17992cf3067cd31687fbafde3072b94a3ebcd97e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_single
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           c6grid_00;
103     __m128           c6grid_10;
104     __m128           c6grid_20;
105     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     real             *vdwgridparam;
107     __m128           one_half = _mm_set1_ps(0.5);
108     __m128           minus_one = _mm_set1_ps(-1.0);
109     __m128i          ewitab;
110     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128           dummy_mask,cutoff_mask;
113     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
114     __m128           one     = _mm_set1_ps(1.0);
115     __m128           two     = _mm_set1_ps(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_ps(fr->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
145     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
146     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff_scalar   = fr->rcoulomb;
151     rcutoff          = _mm_set1_ps(rcutoff_scalar);
152     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
153
154     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
155     rvdw             = _mm_set1_ps(fr->rvdw);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }  
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
189         
190         fix0             = _mm_setzero_ps();
191         fiy0             = _mm_setzero_ps();
192         fiz0             = _mm_setzero_ps();
193         fix1             = _mm_setzero_ps();
194         fiy1             = _mm_setzero_ps();
195         fiz1             = _mm_setzero_ps();
196         fix2             = _mm_setzero_ps();
197         fiy2             = _mm_setzero_ps();
198         fiz2             = _mm_setzero_ps();
199
200         /* Reset potential sums */
201         velecsum         = _mm_setzero_ps();
202         vvdwsum          = _mm_setzero_ps();
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
206         {
207
208             /* Get j neighbor index, and coordinate index */
209             jnrA             = jjnr[jidx];
210             jnrB             = jjnr[jidx+1];
211             jnrC             = jjnr[jidx+2];
212             jnrD             = jjnr[jidx+3];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217
218             /* load j atom coordinates */
219             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
220                                               x+j_coord_offsetC,x+j_coord_offsetD,
221                                               &jx0,&jy0,&jz0);
222
223             /* Calculate displacement vector */
224             dx00             = _mm_sub_ps(ix0,jx0);
225             dy00             = _mm_sub_ps(iy0,jy0);
226             dz00             = _mm_sub_ps(iz0,jz0);
227             dx10             = _mm_sub_ps(ix1,jx0);
228             dy10             = _mm_sub_ps(iy1,jy0);
229             dz10             = _mm_sub_ps(iz1,jz0);
230             dx20             = _mm_sub_ps(ix2,jx0);
231             dy20             = _mm_sub_ps(iy2,jy0);
232             dz20             = _mm_sub_ps(iz2,jz0);
233
234             /* Calculate squared distance and things based on it */
235             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
236             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
237             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
238
239             rinv00           = gmx_mm_invsqrt_ps(rsq00);
240             rinv10           = gmx_mm_invsqrt_ps(rsq10);
241             rinv20           = gmx_mm_invsqrt_ps(rsq20);
242
243             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
244             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
246
247             /* Load parameters for j particles */
248             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
249                                                               charge+jnrC+0,charge+jnrD+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254
255             fjx0             = _mm_setzero_ps();
256             fjy0             = _mm_setzero_ps();
257             fjz0             = _mm_setzero_ps();
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             if (gmx_mm_any_lt(rsq00,rcutoff2))
264             {
265
266             r00              = _mm_mul_ps(rsq00,rinv00);
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq00             = _mm_mul_ps(iq0,jq0);
270             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
271                                          vdwparam+vdwioffset0+vdwjidx0B,
272                                          vdwparam+vdwioffset0+vdwjidx0C,
273                                          vdwparam+vdwioffset0+vdwjidx0D,
274                                          &c6_00,&c12_00);
275             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
276                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
277                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
278                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
279
280             /* EWALD ELECTROSTATICS */
281
282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
283             ewrt             = _mm_mul_ps(r00,ewtabscale);
284             ewitab           = _mm_cvttps_epi32(ewrt);
285             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
286             ewitab           = _mm_slli_epi32(ewitab,2);
287             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
288             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
289             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
290             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
291             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
292             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
293             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
294             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
295             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
296
297             /* Analytical LJ-PME */
298             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
299             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
300             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
301             exponent         = gmx_simd_exp_r(ewcljrsq);
302             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
303             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
304             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
305             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
306             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
307             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
308                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
309             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
310             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
311
312             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velec            = _mm_and_ps(velec,cutoff_mask);
316             velecsum         = _mm_add_ps(velecsum,velec);
317             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
318             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
319
320             fscal            = _mm_add_ps(felec,fvdw);
321
322             fscal            = _mm_and_ps(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_ps(fscal,dx00);
326             ty               = _mm_mul_ps(fscal,dy00);
327             tz               = _mm_mul_ps(fscal,dz00);
328
329             /* Update vectorial force */
330             fix0             = _mm_add_ps(fix0,tx);
331             fiy0             = _mm_add_ps(fiy0,ty);
332             fiz0             = _mm_add_ps(fiz0,tz);
333
334             fjx0             = _mm_add_ps(fjx0,tx);
335             fjy0             = _mm_add_ps(fjy0,ty);
336             fjz0             = _mm_add_ps(fjz0,tz);
337             
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm_any_lt(rsq10,rcutoff2))
345             {
346
347             r10              = _mm_mul_ps(rsq10,rinv10);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq10             = _mm_mul_ps(iq1,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm_mul_ps(r10,ewtabscale);
356             ewitab           = _mm_cvttps_epi32(ewrt);
357             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
358             ewitab           = _mm_slli_epi32(ewitab,2);
359             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
360             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
361             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
362             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
363             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
364             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
365             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
366             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
367             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
368
369             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm_and_ps(velec,cutoff_mask);
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             fscal            = _mm_and_ps(fscal,cutoff_mask);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_ps(fscal,dx10);
381             ty               = _mm_mul_ps(fscal,dy10);
382             tz               = _mm_mul_ps(fscal,dz10);
383
384             /* Update vectorial force */
385             fix1             = _mm_add_ps(fix1,tx);
386             fiy1             = _mm_add_ps(fiy1,ty);
387             fiz1             = _mm_add_ps(fiz1,tz);
388
389             fjx0             = _mm_add_ps(fjx0,tx);
390             fjy0             = _mm_add_ps(fjy0,ty);
391             fjz0             = _mm_add_ps(fjz0,tz);
392             
393             }
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (gmx_mm_any_lt(rsq20,rcutoff2))
400             {
401
402             r20              = _mm_mul_ps(rsq20,rinv20);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq20             = _mm_mul_ps(iq2,jq0);
406
407             /* EWALD ELECTROSTATICS */
408
409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
410             ewrt             = _mm_mul_ps(r20,ewtabscale);
411             ewitab           = _mm_cvttps_epi32(ewrt);
412             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
413             ewitab           = _mm_slli_epi32(ewitab,2);
414             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
415             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
416             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
417             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
418             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
419             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
420             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
421             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
422             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
423
424             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm_and_ps(velec,cutoff_mask);
428             velecsum         = _mm_add_ps(velecsum,velec);
429
430             fscal            = felec;
431
432             fscal            = _mm_and_ps(fscal,cutoff_mask);
433
434             /* Calculate temporary vectorial force */
435             tx               = _mm_mul_ps(fscal,dx20);
436             ty               = _mm_mul_ps(fscal,dy20);
437             tz               = _mm_mul_ps(fscal,dz20);
438
439             /* Update vectorial force */
440             fix2             = _mm_add_ps(fix2,tx);
441             fiy2             = _mm_add_ps(fiy2,ty);
442             fiz2             = _mm_add_ps(fiz2,tz);
443
444             fjx0             = _mm_add_ps(fjx0,tx);
445             fjy0             = _mm_add_ps(fjy0,ty);
446             fjz0             = _mm_add_ps(fjz0,tz);
447             
448             }
449
450             fjptrA             = f+j_coord_offsetA;
451             fjptrB             = f+j_coord_offsetB;
452             fjptrC             = f+j_coord_offsetC;
453             fjptrD             = f+j_coord_offsetD;
454
455             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
456
457             /* Inner loop uses 174 flops */
458         }
459
460         if(jidx<j_index_end)
461         {
462
463             /* Get j neighbor index, and coordinate index */
464             jnrlistA         = jjnr[jidx];
465             jnrlistB         = jjnr[jidx+1];
466             jnrlistC         = jjnr[jidx+2];
467             jnrlistD         = jjnr[jidx+3];
468             /* Sign of each element will be negative for non-real atoms.
469              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
470              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
471              */
472             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
473             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
474             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
475             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
476             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479             j_coord_offsetC  = DIM*jnrC;
480             j_coord_offsetD  = DIM*jnrD;
481
482             /* load j atom coordinates */
483             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
484                                               x+j_coord_offsetC,x+j_coord_offsetD,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_ps(ix0,jx0);
489             dy00             = _mm_sub_ps(iy0,jy0);
490             dz00             = _mm_sub_ps(iz0,jz0);
491             dx10             = _mm_sub_ps(ix1,jx0);
492             dy10             = _mm_sub_ps(iy1,jy0);
493             dz10             = _mm_sub_ps(iz1,jz0);
494             dx20             = _mm_sub_ps(ix2,jx0);
495             dy20             = _mm_sub_ps(iy2,jy0);
496             dz20             = _mm_sub_ps(iz2,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
502
503             rinv00           = gmx_mm_invsqrt_ps(rsq00);
504             rinv10           = gmx_mm_invsqrt_ps(rsq10);
505             rinv20           = gmx_mm_invsqrt_ps(rsq20);
506
507             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
508             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
509             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
510
511             /* Load parameters for j particles */
512             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
513                                                               charge+jnrC+0,charge+jnrD+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518
519             fjx0             = _mm_setzero_ps();
520             fjy0             = _mm_setzero_ps();
521             fjz0             = _mm_setzero_ps();
522
523             /**************************
524              * CALCULATE INTERACTIONS *
525              **************************/
526
527             if (gmx_mm_any_lt(rsq00,rcutoff2))
528             {
529
530             r00              = _mm_mul_ps(rsq00,rinv00);
531             r00              = _mm_andnot_ps(dummy_mask,r00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq00             = _mm_mul_ps(iq0,jq0);
535             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,
537                                          vdwparam+vdwioffset0+vdwjidx0C,
538                                          vdwparam+vdwioffset0+vdwjidx0D,
539                                          &c6_00,&c12_00);
540             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
541                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
542                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = _mm_mul_ps(r00,ewtabscale);
549             ewitab           = _mm_cvttps_epi32(ewrt);
550             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
551             ewitab           = _mm_slli_epi32(ewitab,2);
552             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
553             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
554             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
555             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
556             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
557             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
558             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
559             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
560             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
561
562             /* Analytical LJ-PME */
563             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
564             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
565             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
566             exponent         = gmx_simd_exp_r(ewcljrsq);
567             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
568             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
569             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
570             vvdw6            = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
571             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
572             vvdw             = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
573                                           _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
574             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
575             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
576
577             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm_and_ps(velec,cutoff_mask);
581             velec            = _mm_andnot_ps(dummy_mask,velec);
582             velecsum         = _mm_add_ps(velecsum,velec);
583             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
584             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
585             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
586
587             fscal            = _mm_add_ps(felec,fvdw);
588
589             fscal            = _mm_and_ps(fscal,cutoff_mask);
590
591             fscal            = _mm_andnot_ps(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm_mul_ps(fscal,dx00);
595             ty               = _mm_mul_ps(fscal,dy00);
596             tz               = _mm_mul_ps(fscal,dz00);
597
598             /* Update vectorial force */
599             fix0             = _mm_add_ps(fix0,tx);
600             fiy0             = _mm_add_ps(fiy0,ty);
601             fiz0             = _mm_add_ps(fiz0,tz);
602
603             fjx0             = _mm_add_ps(fjx0,tx);
604             fjy0             = _mm_add_ps(fjy0,ty);
605             fjz0             = _mm_add_ps(fjz0,tz);
606             
607             }
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm_any_lt(rsq10,rcutoff2))
614             {
615
616             r10              = _mm_mul_ps(rsq10,rinv10);
617             r10              = _mm_andnot_ps(dummy_mask,r10);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq10             = _mm_mul_ps(iq1,jq0);
621
622             /* EWALD ELECTROSTATICS */
623
624             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625             ewrt             = _mm_mul_ps(r10,ewtabscale);
626             ewitab           = _mm_cvttps_epi32(ewrt);
627             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
628             ewitab           = _mm_slli_epi32(ewitab,2);
629             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
630             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
631             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
632             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
633             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
634             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
635             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
636             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
637             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
638
639             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm_and_ps(velec,cutoff_mask);
643             velec            = _mm_andnot_ps(dummy_mask,velec);
644             velecsum         = _mm_add_ps(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm_and_ps(fscal,cutoff_mask);
649
650             fscal            = _mm_andnot_ps(dummy_mask,fscal);
651
652             /* Calculate temporary vectorial force */
653             tx               = _mm_mul_ps(fscal,dx10);
654             ty               = _mm_mul_ps(fscal,dy10);
655             tz               = _mm_mul_ps(fscal,dz10);
656
657             /* Update vectorial force */
658             fix1             = _mm_add_ps(fix1,tx);
659             fiy1             = _mm_add_ps(fiy1,ty);
660             fiz1             = _mm_add_ps(fiz1,tz);
661
662             fjx0             = _mm_add_ps(fjx0,tx);
663             fjy0             = _mm_add_ps(fjy0,ty);
664             fjz0             = _mm_add_ps(fjz0,tz);
665             
666             }
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             if (gmx_mm_any_lt(rsq20,rcutoff2))
673             {
674
675             r20              = _mm_mul_ps(rsq20,rinv20);
676             r20              = _mm_andnot_ps(dummy_mask,r20);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq20             = _mm_mul_ps(iq2,jq0);
680
681             /* EWALD ELECTROSTATICS */
682
683             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
684             ewrt             = _mm_mul_ps(r20,ewtabscale);
685             ewitab           = _mm_cvttps_epi32(ewrt);
686             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
687             ewitab           = _mm_slli_epi32(ewitab,2);
688             ewtabF           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0) );
689             ewtabD           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1) );
690             ewtabV           = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2) );
691             ewtabFn          = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3) );
692             _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn);
693             felec            = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
694             velec            = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
695             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
696             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
697
698             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
699
700             /* Update potential sum for this i atom from the interaction with this j atom. */
701             velec            = _mm_and_ps(velec,cutoff_mask);
702             velec            = _mm_andnot_ps(dummy_mask,velec);
703             velecsum         = _mm_add_ps(velecsum,velec);
704
705             fscal            = felec;
706
707             fscal            = _mm_and_ps(fscal,cutoff_mask);
708
709             fscal            = _mm_andnot_ps(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm_mul_ps(fscal,dx20);
713             ty               = _mm_mul_ps(fscal,dy20);
714             tz               = _mm_mul_ps(fscal,dz20);
715
716             /* Update vectorial force */
717             fix2             = _mm_add_ps(fix2,tx);
718             fiy2             = _mm_add_ps(fiy2,ty);
719             fiz2             = _mm_add_ps(fiz2,tz);
720
721             fjx0             = _mm_add_ps(fjx0,tx);
722             fjy0             = _mm_add_ps(fjy0,ty);
723             fjz0             = _mm_add_ps(fjz0,tz);
724             
725             }
726
727             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
728             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
729             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
730             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
731
732             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
733
734             /* Inner loop uses 177 flops */
735         }
736
737         /* End of innermost loop */
738
739         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
740                                               f+i_coord_offset,fshift+i_shift_offset);
741
742         ggid                        = gid[iidx];
743         /* Update potential energies */
744         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
745         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 20 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177);
759 }
760 /*
761  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_single
762  * Electrostatics interaction: Ewald
763  * VdW interaction:            LJEwald
764  * Geometry:                   Water3-Particle
765  * Calculate force/pot:        Force
766  */
767 void
768 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse2_single
769                     (t_nblist                    * gmx_restrict       nlist,
770                      rvec                        * gmx_restrict          xx,
771                      rvec                        * gmx_restrict          ff,
772                      t_forcerec                  * gmx_restrict          fr,
773                      t_mdatoms                   * gmx_restrict     mdatoms,
774                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
775                      t_nrnb                      * gmx_restrict        nrnb)
776 {
777     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
778      * just 0 for non-waters.
779      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
780      * jnr indices corresponding to data put in the four positions in the SIMD register.
781      */
782     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
783     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
784     int              jnrA,jnrB,jnrC,jnrD;
785     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
786     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
787     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
788     real             rcutoff_scalar;
789     real             *shiftvec,*fshift,*x,*f;
790     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
791     real             scratch[4*DIM];
792     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
793     int              vdwioffset0;
794     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
795     int              vdwioffset1;
796     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
797     int              vdwioffset2;
798     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
799     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
800     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
801     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
802     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
803     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
804     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
805     real             *charge;
806     int              nvdwtype;
807     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
808     int              *vdwtype;
809     real             *vdwparam;
810     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
811     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
812     __m128           c6grid_00;
813     __m128           c6grid_10;
814     __m128           c6grid_20;
815     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
816     real             *vdwgridparam;
817     __m128           one_half = _mm_set1_ps(0.5);
818     __m128           minus_one = _mm_set1_ps(-1.0);
819     __m128i          ewitab;
820     __m128           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
821     real             *ewtab;
822     __m128           dummy_mask,cutoff_mask;
823     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
824     __m128           one     = _mm_set1_ps(1.0);
825     __m128           two     = _mm_set1_ps(2.0);
826     x                = xx[0];
827     f                = ff[0];
828
829     nri              = nlist->nri;
830     iinr             = nlist->iinr;
831     jindex           = nlist->jindex;
832     jjnr             = nlist->jjnr;
833     shiftidx         = nlist->shift;
834     gid              = nlist->gid;
835     shiftvec         = fr->shift_vec[0];
836     fshift           = fr->fshift[0];
837     facel            = _mm_set1_ps(fr->epsfac);
838     charge           = mdatoms->chargeA;
839     nvdwtype         = fr->ntype;
840     vdwparam         = fr->nbfp;
841     vdwtype          = mdatoms->typeA;
842     vdwgridparam     = fr->ljpme_c6grid;
843     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
844     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
845     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
846
847     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
848     ewtab            = fr->ic->tabq_coul_F;
849     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
850     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
851
852     /* Setup water-specific parameters */
853     inr              = nlist->iinr[0];
854     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
855     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
856     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
857     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
858
859     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
860     rcutoff_scalar   = fr->rcoulomb;
861     rcutoff          = _mm_set1_ps(rcutoff_scalar);
862     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
863
864     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
865     rvdw             = _mm_set1_ps(fr->rvdw);
866
867     /* Avoid stupid compiler warnings */
868     jnrA = jnrB = jnrC = jnrD = 0;
869     j_coord_offsetA = 0;
870     j_coord_offsetB = 0;
871     j_coord_offsetC = 0;
872     j_coord_offsetD = 0;
873
874     outeriter        = 0;
875     inneriter        = 0;
876
877     for(iidx=0;iidx<4*DIM;iidx++)
878     {
879         scratch[iidx] = 0.0;
880     }  
881
882     /* Start outer loop over neighborlists */
883     for(iidx=0; iidx<nri; iidx++)
884     {
885         /* Load shift vector for this list */
886         i_shift_offset   = DIM*shiftidx[iidx];
887
888         /* Load limits for loop over neighbors */
889         j_index_start    = jindex[iidx];
890         j_index_end      = jindex[iidx+1];
891
892         /* Get outer coordinate index */
893         inr              = iinr[iidx];
894         i_coord_offset   = DIM*inr;
895
896         /* Load i particle coords and add shift vector */
897         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
898                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
899         
900         fix0             = _mm_setzero_ps();
901         fiy0             = _mm_setzero_ps();
902         fiz0             = _mm_setzero_ps();
903         fix1             = _mm_setzero_ps();
904         fiy1             = _mm_setzero_ps();
905         fiz1             = _mm_setzero_ps();
906         fix2             = _mm_setzero_ps();
907         fiy2             = _mm_setzero_ps();
908         fiz2             = _mm_setzero_ps();
909
910         /* Start inner kernel loop */
911         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
912         {
913
914             /* Get j neighbor index, and coordinate index */
915             jnrA             = jjnr[jidx];
916             jnrB             = jjnr[jidx+1];
917             jnrC             = jjnr[jidx+2];
918             jnrD             = jjnr[jidx+3];
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923
924             /* load j atom coordinates */
925             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
926                                               x+j_coord_offsetC,x+j_coord_offsetD,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_ps(ix0,jx0);
931             dy00             = _mm_sub_ps(iy0,jy0);
932             dz00             = _mm_sub_ps(iz0,jz0);
933             dx10             = _mm_sub_ps(ix1,jx0);
934             dy10             = _mm_sub_ps(iy1,jy0);
935             dz10             = _mm_sub_ps(iz1,jz0);
936             dx20             = _mm_sub_ps(ix2,jx0);
937             dy20             = _mm_sub_ps(iy2,jy0);
938             dz20             = _mm_sub_ps(iz2,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
942             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
944
945             rinv00           = gmx_mm_invsqrt_ps(rsq00);
946             rinv10           = gmx_mm_invsqrt_ps(rsq10);
947             rinv20           = gmx_mm_invsqrt_ps(rsq20);
948
949             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
950             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
951             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
952
953             /* Load parameters for j particles */
954             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
955                                                               charge+jnrC+0,charge+jnrD+0);
956             vdwjidx0A        = 2*vdwtype[jnrA+0];
957             vdwjidx0B        = 2*vdwtype[jnrB+0];
958             vdwjidx0C        = 2*vdwtype[jnrC+0];
959             vdwjidx0D        = 2*vdwtype[jnrD+0];
960
961             fjx0             = _mm_setzero_ps();
962             fjy0             = _mm_setzero_ps();
963             fjz0             = _mm_setzero_ps();
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq00,rcutoff2))
970             {
971
972             r00              = _mm_mul_ps(rsq00,rinv00);
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq00             = _mm_mul_ps(iq0,jq0);
976             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,
978                                          vdwparam+vdwioffset0+vdwjidx0C,
979                                          vdwparam+vdwioffset0+vdwjidx0D,
980                                          &c6_00,&c12_00);
981             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
982                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
983                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
984                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
985
986             /* EWALD ELECTROSTATICS */
987
988             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
989             ewrt             = _mm_mul_ps(r00,ewtabscale);
990             ewitab           = _mm_cvttps_epi32(ewrt);
991             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
992             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
993                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
994                                          &ewtabF,&ewtabFn);
995             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
996             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
997
998             /* Analytical LJ-PME */
999             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1000             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1001             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1002             exponent         = gmx_simd_exp_r(ewcljrsq);
1003             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1004             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1005             /* f6A = 6 * C6grid * (1 - poly) */
1006             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1007             /* f6B = C6grid * exponent * beta^6 */
1008             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1009             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1010             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1011
1012             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1013
1014             fscal            = _mm_add_ps(felec,fvdw);
1015
1016             fscal            = _mm_and_ps(fscal,cutoff_mask);
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_ps(fscal,dx00);
1020             ty               = _mm_mul_ps(fscal,dy00);
1021             tz               = _mm_mul_ps(fscal,dz00);
1022
1023             /* Update vectorial force */
1024             fix0             = _mm_add_ps(fix0,tx);
1025             fiy0             = _mm_add_ps(fiy0,ty);
1026             fiz0             = _mm_add_ps(fiz0,tz);
1027
1028             fjx0             = _mm_add_ps(fjx0,tx);
1029             fjy0             = _mm_add_ps(fjy0,ty);
1030             fjz0             = _mm_add_ps(fjz0,tz);
1031             
1032             }
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             if (gmx_mm_any_lt(rsq10,rcutoff2))
1039             {
1040
1041             r10              = _mm_mul_ps(rsq10,rinv10);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm_mul_ps(iq1,jq0);
1045
1046             /* EWALD ELECTROSTATICS */
1047
1048             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1049             ewrt             = _mm_mul_ps(r10,ewtabscale);
1050             ewitab           = _mm_cvttps_epi32(ewrt);
1051             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1052             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1053                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1054                                          &ewtabF,&ewtabFn);
1055             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1056             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1057
1058             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1059
1060             fscal            = felec;
1061
1062             fscal            = _mm_and_ps(fscal,cutoff_mask);
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm_mul_ps(fscal,dx10);
1066             ty               = _mm_mul_ps(fscal,dy10);
1067             tz               = _mm_mul_ps(fscal,dz10);
1068
1069             /* Update vectorial force */
1070             fix1             = _mm_add_ps(fix1,tx);
1071             fiy1             = _mm_add_ps(fiy1,ty);
1072             fiz1             = _mm_add_ps(fiz1,tz);
1073
1074             fjx0             = _mm_add_ps(fjx0,tx);
1075             fjy0             = _mm_add_ps(fjy0,ty);
1076             fjz0             = _mm_add_ps(fjz0,tz);
1077             
1078             }
1079
1080             /**************************
1081              * CALCULATE INTERACTIONS *
1082              **************************/
1083
1084             if (gmx_mm_any_lt(rsq20,rcutoff2))
1085             {
1086
1087             r20              = _mm_mul_ps(rsq20,rinv20);
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             qq20             = _mm_mul_ps(iq2,jq0);
1091
1092             /* EWALD ELECTROSTATICS */
1093
1094             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1095             ewrt             = _mm_mul_ps(r20,ewtabscale);
1096             ewitab           = _mm_cvttps_epi32(ewrt);
1097             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1098             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1099                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1100                                          &ewtabF,&ewtabFn);
1101             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1102             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1103
1104             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_and_ps(fscal,cutoff_mask);
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_ps(fscal,dx20);
1112             ty               = _mm_mul_ps(fscal,dy20);
1113             tz               = _mm_mul_ps(fscal,dz20);
1114
1115             /* Update vectorial force */
1116             fix2             = _mm_add_ps(fix2,tx);
1117             fiy2             = _mm_add_ps(fiy2,ty);
1118             fiz2             = _mm_add_ps(fiz2,tz);
1119
1120             fjx0             = _mm_add_ps(fjx0,tx);
1121             fjy0             = _mm_add_ps(fjy0,ty);
1122             fjz0             = _mm_add_ps(fjz0,tz);
1123             
1124             }
1125
1126             fjptrA             = f+j_coord_offsetA;
1127             fjptrB             = f+j_coord_offsetB;
1128             fjptrC             = f+j_coord_offsetC;
1129             fjptrD             = f+j_coord_offsetD;
1130
1131             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1132
1133             /* Inner loop uses 140 flops */
1134         }
1135
1136         if(jidx<j_index_end)
1137         {
1138
1139             /* Get j neighbor index, and coordinate index */
1140             jnrlistA         = jjnr[jidx];
1141             jnrlistB         = jjnr[jidx+1];
1142             jnrlistC         = jjnr[jidx+2];
1143             jnrlistD         = jjnr[jidx+3];
1144             /* Sign of each element will be negative for non-real atoms.
1145              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1146              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1147              */
1148             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             j_coord_offsetA  = DIM*jnrA;
1154             j_coord_offsetB  = DIM*jnrB;
1155             j_coord_offsetC  = DIM*jnrC;
1156             j_coord_offsetD  = DIM*jnrD;
1157
1158             /* load j atom coordinates */
1159             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1160                                               x+j_coord_offsetC,x+j_coord_offsetD,
1161                                               &jx0,&jy0,&jz0);
1162
1163             /* Calculate displacement vector */
1164             dx00             = _mm_sub_ps(ix0,jx0);
1165             dy00             = _mm_sub_ps(iy0,jy0);
1166             dz00             = _mm_sub_ps(iz0,jz0);
1167             dx10             = _mm_sub_ps(ix1,jx0);
1168             dy10             = _mm_sub_ps(iy1,jy0);
1169             dz10             = _mm_sub_ps(iz1,jz0);
1170             dx20             = _mm_sub_ps(ix2,jx0);
1171             dy20             = _mm_sub_ps(iy2,jy0);
1172             dz20             = _mm_sub_ps(iz2,jz0);
1173
1174             /* Calculate squared distance and things based on it */
1175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1176             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1177             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1178
1179             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1180             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1181             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1182
1183             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1184             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1185             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1186
1187             /* Load parameters for j particles */
1188             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1189                                                               charge+jnrC+0,charge+jnrD+0);
1190             vdwjidx0A        = 2*vdwtype[jnrA+0];
1191             vdwjidx0B        = 2*vdwtype[jnrB+0];
1192             vdwjidx0C        = 2*vdwtype[jnrC+0];
1193             vdwjidx0D        = 2*vdwtype[jnrD+0];
1194
1195             fjx0             = _mm_setzero_ps();
1196             fjy0             = _mm_setzero_ps();
1197             fjz0             = _mm_setzero_ps();
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             if (gmx_mm_any_lt(rsq00,rcutoff2))
1204             {
1205
1206             r00              = _mm_mul_ps(rsq00,rinv00);
1207             r00              = _mm_andnot_ps(dummy_mask,r00);
1208
1209             /* Compute parameters for interactions between i and j atoms */
1210             qq00             = _mm_mul_ps(iq0,jq0);
1211             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1212                                          vdwparam+vdwioffset0+vdwjidx0B,
1213                                          vdwparam+vdwioffset0+vdwjidx0C,
1214                                          vdwparam+vdwioffset0+vdwjidx0D,
1215                                          &c6_00,&c12_00);
1216             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1217                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
1218                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
1219                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
1220
1221             /* EWALD ELECTROSTATICS */
1222
1223             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1224             ewrt             = _mm_mul_ps(r00,ewtabscale);
1225             ewitab           = _mm_cvttps_epi32(ewrt);
1226             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1227             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1228                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1229                                          &ewtabF,&ewtabFn);
1230             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1231             felec            = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1232
1233             /* Analytical LJ-PME */
1234             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1235             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
1236             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1237             exponent         = gmx_simd_exp_r(ewcljrsq);
1238             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1239             poly             = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1240             /* f6A = 6 * C6grid * (1 - poly) */
1241             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1242             /* f6B = C6grid * exponent * beta^6 */
1243             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1244             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1245             fvdw              = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1246
1247             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1248
1249             fscal            = _mm_add_ps(felec,fvdw);
1250
1251             fscal            = _mm_and_ps(fscal,cutoff_mask);
1252
1253             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1254
1255             /* Calculate temporary vectorial force */
1256             tx               = _mm_mul_ps(fscal,dx00);
1257             ty               = _mm_mul_ps(fscal,dy00);
1258             tz               = _mm_mul_ps(fscal,dz00);
1259
1260             /* Update vectorial force */
1261             fix0             = _mm_add_ps(fix0,tx);
1262             fiy0             = _mm_add_ps(fiy0,ty);
1263             fiz0             = _mm_add_ps(fiz0,tz);
1264
1265             fjx0             = _mm_add_ps(fjx0,tx);
1266             fjy0             = _mm_add_ps(fjy0,ty);
1267             fjz0             = _mm_add_ps(fjz0,tz);
1268             
1269             }
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             if (gmx_mm_any_lt(rsq10,rcutoff2))
1276             {
1277
1278             r10              = _mm_mul_ps(rsq10,rinv10);
1279             r10              = _mm_andnot_ps(dummy_mask,r10);
1280
1281             /* Compute parameters for interactions between i and j atoms */
1282             qq10             = _mm_mul_ps(iq1,jq0);
1283
1284             /* EWALD ELECTROSTATICS */
1285
1286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1287             ewrt             = _mm_mul_ps(r10,ewtabscale);
1288             ewitab           = _mm_cvttps_epi32(ewrt);
1289             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1290             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1291                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1292                                          &ewtabF,&ewtabFn);
1293             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1294             felec            = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1295
1296             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1297
1298             fscal            = felec;
1299
1300             fscal            = _mm_and_ps(fscal,cutoff_mask);
1301
1302             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1303
1304             /* Calculate temporary vectorial force */
1305             tx               = _mm_mul_ps(fscal,dx10);
1306             ty               = _mm_mul_ps(fscal,dy10);
1307             tz               = _mm_mul_ps(fscal,dz10);
1308
1309             /* Update vectorial force */
1310             fix1             = _mm_add_ps(fix1,tx);
1311             fiy1             = _mm_add_ps(fiy1,ty);
1312             fiz1             = _mm_add_ps(fiz1,tz);
1313
1314             fjx0             = _mm_add_ps(fjx0,tx);
1315             fjy0             = _mm_add_ps(fjy0,ty);
1316             fjz0             = _mm_add_ps(fjz0,tz);
1317             
1318             }
1319
1320             /**************************
1321              * CALCULATE INTERACTIONS *
1322              **************************/
1323
1324             if (gmx_mm_any_lt(rsq20,rcutoff2))
1325             {
1326
1327             r20              = _mm_mul_ps(rsq20,rinv20);
1328             r20              = _mm_andnot_ps(dummy_mask,r20);
1329
1330             /* Compute parameters for interactions between i and j atoms */
1331             qq20             = _mm_mul_ps(iq2,jq0);
1332
1333             /* EWALD ELECTROSTATICS */
1334
1335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1336             ewrt             = _mm_mul_ps(r20,ewtabscale);
1337             ewitab           = _mm_cvttps_epi32(ewrt);
1338             eweps            = _mm_sub_ps(ewrt,_mm_cvtepi32_ps(ewitab));
1339             gmx_mm_load_4pair_swizzle_ps(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1340                                          ewtab+gmx_mm_extract_epi32(ewitab,2),ewtab+gmx_mm_extract_epi32(ewitab,3),
1341                                          &ewtabF,&ewtabFn);
1342             felec            = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1343             felec            = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1344
1345             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1346
1347             fscal            = felec;
1348
1349             fscal            = _mm_and_ps(fscal,cutoff_mask);
1350
1351             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1352
1353             /* Calculate temporary vectorial force */
1354             tx               = _mm_mul_ps(fscal,dx20);
1355             ty               = _mm_mul_ps(fscal,dy20);
1356             tz               = _mm_mul_ps(fscal,dz20);
1357
1358             /* Update vectorial force */
1359             fix2             = _mm_add_ps(fix2,tx);
1360             fiy2             = _mm_add_ps(fiy2,ty);
1361             fiz2             = _mm_add_ps(fiz2,tz);
1362
1363             fjx0             = _mm_add_ps(fjx0,tx);
1364             fjy0             = _mm_add_ps(fjy0,ty);
1365             fjz0             = _mm_add_ps(fjz0,tz);
1366             
1367             }
1368
1369             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1370             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1371             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1372             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1373
1374             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1375
1376             /* Inner loop uses 143 flops */
1377         }
1378
1379         /* End of innermost loop */
1380
1381         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1382                                               f+i_coord_offset,fshift+i_shift_offset);
1383
1384         /* Increment number of inner iterations */
1385         inneriter                  += j_index_end - j_index_start;
1386
1387         /* Outer loop uses 18 flops */
1388     }
1389
1390     /* Increment number of outer iterations */
1391     outeriter        += nri;
1392
1393     /* Update outer/inner flops */
1394
1395     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143);
1396 }