             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
360             ewitab           = _mm_slli_epi32(ewitab,2);
361             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
362             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
363             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
364             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
365             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
366             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
367             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
368             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
369             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
370
371             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
372
373             /* Update potential sum for this i atom from the interaction with this j atom. */
374             velec            = _mm_and_ps(velec,cutoff_mask);
375             velecsum         = _mm_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             fscal            = _mm_and_ps(fscal,cutoff_mask);
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm_mul_ps(fscal,dx10);
383             ty               = _mm_mul_ps(fscal,dy10);
384             tz               = _mm_mul_ps(fscal,dz10);
385
386             /* Update vectorial force */
387             fix1             = _mm_add_ps(fix1,tx);
388             fiy1             = _mm_add_ps(fiy1,ty);
389             fiz1             = _mm_add_ps(fiz1,tz);
390
391             fjx0             = _mm_add_ps(fjx0,tx);
392             fjy0             = _mm_add_ps(fjy0,ty);
393             fjz0             = _mm_add_ps(fjz0,tz);
394             
395             }
396
397             /**************************
398              * CALCULATE INTERACTIONS *
399              **************************/
400
401             if (gmx_mm_any_lt(rsq20,rcutoff2))
402             {
403
404             r20              = _mm_mul_ps(rsq20,rinv20);
405
406             /* Compute parameters for interactions between i and j atoms */
407             qq20             = _mm_mul_ps(iq2,jq0);
408
409             /* EWALD ELECTROSTATICS */
410
411             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
412             ewrt             = _mm_mul_ps(r20,ewtabscale);
413             ewitab           = _mm_cvttps_epi32(ewrt);
414             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
415             ewitab           = _mm_slli_epi32(ewitab,2);
416             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
417             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
418             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
419             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
420             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
421             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
422             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
423             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
424             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
425
426             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velec            = _mm_and_ps(velec,cutoff_mask);
430             velecsum         = _mm_add_ps(velecsum,velec);
431
432             fscal            = felec;
433
434             fscal            = _mm_and_ps(fscal,cutoff_mask);
435
436             /* Calculate temporary vectorial force */
437             tx               = _mm_mul_ps(fscal,dx20);
438             ty               = _mm_mul_ps(fscal,dy20);
439             tz               = _mm_mul_ps(fscal,dz20);
440
441             /* Update vectorial force */
442             fix2             = _mm_add_ps(fix2,tx);
443             fiy2             = _mm_add_ps(fiy2,ty);
444             fiz2             = _mm_add_ps(fiz2,tz);
445
446             fjx0             = _mm_add_ps(fjx0,tx);
447             fjy0             = _mm_add_ps(fjy0,ty);
448             fjz0             = _mm_add_ps(fjz0,tz);
449             
450             }
451
452             fjptrA             = f+j_coord_offsetA;
453             fjptrB             = f+j_coord_offsetB;
454             fjptrC             = f+j_coord_offsetC;
455             fjptrD             = f+j_coord_offsetD;
456
457             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
458
459             /* Inner loop uses 174 flops */
460         }
461
462         if(jidx<j_index_end)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrlistA         = jjnr[jidx];
467             jnrlistB         = jjnr[jidx+1];
468             jnrlistC         = jjnr[jidx+2];
469             jnrlistD         = jjnr[jidx+3];
470             /* Sign of each element will be negative for non-real atoms.
471              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473              */
474             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
475             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
476             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
477             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
478             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
479             j_coord_offsetA  = DIM*jnrA;
480             j_coord_offsetB  = DIM*jnrB;
481             j_coord_offsetC  = DIM*jnrC;
482             j_coord_offsetD  = DIM*jnrD;
483
484             /* load j atom coordinates */
485             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
486                                               x+j_coord_offsetC,x+j_coord_offsetD,
487                                               &jx0,&jy0,&jz0);
488
489             /* Calculate displacement vector */
490             dx00             = _mm_sub_ps(ix0,jx0);
491             dy00             = _mm_sub_ps(iy0,jy0);
492             dz00             = _mm_sub_ps(iz0,jz0);
493             dx10             = _mm_sub_ps(ix1,jx0);
494             dy10             = _mm_sub_ps(iy1,jy0);
495             dz10             = _mm_sub_ps(iz1,jz0);
496             dx20             = _mm_sub_ps(ix2,jx0);
497             dy20             = _mm_sub_ps(iy2,jy0);
498             dz20             = _mm_sub_ps(iz2,jz0);
499
500             /* Calculate squared distance and things based on it */
501             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
502             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
503             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
504
505             rinv00           = gmx_mm_invsqrt_ps(rsq00);
506             rinv10           = gmx_mm_invsqrt_ps(rsq10);
507             rinv20           = gmx_mm_invsqrt_ps(rsq20);
508
509             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
510             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
511             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
512
513             /* Load parameters for j particles */
514             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
515                                                               charge+jnrC+0,charge+jnrD+0);
516             vdwjidx0A        = 2*vdwtype[jnrA+0];
517             vdwjidx0B        = 2*vdwtype[jnrB+0];
518             vdwjidx0C        = 2*vdwtype[jnrC+0];
519             vdwjidx0D        = 2*vdwtype[jnrD+0];
520
521             fjx0             = _mm_setzero_ps();
522             fjy0             = _mm_setzero_ps();
523             fjz0             = _mm_setzero_ps();
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (gmx_mm_any_lt(rsq00,rcutoff2))
530             {
531
532             r00              = _mm_mul_ps(rsq00,rinv00);
533             r00              = _mm_andnot_ps(dummy_mask,r00);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq00             = _mm_mul_ps(iq0,jq0);
537             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
538                                          vdwparam+vdwioffset0+vdwjidx0B,
539                                          vdwparam+vdwioffset0+vdwjidx0C,
540                                          vdwparam+vdwioffset0+vdwjidx0D,
541                                          &c6_00,&c12_00);
542             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
545                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
546
547             /* EWALD ELECTROSTATICS */
548
549             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
550             ewrt             = _mm_mul_ps(r00,ewtabscale);
551             ewitab           = _mm_cvttps_epi32(ewrt);
552             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
553             ewitab           = _mm_slli_epi32(ewitab,2);
554             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
555             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
556             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
557             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
558             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
559             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
560             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
561             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
562             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
563
564             /* Analytical LJ-PME */
565             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
566             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
567             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
568             exponent         = gmx_simd_exp_r(ewcljrsq);
569             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
570             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
571             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
572             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
573             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
574             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
575                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
576             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
577             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
578
579             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_and_ps(velec,cutoff_mask);
583             velec            = _mm_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm_add_ps(velecsum,velec);
585             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
586             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
587             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
588
589             fscal            = _mm_add_ps(felec,fvdw);
590
591             fscal            = _mm_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_ps(fscal,dx00);
597             ty               = _mm_mul_ps(fscal,dy00);
598             tz               = _mm_mul_ps(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm_add_ps(fix0,tx);
602             fiy0             = _mm_add_ps(fiy0,ty);
603             fiz0             = _mm_add_ps(fiz0,tz);
604
605             fjx0             = _mm_add_ps(fjx0,tx);
606             fjy0             = _mm_add_ps(fjy0,ty);
607             fjz0             = _mm_add_ps(fjz0,tz);
608             
609             }
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (gmx_mm_any_lt(rsq10,rcutoff2))
616             {
617
618             r10              = _mm_mul_ps(rsq10,rinv10);
619             r10              = _mm_andnot_ps(dummy_mask,r10);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq10             = _mm_mul_ps(iq1,jq0);
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = _mm_mul_ps(r10,ewtabscale);
628             ewitab           = _mm_cvttps_epi32(ewrt);
629             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
630             ewitab           = _mm_slli_epi32(ewitab,2);
631             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
632             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
633             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
634             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
635             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
636             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
637             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
638             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
639             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
640
641             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_and_ps(velec,cutoff_mask);
645             velec            = _mm_andnot_ps(dummy_mask,velec);
646             velecsum         = _mm_add_ps(velecsum,velec);
647
648             fscal            = felec;
649
650             fscal            = _mm_and_ps(fscal,cutoff_mask);
651
652             fscal            = _mm_andnot_ps(dummy_mask,fscal);
653
654             /* Calculate temporary vectorial force */
655             tx               = _mm_mul_ps(fscal,dx10);
656             ty               = _mm_mul_ps(fscal,dy10);
657             tz               = _mm_mul_ps(fscal,dz10);
658
659             /* Update vectorial force */
660             fix1             = _mm_add_ps(fix1,tx);
661             fiy1             = _mm_add_ps(fiy1,ty);
662             fiz1             = _mm_add_ps(fiz1,tz);
663
664             fjx0             = _mm_add_ps(fjx0,tx);
665             fjy0             = _mm_add_ps(fjy0,ty);
666             fjz0             = _mm_add_ps(fjz0,tz);
667             
668             }
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             if (gmx_mm_any_lt(rsq20,rcutoff2))
675             {
676
677             r20              = _mm_mul_ps(rsq20,rinv20);
678             r20              = _mm_andnot_ps(dummy_mask,r20);
679
680             /* Compute parameters for interactions between i and j atoms */
681             qq20             = _mm_mul_ps(iq2,jq0);
682
683             /* EWALD ELECTROSTATICS */
684
685             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686             ewrt             = _mm_mul_ps(r20,ewtabscale);
687             ewitab           = _mm_cvttps_epi32(ewrt);
688             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
689             ewitab           = _mm_slli_epi32(ewitab,2);
690             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
691             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
692             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
693             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
694             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
695             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
696             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
697             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
698             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
699
700             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
701
702             /* Update potential sum for this i atom from the interaction with this j atom. */
703             velec            = _mm_and_ps(velec,cutoff_mask);
704             velec            = _mm_andnot_ps(dummy_mask,velec);
705             velecsum         = _mm_add_ps(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm_and_ps(fscal,cutoff_mask);
710
711             fscal            = _mm_andnot_ps(dummy_mask,fscal);
712
713             /* Calculate temporary vectorial force */
714             tx               = _mm_mul_ps(fscal,dx20);
715             ty               = _mm_mul_ps(fscal,dy20);
716             tz               = _mm_mul_ps(fscal,dz20);
717
718             /* Update vectorial force */
719             fix2             = _mm_add_ps(fix2,tx);
720             fiy2             = _mm_add_ps(fiy2,ty);
721             fiz2             = _mm_add_ps(fiz2,tz);
722
723             fjx0             = _mm_add_ps(fjx0,tx);
724             fjy0             = _mm_add_ps(fjy0,ty);
725             fjz0             = _mm_add_ps(fjz0,tz);
726             
727             }
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733
734             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 177 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
742                                               f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 20 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_single
764  * Electrostatics interaction: Ewald
765  * VdW interaction:            LJEwald
766  * Geometry:                   Water3-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_single
771                     (t_nblist                    * gmx_restrict       nlist,
772                      rvec                        * gmx_restrict          xx,
773                      rvec                        * gmx_restrict          ff,
774                      t_forcerec                  * gmx_restrict          fr,
775                      t_mdatoms                   * gmx_restrict     mdatoms,
776                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
777                      t_nrnb                      * gmx_restrict        nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
780      * just 0 for non-waters.
781      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB,jnrC,jnrD;
787     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
788     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
789     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
790     real             rcutoff_scalar;
791     real             *shiftvec,*fshift,*x,*f;
792     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
793     real             scratch[4*DIM];
794     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
795     int              vdwioffset0;
796     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
797     int              vdwioffset1;
798     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
799     int              vdwioffset2;
800     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
801     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
802     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
803     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
804     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
805     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
806     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
807     real             *charge;
808     int              nvdwtype;
809     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
810     int              *vdwtype;
811     real             *vdwparam;
812     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
813     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
814     __m128           c6grid_00;
815     __m128           c6grid_10;
816     __m128           c6grid_20;
817     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
818     real             *vdwgridparam;
819     __m128           one_half = _mm_set1_ps(0.5);
820     __m128           minus_one = _mm_set1_ps(-1.0);
821     __m128i          ewitab;
822     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
823     real             *ewtab;
824     __m128           dummy_mask,cutoff_mask;
825     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
826     __m128           one     = _mm_set1_ps(1.0);
827     __m128           two     = _mm_set1_ps(2.0);
828     x                = xx[0];
829     f                = ff[0];
830
831     nri              = nlist->nri;
832     iinr             = nlist->iinr;
833     jindex           = nlist->jindex;
834     jjnr             = nlist->jjnr;
835     shiftidx         = nlist->shift;
836     gid              = nlist->gid;
837     shiftvec         = fr->shift_vec[0];
838     fshift           = fr->fshift[0];
839     facel            = _mm_set1_ps(fr->epsfac);
840     charge           = mdatoms->chargeA;
841     nvdwtype         = fr->ntype;
842     vdwparam         = fr->nbfp;
843     vdwtype          = mdatoms->typeA;
844     vdwgridparam     = fr->ljpme_c6grid;
845     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
846     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
847     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
848
849     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
850     ewtab            = fr->ic->tabq_coul_F;
851     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
852     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
853
854     /* Setup water-specific parameters */
855     inr              = nlist->iinr[0];
856     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
857     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
858     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
859     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
860
861     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
862     rcutoff_scalar   = fr->rcoulomb;
863     rcutoff          = _mm_set1_ps(rcutoff_scalar);
864     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
865
866     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
867     rvdw             = _mm_set1_ps(fr->rvdw);
868
869     /* Avoid stupid compiler warnings */
870     jnrA = jnrB = jnrC = jnrD = 0;
871     j_coord_offsetA = 0;
872     j_coord_offsetB = 0;
873     j_coord_offsetC = 0;
874     j_coord_offsetD = 0;
875
876     outeriter        = 0;
877     inneriter        = 0;
878
879     for(iidx=0;iidx<4*DIM;iidx++)
880     {
881         scratch[iidx] = 0.0;
882     }  
883
884     /* Start outer loop over neighborlists */
885     for(iidx=0; iidx<nri; iidx++)
886     {
887         /* Load shift vector for this list */
888         i_shift_offset   = DIM*shiftidx[iidx];
889
890         /* Load limits for loop over neighbors */
891         j_index_start    = jindex[iidx];
892         j_index_end      = jindex[iidx+1];
893
894         /* Get outer coordinate index */
895         inr              = iinr[iidx];
896         i_coord_offset   = DIM*inr;
897
898         /* Load i particle coords and add shift vector */
899         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
900                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
901         
902         fix0             = _mm_setzero_ps();
903         fiy0             = _mm_setzero_ps();
904         fiz0             = _mm_setzero_ps();
905         fix1             = _mm_setzero_ps();
906         fiy1             = _mm_setzero_ps();
907         fiz1             = _mm_setzero_ps();
908         fix2             = _mm_setzero_ps();
909         fiy2             = _mm_setzero_ps();
910         fiz2             = _mm_setzero_ps();
911
912         /* Start inner kernel loop */
913         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
914         {
915
916             /* Get j neighbor index, and coordinate index */
917             jnrA             = jjnr[jidx];
918             jnrB             = jjnr[jidx+1];
919             jnrC             = jjnr[jidx+2];
920             jnrD             = jjnr[jidx+3];
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941
942             /* Calculate squared distance and things based on it */
943             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
944             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
945             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
946
947             rinv00           = gmx_mm_invsqrt_ps(rsq00);
948             rinv10           = gmx_mm_invsqrt_ps(rsq10);
949             rinv20           = gmx_mm_invsqrt_ps(rsq20);
950
951             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
952             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
953             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
954
955             /* Load parameters for j particles */
956             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
957                                                               charge+jnrC+0,charge+jnrD+0);
958             vdwjidx0A        = 2*vdwtype[jnrA+0];
959             vdwjidx0B        = 2*vdwtype[jnrB+0];
960             vdwjidx0C        = 2*vdwtype[jnrC+0];
961             vdwjidx0D        = 2*vdwtype[jnrD+0];
962
963             fjx0             = _mm_setzero_ps();
964             fjy0             = _mm_setzero_ps();
965             fjz0             = _mm_setzero_ps();
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             if (gmx_mm_any_lt(rsq00,rcutoff2))
972             {
973
974             r00              = _mm_mul_ps(rsq00,rinv00);
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq00             = _mm_mul_ps(iq0,jq0);
978             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
979                                          vdwparam+vdwioffset0+vdwjidx0B,
980                                          vdwparam+vdwioffset0+vdwjidx0C,
981                                          vdwparam+vdwioffset0+vdwjidx0D,
982                                          &c6_00,&c12_00);
983             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
984                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
985                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
986                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_ps(r00,ewtabscale);
992             ewitab           = _mm_cvttps_epi32(ewrt);
993             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
994             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
995                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
996                                          &ewtabF,&ewtabFn);
997             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
998             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
999
1000             /* Analytical LJ-PME */
1001             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1002             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1003             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1004             exponent         = gmx_simd_exp_r(ewcljrsq);
1005             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1006             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1007             /* f6A = 6 * C6grid * (1 - poly) */
1008             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1009             /* f6B = C6grid * exponent * beta^6 */
1010             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1011             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1012             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1013
1014             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1015
1016             fscal            = _mm_add_ps(felec,fvdw);
1017
1018             fscal            = _mm_and_ps(fscal,cutoff_mask);
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = _mm_mul_ps(fscal,dx00);
1022             ty               = _mm_mul_ps(fscal,dy00);
1023             tz               = _mm_mul_ps(fscal,dz00);
1024
1025             /* Update vectorial force */
1026             fix0             = _mm_add_ps(fix0,tx);
1027             fiy0             = _mm_add_ps(fiy0,ty);
1028             fiz0             = _mm_add_ps(fiz0,tz);
1029
1030             fjx0             = _mm_add_ps(fjx0,tx);
1031             fjy0             = _mm_add_ps(fjy0,ty);
1032             fjz0             = _mm_add_ps(fjz0,tz);
1033             
1034             }
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             if (gmx_mm_any_lt(rsq10,rcutoff2))
1041             {
1042
1043             r10              = _mm_mul_ps(rsq10,rinv10);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq10             = _mm_mul_ps(iq1,jq0);
1047
1048             /* EWALD ELECTROSTATICS */
1049
1050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1051             ewrt             = _mm_mul_ps(r10,ewtabscale);
1052             ewitab           = _mm_cvttps_epi32(ewrt);
1053             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1054             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1055                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1056                                          &ewtabF,&ewtabFn);
1057             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1058             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1059
1060             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_and_ps(fscal,cutoff_mask);
1065
1066             /* Calculate temporary vectorial force */
1067             tx               = _mm_mul_ps(fscal,dx10);
1068             ty               = _mm_mul_ps(fscal,dy10);
1069             tz               = _mm_mul_ps(fscal,dz10);
1070
1071             /* Update vectorial force */
1072             fix1             = _mm_add_ps(fix1,tx);
1073             fiy1             = _mm_add_ps(fiy1,ty);
1074             fiz1             = _mm_add_ps(fiz1,tz);
1075
1076             fjx0             = _mm_add_ps(fjx0,tx);
1077             fjy0             = _mm_add_ps(fjy0,ty);
1078             fjz0             = _mm_add_ps(fjz0,tz);
1079             
1080             }
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             if (gmx_mm_any_lt(rsq20,rcutoff2))
1087             {
1088
1089             r20              = _mm_mul_ps(rsq20,rinv20);
1090
1091             /* Compute parameters for interactions between i and j atoms */
1092             qq20             = _mm_mul_ps(iq2,jq0);
1093
1094             /* EWALD ELECTROSTATICS */
1095
1096             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1097             ewrt             = _mm_mul_ps(r20,ewtabscale);
1098             ewitab           = _mm_cvttps_epi32(ewrt);
1099             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1100             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1101                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1102                                          &ewtabF,&ewtabFn);
1103             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1104             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1105
1106             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1107
1108             fscal            = felec;
1109
1110             fscal            = _mm_and_ps(fscal,cutoff_mask);
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = _mm_mul_ps(fscal,dx20);
1114             ty               = _mm_mul_ps(fscal,dy20);
1115             tz               = _mm_mul_ps(fscal,dz20);
1116
1117             /* Update vectorial force */
1118             fix2             = _mm_add_ps(fix2,tx);
1119             fiy2             = _mm_add_ps(fiy2,ty);
1120             fiz2             = _mm_add_ps(fiz2,tz);
1121
1122             fjx0             = _mm_add_ps(fjx0,tx);
1123             fjy0             = _mm_add_ps(fjy0,ty);
1124             fjz0             = _mm_add_ps(fjz0,tz);
1125             
1126             }
1127
1128             fjptrA             = f+j_coord_offsetA;
1129             fjptrB             = f+j_coord_offsetB;
1130             fjptrC             = f+j_coord_offsetC;
1131             fjptrD             = f+j_coord_offsetD;
1132
1133             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1134
1135             /* Inner loop uses 140 flops */
1136         }
1137
1138         if(jidx<j_index_end)
1139         {
1140
1141             /* Get j neighbor index, and coordinate index */
1142             jnrlistA         = jjnr[jidx];
1143             jnrlistB         = jjnr[jidx+1];
1144             jnrlistC         = jjnr[jidx+2];
1145             jnrlistD         = jjnr[jidx+3];
1146             /* Sign of each element will be negative for non-real atoms.
1147              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1148              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1149              */
1150             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1151             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1152             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1153             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1154             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1155             j_coord_offsetA  = DIM*jnrA;
1156             j_coord_offsetB  = DIM*jnrB;
1157             j_coord_offsetC  = DIM*jnrC;
1158             j_coord_offsetD  = DIM*jnrD;
1159
1160             /* load j atom coordinates */
1161             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1162                                               x+j_coord_offsetC,x+j_coord_offsetD,
1163                                               &jx0,&jy0,&jz0);
1164
1165             /* Calculate displacement vector */
1166             dx00             = _mm_sub_ps(ix0,jx0);
1167             dy00             = _mm_sub_ps(iy0,jy0);
1168             dz00             = _mm_sub_ps(iz0,jz0);
1169             dx10             = _mm_sub_ps(ix1,jx0);
1170             dy10             = _mm_sub_ps(iy1,jy0);
1171             dz10             = _mm_sub_ps(iz1,jz0);
1172             dx20             = _mm_sub_ps(ix2,jx0);
1173             dy20             = _mm_sub_ps(iy2,jy0);
1174             dz20             = _mm_sub_ps(iz2,jz0);
1175
1176             /* Calculate squared distance and things based on it */
1177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1178             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1179             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1180
1181             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1182             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1183             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1184
1185             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1186             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1187             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1188
1189             /* Load parameters for j particles */
1190             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1191                                                               charge+jnrC+0,charge+jnrD+0);
1192             vdwjidx0A        = 2*vdwtype[jnrA+0];
1193             vdwjidx0B        = 2*vdwtype[jnrB+0];
1194             vdwjidx0C        = 2*vdwtype[jnrC+0];
1195             vdwjidx0D        = 2*vdwtype[jnrD+0];
1196
1197             fjx0             = _mm_setzero_ps();
1198             fjy0             = _mm_setzero_ps();
1199             fjz0             = _mm_setzero_ps();
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (gmx_mm_any_lt(rsq00,rcutoff2))
1206             {
1207
1208             r00              = _mm_mul_ps(rsq00,rinv00);
1209             r00              = _mm_andnot_ps(dummy_mask,r00);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq00             = _mm_mul_ps(iq0,jq0);
1213             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1214                                          vdwparam+vdwioffset0+vdwjidx0B,
1215                                          vdwparam+vdwioffset0+vdwjidx0C,
1216                                          vdwparam+vdwioffset0+vdwjidx0D,
1217                                          &c6_00,&c12_00);
1218             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1219                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1220                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1221                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1226             ewrt             = _mm_mul_ps(r00,ewtabscale);
1227             ewitab           = _mm_cvttps_epi32(ewrt);
1228             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1229             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1230                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1231                                          &ewtabF,&ewtabFn);
1232             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1233             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1234
1235             /* Analytical LJ-PME */
1236             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1237             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1238             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1239             exponent         = gmx_simd_exp_r(ewcljrsq);
1240             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1241             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1242             /* f6A = 6 * C6grid * (1 - poly) */
1243             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1244             /* f6B = C6grid * exponent * beta^6 */
1245             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1246             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1247             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1248
1249             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1250
1251             fscal            = _mm_add_ps(felec,fvdw);
1252
1253             fscal            = _mm_and_ps(fscal,cutoff_mask);
1254
1255             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm_mul_ps(fscal,dx00);
1259             ty               = _mm_mul_ps(fscal,dy00);
1260             tz               = _mm_mul_ps(fscal,dz00);
1261
1262             /* Update vectorial force */
1263             fix0             = _mm_add_ps(fix0,tx);
1264             fiy0             = _mm_add_ps(fiy0,ty);
1265             fiz0             = _mm_add_ps(fiz0,tz);
1266
1267             fjx0             = _mm_add_ps(fjx0,tx);
1268             fjy0             = _mm_add_ps(fjy0,ty);
1269             fjz0             = _mm_add_ps(fjz0,tz);
1270             
1271             }
1272
1273             /**************************
1274              * CALCULATE INTERACTIONS *
1275              **************************/
1276
1277             if (gmx_mm_any_lt(rsq10,rcutoff2))
1278             {
1279
1280             r10              = _mm_mul_ps(rsq10,rinv10);
1281             r10              = _mm_andnot_ps(dummy_mask,r10);
1282
1283             /* Compute parameters for interactions between i and j atoms */
1284             qq10             = _mm_mul_ps(iq1,jq0);
1285
1286             /* EWALD ELECTROSTATICS */
1287
1288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1289             ewrt             = _mm_mul_ps(r10,ewtabscale);
1290             ewitab           = _mm_cvttps_epi32(ewrt);
1291             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1292             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1293                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1294                                          &ewtabF,&ewtabFn);
1295             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1296             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1297
1298             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1299
1300             fscal            = felec;
1301
1302             fscal            = _mm_and_ps(fscal,cutoff_mask);
1303
1304             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1305
1306             /* Calculate temporary vectorial force */
1307             tx               = _mm_mul_ps(fscal,dx10);
1308             ty               = _mm_mul_ps(fscal,dy10);
1309             tz               = _mm_mul_ps(fscal,dz10);
1310
1311             /* Update vectorial force */
1312             fix1             = _mm_add_ps(fix1,tx);
1313             fiy1             = _mm_add_ps(fiy1,ty);
1314             fiz1             = _mm_add_ps(fiz1,tz);
1315
1316             fjx0             = _mm_add_ps(fjx0,tx);
1317             fjy0             = _mm_add_ps(fjy0,ty);
1318             fjz0             = _mm_add_ps(fjz0,tz);
1319             
1320             }
1321
1322             /**************************
1323              * CALCULATE INTERACTIONS *
1324              **************************/
1325
1326             if (gmx_mm_any_lt(rsq20,rcutoff2))
1327             {
1328
1329             r20              = _mm_mul_ps(rsq20,rinv20);
1330             r20              = _mm_andnot_ps(dummy_mask,r20);
1331
1332             /* Compute parameters for interactions between i and j atoms */
1333             qq20             = _mm_mul_ps(iq2,jq0);
1334
1335             /* EWALD ELECTROSTATICS */
1336
1337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1338             ewrt             = _mm_mul_ps(r20,ewtabscale);
1339             ewitab           = _mm_cvttps_epi32(ewrt);
1340             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1341             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1342                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1343                                          &ewtabF,&ewtabFn);
1344             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1345             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1346
1347             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1348
1349             fscal            = felec;
1350
1351             fscal            = _mm_and_ps(fscal,cutoff_mask);
1352
1353             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm_mul_ps(fscal,dx20);
1357             ty               = _mm_mul_ps(fscal,dy20);
1358             tz               = _mm_mul_ps(fscal,dz20);
1359
1360             /* Update vectorial force */
1361             fix2             = _mm_add_ps(fix2,tx);
1362             fiy2             = _mm_add_ps(fiy2,ty);
1363             fiz2             = _mm_add_ps(fiz2,tz);
1364
1365             fjx0             = _mm_add_ps(fjx0,tx);
1366             fjy0             = _mm_add_ps(fjy0,ty);
1367             fjz0             = _mm_add_ps(fjz0,tz);
1368             
1369             }
1370
1371             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1372             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1373             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1374             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1375
1376             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1377
1378             /* Inner loop uses 143 flops */
1379         }
1380
1381         /* End of innermost loop */
1382
1383         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1384                                               f+i_coord_offset,fshift+i_shift_offset);
1385
1386         /* Increment number of inner iterations */
1387         inneriter                  += j_index_end - j_index_start;
1388
1389         /* Outer loop uses 18 flops */
1390     }
1391
1392     /* Increment number of outer iterations */
1393     outeriter        += nri;
1394
1395     /* Update outer/inner flops */
1396
1397     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1398 }