Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwNone_GeomW3P1_sse2_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_sse2_single
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     /* Setup water-specific parameters */
114     inr              = nlist->iinr[0];
115     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
116     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
117     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }  
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
150                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
151         
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155         fix1             = _mm_setzero_ps();
156         fiy1             = _mm_setzero_ps();
157         fiz1             = _mm_setzero_ps();
158         fix2             = _mm_setzero_ps();
159         fiy2             = _mm_setzero_ps();
160         fiz2             = _mm_setzero_ps();
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_ps();
164
165         /* Start inner kernel loop */
166         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167         {
168
169             /* Get j neighbor index, and coordinate index */
170             jnrA             = jjnr[jidx];
171             jnrB             = jjnr[jidx+1];
172             jnrC             = jjnr[jidx+2];
173             jnrD             = jjnr[jidx+3];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176             j_coord_offsetC  = DIM*jnrC;
177             j_coord_offsetD  = DIM*jnrD;
178
179             /* load j atom coordinates */
180             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                               x+j_coord_offsetC,x+j_coord_offsetD,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_ps(ix0,jx0);
186             dy00             = _mm_sub_ps(iy0,jy0);
187             dz00             = _mm_sub_ps(iz0,jz0);
188             dx10             = _mm_sub_ps(ix1,jx0);
189             dy10             = _mm_sub_ps(iy1,jy0);
190             dz10             = _mm_sub_ps(iz1,jz0);
191             dx20             = _mm_sub_ps(ix2,jx0);
192             dy20             = _mm_sub_ps(iy2,jy0);
193             dz20             = _mm_sub_ps(iz2,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
198             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
199
200             rinv00           = sse2_invsqrt_f(rsq00);
201             rinv10           = sse2_invsqrt_f(rsq10);
202             rinv20           = sse2_invsqrt_f(rsq20);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
206             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                               charge+jnrC+0,charge+jnrD+0);
211
212             fjx0             = _mm_setzero_ps();
213             fjy0             = _mm_setzero_ps();
214             fjz0             = _mm_setzero_ps();
215
216             /**************************
217              * CALCULATE INTERACTIONS *
218              **************************/
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_ps(iq0,jq0);
222
223             /* COULOMB ELECTROSTATICS */
224             velec            = _mm_mul_ps(qq00,rinv00);
225             felec            = _mm_mul_ps(velec,rinvsq00);
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velecsum         = _mm_add_ps(velecsum,velec);
229
230             fscal            = felec;
231
232             /* Calculate temporary vectorial force */
233             tx               = _mm_mul_ps(fscal,dx00);
234             ty               = _mm_mul_ps(fscal,dy00);
235             tz               = _mm_mul_ps(fscal,dz00);
236
237             /* Update vectorial force */
238             fix0             = _mm_add_ps(fix0,tx);
239             fiy0             = _mm_add_ps(fiy0,ty);
240             fiz0             = _mm_add_ps(fiz0,tz);
241
242             fjx0             = _mm_add_ps(fjx0,tx);
243             fjy0             = _mm_add_ps(fjy0,ty);
244             fjz0             = _mm_add_ps(fjz0,tz);
245             
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq10             = _mm_mul_ps(iq1,jq0);
252
253             /* COULOMB ELECTROSTATICS */
254             velec            = _mm_mul_ps(qq10,rinv10);
255             felec            = _mm_mul_ps(velec,rinvsq10);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm_add_ps(velecsum,velec);
259
260             fscal            = felec;
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm_mul_ps(fscal,dx10);
264             ty               = _mm_mul_ps(fscal,dy10);
265             tz               = _mm_mul_ps(fscal,dz10);
266
267             /* Update vectorial force */
268             fix1             = _mm_add_ps(fix1,tx);
269             fiy1             = _mm_add_ps(fiy1,ty);
270             fiz1             = _mm_add_ps(fiz1,tz);
271
272             fjx0             = _mm_add_ps(fjx0,tx);
273             fjy0             = _mm_add_ps(fjy0,ty);
274             fjz0             = _mm_add_ps(fjz0,tz);
275             
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq20             = _mm_mul_ps(iq2,jq0);
282
283             /* COULOMB ELECTROSTATICS */
284             velec            = _mm_mul_ps(qq20,rinv20);
285             felec            = _mm_mul_ps(velec,rinvsq20);
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm_add_ps(velecsum,velec);
289
290             fscal            = felec;
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_ps(fscal,dx20);
294             ty               = _mm_mul_ps(fscal,dy20);
295             tz               = _mm_mul_ps(fscal,dz20);
296
297             /* Update vectorial force */
298             fix2             = _mm_add_ps(fix2,tx);
299             fiy2             = _mm_add_ps(fiy2,ty);
300             fiz2             = _mm_add_ps(fiz2,tz);
301
302             fjx0             = _mm_add_ps(fjx0,tx);
303             fjy0             = _mm_add_ps(fjy0,ty);
304             fjz0             = _mm_add_ps(fjz0,tz);
305             
306             fjptrA             = f+j_coord_offsetA;
307             fjptrB             = f+j_coord_offsetB;
308             fjptrC             = f+j_coord_offsetC;
309             fjptrD             = f+j_coord_offsetD;
310
311             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
312
313             /* Inner loop uses 84 flops */
314         }
315
316         if(jidx<j_index_end)
317         {
318
319             /* Get j neighbor index, and coordinate index */
320             jnrlistA         = jjnr[jidx];
321             jnrlistB         = jjnr[jidx+1];
322             jnrlistC         = jjnr[jidx+2];
323             jnrlistD         = jjnr[jidx+3];
324             /* Sign of each element will be negative for non-real atoms.
325              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
326              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
327              */
328             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
329             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
330             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
331             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
332             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
333             j_coord_offsetA  = DIM*jnrA;
334             j_coord_offsetB  = DIM*jnrB;
335             j_coord_offsetC  = DIM*jnrC;
336             j_coord_offsetD  = DIM*jnrD;
337
338             /* load j atom coordinates */
339             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
340                                               x+j_coord_offsetC,x+j_coord_offsetD,
341                                               &jx0,&jy0,&jz0);
342
343             /* Calculate displacement vector */
344             dx00             = _mm_sub_ps(ix0,jx0);
345             dy00             = _mm_sub_ps(iy0,jy0);
346             dz00             = _mm_sub_ps(iz0,jz0);
347             dx10             = _mm_sub_ps(ix1,jx0);
348             dy10             = _mm_sub_ps(iy1,jy0);
349             dz10             = _mm_sub_ps(iz1,jz0);
350             dx20             = _mm_sub_ps(ix2,jx0);
351             dy20             = _mm_sub_ps(iy2,jy0);
352             dz20             = _mm_sub_ps(iz2,jz0);
353
354             /* Calculate squared distance and things based on it */
355             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
356             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
357             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
358
359             rinv00           = sse2_invsqrt_f(rsq00);
360             rinv10           = sse2_invsqrt_f(rsq10);
361             rinv20           = sse2_invsqrt_f(rsq20);
362
363             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
364             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
365             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
366
367             /* Load parameters for j particles */
368             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
369                                                               charge+jnrC+0,charge+jnrD+0);
370
371             fjx0             = _mm_setzero_ps();
372             fjy0             = _mm_setzero_ps();
373             fjz0             = _mm_setzero_ps();
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             /* Compute parameters for interactions between i and j atoms */
380             qq00             = _mm_mul_ps(iq0,jq0);
381
382             /* COULOMB ELECTROSTATICS */
383             velec            = _mm_mul_ps(qq00,rinv00);
384             felec            = _mm_mul_ps(velec,rinvsq00);
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velec            = _mm_andnot_ps(dummy_mask,velec);
388             velecsum         = _mm_add_ps(velecsum,velec);
389
390             fscal            = felec;
391
392             fscal            = _mm_andnot_ps(dummy_mask,fscal);
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm_mul_ps(fscal,dx00);
396             ty               = _mm_mul_ps(fscal,dy00);
397             tz               = _mm_mul_ps(fscal,dz00);
398
399             /* Update vectorial force */
400             fix0             = _mm_add_ps(fix0,tx);
401             fiy0             = _mm_add_ps(fiy0,ty);
402             fiz0             = _mm_add_ps(fiz0,tz);
403
404             fjx0             = _mm_add_ps(fjx0,tx);
405             fjy0             = _mm_add_ps(fjy0,ty);
406             fjz0             = _mm_add_ps(fjz0,tz);
407             
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq10             = _mm_mul_ps(iq1,jq0);
414
415             /* COULOMB ELECTROSTATICS */
416             velec            = _mm_mul_ps(qq10,rinv10);
417             felec            = _mm_mul_ps(velec,rinvsq10);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm_andnot_ps(dummy_mask,velec);
421             velecsum         = _mm_add_ps(velecsum,velec);
422
423             fscal            = felec;
424
425             fscal            = _mm_andnot_ps(dummy_mask,fscal);
426
427             /* Calculate temporary vectorial force */
428             tx               = _mm_mul_ps(fscal,dx10);
429             ty               = _mm_mul_ps(fscal,dy10);
430             tz               = _mm_mul_ps(fscal,dz10);
431
432             /* Update vectorial force */
433             fix1             = _mm_add_ps(fix1,tx);
434             fiy1             = _mm_add_ps(fiy1,ty);
435             fiz1             = _mm_add_ps(fiz1,tz);
436
437             fjx0             = _mm_add_ps(fjx0,tx);
438             fjy0             = _mm_add_ps(fjy0,ty);
439             fjz0             = _mm_add_ps(fjz0,tz);
440             
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq20             = _mm_mul_ps(iq2,jq0);
447
448             /* COULOMB ELECTROSTATICS */
449             velec            = _mm_mul_ps(qq20,rinv20);
450             felec            = _mm_mul_ps(velec,rinvsq20);
451
452             /* Update potential sum for this i atom from the interaction with this j atom. */
453             velec            = _mm_andnot_ps(dummy_mask,velec);
454             velecsum         = _mm_add_ps(velecsum,velec);
455
456             fscal            = felec;
457
458             fscal            = _mm_andnot_ps(dummy_mask,fscal);
459
460             /* Calculate temporary vectorial force */
461             tx               = _mm_mul_ps(fscal,dx20);
462             ty               = _mm_mul_ps(fscal,dy20);
463             tz               = _mm_mul_ps(fscal,dz20);
464
465             /* Update vectorial force */
466             fix2             = _mm_add_ps(fix2,tx);
467             fiy2             = _mm_add_ps(fiy2,ty);
468             fiz2             = _mm_add_ps(fiz2,tz);
469
470             fjx0             = _mm_add_ps(fjx0,tx);
471             fjy0             = _mm_add_ps(fjy0,ty);
472             fjz0             = _mm_add_ps(fjz0,tz);
473             
474             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
475             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
476             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
477             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
478
479             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
480
481             /* Inner loop uses 84 flops */
482         }
483
484         /* End of innermost loop */
485
486         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
487                                               f+i_coord_offset,fshift+i_shift_offset);
488
489         ggid                        = gid[iidx];
490         /* Update potential energies */
491         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
492
493         /* Increment number of inner iterations */
494         inneriter                  += j_index_end - j_index_start;
495
496         /* Outer loop uses 19 flops */
497     }
498
499     /* Increment number of outer iterations */
500     outeriter        += nri;
501
502     /* Update outer/inner flops */
503
504     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*84);
505 }
506 /*
507  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_sse2_single
508  * Electrostatics interaction: Coulomb
509  * VdW interaction:            None
510  * Geometry:                   Water3-Particle
511  * Calculate force/pot:        Force
512  */
513 void
514 nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_sse2_single
515                     (t_nblist                    * gmx_restrict       nlist,
516                      rvec                        * gmx_restrict          xx,
517                      rvec                        * gmx_restrict          ff,
518                      struct t_forcerec           * gmx_restrict          fr,
519                      t_mdatoms                   * gmx_restrict     mdatoms,
520                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
521                      t_nrnb                      * gmx_restrict        nrnb)
522 {
523     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
524      * just 0 for non-waters.
525      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
526      * jnr indices corresponding to data put in the four positions in the SIMD register.
527      */
528     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
529     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
530     int              jnrA,jnrB,jnrC,jnrD;
531     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
532     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
533     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
534     real             rcutoff_scalar;
535     real             *shiftvec,*fshift,*x,*f;
536     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
537     real             scratch[4*DIM];
538     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
539     int              vdwioffset0;
540     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
541     int              vdwioffset1;
542     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
543     int              vdwioffset2;
544     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
545     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
546     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
547     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
548     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
549     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
550     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
551     real             *charge;
552     __m128           dummy_mask,cutoff_mask;
553     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
554     __m128           one     = _mm_set1_ps(1.0);
555     __m128           two     = _mm_set1_ps(2.0);
556     x                = xx[0];
557     f                = ff[0];
558
559     nri              = nlist->nri;
560     iinr             = nlist->iinr;
561     jindex           = nlist->jindex;
562     jjnr             = nlist->jjnr;
563     shiftidx         = nlist->shift;
564     gid              = nlist->gid;
565     shiftvec         = fr->shift_vec[0];
566     fshift           = fr->fshift[0];
567     facel            = _mm_set1_ps(fr->ic->epsfac);
568     charge           = mdatoms->chargeA;
569
570     /* Setup water-specific parameters */
571     inr              = nlist->iinr[0];
572     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
573     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
574     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
575
576     /* Avoid stupid compiler warnings */
577     jnrA = jnrB = jnrC = jnrD = 0;
578     j_coord_offsetA = 0;
579     j_coord_offsetB = 0;
580     j_coord_offsetC = 0;
581     j_coord_offsetD = 0;
582
583     outeriter        = 0;
584     inneriter        = 0;
585
586     for(iidx=0;iidx<4*DIM;iidx++)
587     {
588         scratch[iidx] = 0.0;
589     }  
590
591     /* Start outer loop over neighborlists */
592     for(iidx=0; iidx<nri; iidx++)
593     {
594         /* Load shift vector for this list */
595         i_shift_offset   = DIM*shiftidx[iidx];
596
597         /* Load limits for loop over neighbors */
598         j_index_start    = jindex[iidx];
599         j_index_end      = jindex[iidx+1];
600
601         /* Get outer coordinate index */
602         inr              = iinr[iidx];
603         i_coord_offset   = DIM*inr;
604
605         /* Load i particle coords and add shift vector */
606         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
607                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
608         
609         fix0             = _mm_setzero_ps();
610         fiy0             = _mm_setzero_ps();
611         fiz0             = _mm_setzero_ps();
612         fix1             = _mm_setzero_ps();
613         fiy1             = _mm_setzero_ps();
614         fiz1             = _mm_setzero_ps();
615         fix2             = _mm_setzero_ps();
616         fiy2             = _mm_setzero_ps();
617         fiz2             = _mm_setzero_ps();
618
619         /* Start inner kernel loop */
620         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
621         {
622
623             /* Get j neighbor index, and coordinate index */
624             jnrA             = jjnr[jidx];
625             jnrB             = jjnr[jidx+1];
626             jnrC             = jjnr[jidx+2];
627             jnrD             = jjnr[jidx+3];
628             j_coord_offsetA  = DIM*jnrA;
629             j_coord_offsetB  = DIM*jnrB;
630             j_coord_offsetC  = DIM*jnrC;
631             j_coord_offsetD  = DIM*jnrD;
632
633             /* load j atom coordinates */
634             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
635                                               x+j_coord_offsetC,x+j_coord_offsetD,
636                                               &jx0,&jy0,&jz0);
637
638             /* Calculate displacement vector */
639             dx00             = _mm_sub_ps(ix0,jx0);
640             dy00             = _mm_sub_ps(iy0,jy0);
641             dz00             = _mm_sub_ps(iz0,jz0);
642             dx10             = _mm_sub_ps(ix1,jx0);
643             dy10             = _mm_sub_ps(iy1,jy0);
644             dz10             = _mm_sub_ps(iz1,jz0);
645             dx20             = _mm_sub_ps(ix2,jx0);
646             dy20             = _mm_sub_ps(iy2,jy0);
647             dz20             = _mm_sub_ps(iz2,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
651             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
652             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
653
654             rinv00           = sse2_invsqrt_f(rsq00);
655             rinv10           = sse2_invsqrt_f(rsq10);
656             rinv20           = sse2_invsqrt_f(rsq20);
657
658             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
659             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
660             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
661
662             /* Load parameters for j particles */
663             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
664                                                               charge+jnrC+0,charge+jnrD+0);
665
666             fjx0             = _mm_setzero_ps();
667             fjy0             = _mm_setzero_ps();
668             fjz0             = _mm_setzero_ps();
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             /* Compute parameters for interactions between i and j atoms */
675             qq00             = _mm_mul_ps(iq0,jq0);
676
677             /* COULOMB ELECTROSTATICS */
678             velec            = _mm_mul_ps(qq00,rinv00);
679             felec            = _mm_mul_ps(velec,rinvsq00);
680
681             fscal            = felec;
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm_mul_ps(fscal,dx00);
685             ty               = _mm_mul_ps(fscal,dy00);
686             tz               = _mm_mul_ps(fscal,dz00);
687
688             /* Update vectorial force */
689             fix0             = _mm_add_ps(fix0,tx);
690             fiy0             = _mm_add_ps(fiy0,ty);
691             fiz0             = _mm_add_ps(fiz0,tz);
692
693             fjx0             = _mm_add_ps(fjx0,tx);
694             fjy0             = _mm_add_ps(fjy0,ty);
695             fjz0             = _mm_add_ps(fjz0,tz);
696             
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             /* Compute parameters for interactions between i and j atoms */
702             qq10             = _mm_mul_ps(iq1,jq0);
703
704             /* COULOMB ELECTROSTATICS */
705             velec            = _mm_mul_ps(qq10,rinv10);
706             felec            = _mm_mul_ps(velec,rinvsq10);
707
708             fscal            = felec;
709
710             /* Calculate temporary vectorial force */
711             tx               = _mm_mul_ps(fscal,dx10);
712             ty               = _mm_mul_ps(fscal,dy10);
713             tz               = _mm_mul_ps(fscal,dz10);
714
715             /* Update vectorial force */
716             fix1             = _mm_add_ps(fix1,tx);
717             fiy1             = _mm_add_ps(fiy1,ty);
718             fiz1             = _mm_add_ps(fiz1,tz);
719
720             fjx0             = _mm_add_ps(fjx0,tx);
721             fjy0             = _mm_add_ps(fjy0,ty);
722             fjz0             = _mm_add_ps(fjz0,tz);
723             
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq20             = _mm_mul_ps(iq2,jq0);
730
731             /* COULOMB ELECTROSTATICS */
732             velec            = _mm_mul_ps(qq20,rinv20);
733             felec            = _mm_mul_ps(velec,rinvsq20);
734
735             fscal            = felec;
736
737             /* Calculate temporary vectorial force */
738             tx               = _mm_mul_ps(fscal,dx20);
739             ty               = _mm_mul_ps(fscal,dy20);
740             tz               = _mm_mul_ps(fscal,dz20);
741
742             /* Update vectorial force */
743             fix2             = _mm_add_ps(fix2,tx);
744             fiy2             = _mm_add_ps(fiy2,ty);
745             fiz2             = _mm_add_ps(fiz2,tz);
746
747             fjx0             = _mm_add_ps(fjx0,tx);
748             fjy0             = _mm_add_ps(fjy0,ty);
749             fjz0             = _mm_add_ps(fjz0,tz);
750             
751             fjptrA             = f+j_coord_offsetA;
752             fjptrB             = f+j_coord_offsetB;
753             fjptrC             = f+j_coord_offsetC;
754             fjptrD             = f+j_coord_offsetD;
755
756             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
757
758             /* Inner loop uses 81 flops */
759         }
760
761         if(jidx<j_index_end)
762         {
763
764             /* Get j neighbor index, and coordinate index */
765             jnrlistA         = jjnr[jidx];
766             jnrlistB         = jjnr[jidx+1];
767             jnrlistC         = jjnr[jidx+2];
768             jnrlistD         = jjnr[jidx+3];
769             /* Sign of each element will be negative for non-real atoms.
770              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
771              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
772              */
773             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
774             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
775             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
776             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
777             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
778             j_coord_offsetA  = DIM*jnrA;
779             j_coord_offsetB  = DIM*jnrB;
780             j_coord_offsetC  = DIM*jnrC;
781             j_coord_offsetD  = DIM*jnrD;
782
783             /* load j atom coordinates */
784             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
785                                               x+j_coord_offsetC,x+j_coord_offsetD,
786                                               &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm_sub_ps(ix0,jx0);
790             dy00             = _mm_sub_ps(iy0,jy0);
791             dz00             = _mm_sub_ps(iz0,jz0);
792             dx10             = _mm_sub_ps(ix1,jx0);
793             dy10             = _mm_sub_ps(iy1,jy0);
794             dz10             = _mm_sub_ps(iz1,jz0);
795             dx20             = _mm_sub_ps(ix2,jx0);
796             dy20             = _mm_sub_ps(iy2,jy0);
797             dz20             = _mm_sub_ps(iz2,jz0);
798
799             /* Calculate squared distance and things based on it */
800             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
801             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
802             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
803
804             rinv00           = sse2_invsqrt_f(rsq00);
805             rinv10           = sse2_invsqrt_f(rsq10);
806             rinv20           = sse2_invsqrt_f(rsq20);
807
808             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
809             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
810             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
811
812             /* Load parameters for j particles */
813             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
814                                                               charge+jnrC+0,charge+jnrD+0);
815
816             fjx0             = _mm_setzero_ps();
817             fjy0             = _mm_setzero_ps();
818             fjz0             = _mm_setzero_ps();
819
820             /**************************
821              * CALCULATE INTERACTIONS *
822              **************************/
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm_mul_ps(iq0,jq0);
826
827             /* COULOMB ELECTROSTATICS */
828             velec            = _mm_mul_ps(qq00,rinv00);
829             felec            = _mm_mul_ps(velec,rinvsq00);
830
831             fscal            = felec;
832
833             fscal            = _mm_andnot_ps(dummy_mask,fscal);
834
835             /* Calculate temporary vectorial force */
836             tx               = _mm_mul_ps(fscal,dx00);
837             ty               = _mm_mul_ps(fscal,dy00);
838             tz               = _mm_mul_ps(fscal,dz00);
839
840             /* Update vectorial force */
841             fix0             = _mm_add_ps(fix0,tx);
842             fiy0             = _mm_add_ps(fiy0,ty);
843             fiz0             = _mm_add_ps(fiz0,tz);
844
845             fjx0             = _mm_add_ps(fjx0,tx);
846             fjy0             = _mm_add_ps(fjy0,ty);
847             fjz0             = _mm_add_ps(fjz0,tz);
848             
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq10             = _mm_mul_ps(iq1,jq0);
855
856             /* COULOMB ELECTROSTATICS */
857             velec            = _mm_mul_ps(qq10,rinv10);
858             felec            = _mm_mul_ps(velec,rinvsq10);
859
860             fscal            = felec;
861
862             fscal            = _mm_andnot_ps(dummy_mask,fscal);
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm_mul_ps(fscal,dx10);
866             ty               = _mm_mul_ps(fscal,dy10);
867             tz               = _mm_mul_ps(fscal,dz10);
868
869             /* Update vectorial force */
870             fix1             = _mm_add_ps(fix1,tx);
871             fiy1             = _mm_add_ps(fiy1,ty);
872             fiz1             = _mm_add_ps(fiz1,tz);
873
874             fjx0             = _mm_add_ps(fjx0,tx);
875             fjy0             = _mm_add_ps(fjy0,ty);
876             fjz0             = _mm_add_ps(fjz0,tz);
877             
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq20             = _mm_mul_ps(iq2,jq0);
884
885             /* COULOMB ELECTROSTATICS */
886             velec            = _mm_mul_ps(qq20,rinv20);
887             felec            = _mm_mul_ps(velec,rinvsq20);
888
889             fscal            = felec;
890
891             fscal            = _mm_andnot_ps(dummy_mask,fscal);
892
893             /* Calculate temporary vectorial force */
894             tx               = _mm_mul_ps(fscal,dx20);
895             ty               = _mm_mul_ps(fscal,dy20);
896             tz               = _mm_mul_ps(fscal,dz20);
897
898             /* Update vectorial force */
899             fix2             = _mm_add_ps(fix2,tx);
900             fiy2             = _mm_add_ps(fiy2,ty);
901             fiz2             = _mm_add_ps(fiz2,tz);
902
903             fjx0             = _mm_add_ps(fjx0,tx);
904             fjy0             = _mm_add_ps(fjy0,ty);
905             fjz0             = _mm_add_ps(fjz0,tz);
906             
907             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
908             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
909             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
910             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
911
912             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
913
914             /* Inner loop uses 81 flops */
915         }
916
917         /* End of innermost loop */
918
919         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
920                                               f+i_coord_offset,fshift+i_shift_offset);
921
922         /* Increment number of inner iterations */
923         inneriter                  += j_index_end - j_index_start;
924
925         /* Outer loop uses 18 flops */
926     }
927
928     /* Increment number of outer iterations */
929     outeriter        += nri;
930
931     /* Update outer/inner flops */
932
933     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*81);
934 }