Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwNone_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse2_single
54  * Electrostatics interaction: Coulomb
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCoul_VdwNone_GeomP1P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }  
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141         
142         fix0             = _mm_setzero_ps();
143         fiy0             = _mm_setzero_ps();
144         fiz0             = _mm_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
148
149         /* Reset potential sums */
150         velecsum         = _mm_setzero_ps();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             jnrC             = jjnr[jidx+2];
160             jnrD             = jjnr[jidx+3];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163             j_coord_offsetC  = DIM*jnrC;
164             j_coord_offsetD  = DIM*jnrD;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               x+j_coord_offsetC,x+j_coord_offsetD,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_ps(ix0,jx0);
173             dy00             = _mm_sub_ps(iy0,jy0);
174             dz00             = _mm_sub_ps(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_ps(rsq00);
180
181             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
185                                                               charge+jnrC+0,charge+jnrD+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_ps(iq0,jq0);
193
194             /* COULOMB ELECTROSTATICS */
195             velec            = _mm_mul_ps(qq00,rinv00);
196             felec            = _mm_mul_ps(velec,rinvsq00);
197
198             /* Update potential sum for this i atom from the interaction with this j atom. */
199             velecsum         = _mm_add_ps(velecsum,velec);
200
201             fscal            = felec;
202
203             /* Calculate temporary vectorial force */
204             tx               = _mm_mul_ps(fscal,dx00);
205             ty               = _mm_mul_ps(fscal,dy00);
206             tz               = _mm_mul_ps(fscal,dz00);
207
208             /* Update vectorial force */
209             fix0             = _mm_add_ps(fix0,tx);
210             fiy0             = _mm_add_ps(fiy0,ty);
211             fiz0             = _mm_add_ps(fiz0,tz);
212
213             fjptrA             = f+j_coord_offsetA;
214             fjptrB             = f+j_coord_offsetB;
215             fjptrC             = f+j_coord_offsetC;
216             fjptrD             = f+j_coord_offsetD;
217             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
218             
219             /* Inner loop uses 28 flops */
220         }
221
222         if(jidx<j_index_end)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrlistA         = jjnr[jidx];
227             jnrlistB         = jjnr[jidx+1];
228             jnrlistC         = jjnr[jidx+2];
229             jnrlistD         = jjnr[jidx+3];
230             /* Sign of each element will be negative for non-real atoms.
231              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
232              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
233              */
234             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
235             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
236             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
237             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
238             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
239             j_coord_offsetA  = DIM*jnrA;
240             j_coord_offsetB  = DIM*jnrB;
241             j_coord_offsetC  = DIM*jnrC;
242             j_coord_offsetD  = DIM*jnrD;
243
244             /* load j atom coordinates */
245             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
246                                               x+j_coord_offsetC,x+j_coord_offsetD,
247                                               &jx0,&jy0,&jz0);
248
249             /* Calculate displacement vector */
250             dx00             = _mm_sub_ps(ix0,jx0);
251             dy00             = _mm_sub_ps(iy0,jy0);
252             dz00             = _mm_sub_ps(iz0,jz0);
253
254             /* Calculate squared distance and things based on it */
255             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
256
257             rinv00           = gmx_mm_invsqrt_ps(rsq00);
258
259             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
260
261             /* Load parameters for j particles */
262             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
263                                                               charge+jnrC+0,charge+jnrD+0);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq00             = _mm_mul_ps(iq0,jq0);
271
272             /* COULOMB ELECTROSTATICS */
273             velec            = _mm_mul_ps(qq00,rinv00);
274             felec            = _mm_mul_ps(velec,rinvsq00);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _mm_andnot_ps(dummy_mask,velec);
278             velecsum         = _mm_add_ps(velecsum,velec);
279
280             fscal            = felec;
281
282             fscal            = _mm_andnot_ps(dummy_mask,fscal);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_ps(fscal,dx00);
286             ty               = _mm_mul_ps(fscal,dy00);
287             tz               = _mm_mul_ps(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_ps(fix0,tx);
291             fiy0             = _mm_add_ps(fiy0,ty);
292             fiz0             = _mm_add_ps(fiz0,tz);
293
294             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
295             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
296             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
297             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
299             
300             /* Inner loop uses 28 flops */
301         }
302
303         /* End of innermost loop */
304
305         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
306                                               f+i_coord_offset,fshift+i_shift_offset);
307
308         ggid                        = gid[iidx];
309         /* Update potential energies */
310         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
311
312         /* Increment number of inner iterations */
313         inneriter                  += j_index_end - j_index_start;
314
315         /* Outer loop uses 8 flops */
316     }
317
318     /* Increment number of outer iterations */
319     outeriter        += nri;
320
321     /* Update outer/inner flops */
322
323     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*28);
324 }
325 /*
326  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse2_single
327  * Electrostatics interaction: Coulomb
328  * VdW interaction:            None
329  * Geometry:                   Particle-Particle
330  * Calculate force/pot:        Force
331  */
332 void
333 nb_kernel_ElecCoul_VdwNone_GeomP1P1_F_sse2_single
334                     (t_nblist                    * gmx_restrict       nlist,
335                      rvec                        * gmx_restrict          xx,
336                      rvec                        * gmx_restrict          ff,
337                      t_forcerec                  * gmx_restrict          fr,
338                      t_mdatoms                   * gmx_restrict     mdatoms,
339                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
340                      t_nrnb                      * gmx_restrict        nrnb)
341 {
342     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
343      * just 0 for non-waters.
344      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
345      * jnr indices corresponding to data put in the four positions in the SIMD register.
346      */
347     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
348     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
349     int              jnrA,jnrB,jnrC,jnrD;
350     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
351     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
352     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
353     real             rcutoff_scalar;
354     real             *shiftvec,*fshift,*x,*f;
355     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
356     real             scratch[4*DIM];
357     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
358     int              vdwioffset0;
359     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
360     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
361     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
362     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
363     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
364     real             *charge;
365     __m128           dummy_mask,cutoff_mask;
366     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
367     __m128           one     = _mm_set1_ps(1.0);
368     __m128           two     = _mm_set1_ps(2.0);
369     x                = xx[0];
370     f                = ff[0];
371
372     nri              = nlist->nri;
373     iinr             = nlist->iinr;
374     jindex           = nlist->jindex;
375     jjnr             = nlist->jjnr;
376     shiftidx         = nlist->shift;
377     gid              = nlist->gid;
378     shiftvec         = fr->shift_vec[0];
379     fshift           = fr->fshift[0];
380     facel            = _mm_set1_ps(fr->epsfac);
381     charge           = mdatoms->chargeA;
382
383     /* Avoid stupid compiler warnings */
384     jnrA = jnrB = jnrC = jnrD = 0;
385     j_coord_offsetA = 0;
386     j_coord_offsetB = 0;
387     j_coord_offsetC = 0;
388     j_coord_offsetD = 0;
389
390     outeriter        = 0;
391     inneriter        = 0;
392
393     for(iidx=0;iidx<4*DIM;iidx++)
394     {
395         scratch[iidx] = 0.0;
396     }  
397
398     /* Start outer loop over neighborlists */
399     for(iidx=0; iidx<nri; iidx++)
400     {
401         /* Load shift vector for this list */
402         i_shift_offset   = DIM*shiftidx[iidx];
403
404         /* Load limits for loop over neighbors */
405         j_index_start    = jindex[iidx];
406         j_index_end      = jindex[iidx+1];
407
408         /* Get outer coordinate index */
409         inr              = iinr[iidx];
410         i_coord_offset   = DIM*inr;
411
412         /* Load i particle coords and add shift vector */
413         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414         
415         fix0             = _mm_setzero_ps();
416         fiy0             = _mm_setzero_ps();
417         fiz0             = _mm_setzero_ps();
418
419         /* Load parameters for i particles */
420         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
421
422         /* Start inner kernel loop */
423         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrA             = jjnr[jidx];
428             jnrB             = jjnr[jidx+1];
429             jnrC             = jjnr[jidx+2];
430             jnrD             = jjnr[jidx+3];
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433             j_coord_offsetC  = DIM*jnrC;
434             j_coord_offsetD  = DIM*jnrD;
435
436             /* load j atom coordinates */
437             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
438                                               x+j_coord_offsetC,x+j_coord_offsetD,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_ps(ix0,jx0);
443             dy00             = _mm_sub_ps(iy0,jy0);
444             dz00             = _mm_sub_ps(iz0,jz0);
445
446             /* Calculate squared distance and things based on it */
447             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
448
449             rinv00           = gmx_mm_invsqrt_ps(rsq00);
450
451             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
452
453             /* Load parameters for j particles */
454             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
455                                                               charge+jnrC+0,charge+jnrD+0);
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             /* Compute parameters for interactions between i and j atoms */
462             qq00             = _mm_mul_ps(iq0,jq0);
463
464             /* COULOMB ELECTROSTATICS */
465             velec            = _mm_mul_ps(qq00,rinv00);
466             felec            = _mm_mul_ps(velec,rinvsq00);
467
468             fscal            = felec;
469
470             /* Calculate temporary vectorial force */
471             tx               = _mm_mul_ps(fscal,dx00);
472             ty               = _mm_mul_ps(fscal,dy00);
473             tz               = _mm_mul_ps(fscal,dz00);
474
475             /* Update vectorial force */
476             fix0             = _mm_add_ps(fix0,tx);
477             fiy0             = _mm_add_ps(fiy0,ty);
478             fiz0             = _mm_add_ps(fiz0,tz);
479
480             fjptrA             = f+j_coord_offsetA;
481             fjptrB             = f+j_coord_offsetB;
482             fjptrC             = f+j_coord_offsetC;
483             fjptrD             = f+j_coord_offsetD;
484             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
485             
486             /* Inner loop uses 27 flops */
487         }
488
489         if(jidx<j_index_end)
490         {
491
492             /* Get j neighbor index, and coordinate index */
493             jnrlistA         = jjnr[jidx];
494             jnrlistB         = jjnr[jidx+1];
495             jnrlistC         = jjnr[jidx+2];
496             jnrlistD         = jjnr[jidx+3];
497             /* Sign of each element will be negative for non-real atoms.
498              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
499              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
500              */
501             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
502             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
503             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
504             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
505             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508             j_coord_offsetC  = DIM*jnrC;
509             j_coord_offsetD  = DIM*jnrD;
510
511             /* load j atom coordinates */
512             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
513                                               x+j_coord_offsetC,x+j_coord_offsetD,
514                                               &jx0,&jy0,&jz0);
515
516             /* Calculate displacement vector */
517             dx00             = _mm_sub_ps(ix0,jx0);
518             dy00             = _mm_sub_ps(iy0,jy0);
519             dz00             = _mm_sub_ps(iz0,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
523
524             rinv00           = gmx_mm_invsqrt_ps(rsq00);
525
526             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
527
528             /* Load parameters for j particles */
529             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
530                                                               charge+jnrC+0,charge+jnrD+0);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq00             = _mm_mul_ps(iq0,jq0);
538
539             /* COULOMB ELECTROSTATICS */
540             velec            = _mm_mul_ps(qq00,rinv00);
541             felec            = _mm_mul_ps(velec,rinvsq00);
542
543             fscal            = felec;
544
545             fscal            = _mm_andnot_ps(dummy_mask,fscal);
546
547             /* Calculate temporary vectorial force */
548             tx               = _mm_mul_ps(fscal,dx00);
549             ty               = _mm_mul_ps(fscal,dy00);
550             tz               = _mm_mul_ps(fscal,dz00);
551
552             /* Update vectorial force */
553             fix0             = _mm_add_ps(fix0,tx);
554             fiy0             = _mm_add_ps(fiy0,ty);
555             fiz0             = _mm_add_ps(fiz0,tz);
556
557             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
558             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
559             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
560             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
561             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
562             
563             /* Inner loop uses 27 flops */
564         }
565
566         /* End of innermost loop */
567
568         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
569                                               f+i_coord_offset,fshift+i_shift_offset);
570
571         /* Increment number of inner iterations */
572         inneriter                  += j_index_end - j_index_start;
573
574         /* Outer loop uses 7 flops */
575     }
576
577     /* Increment number of outer iterations */
578     outeriter        += nri;
579
580     /* Update outer/inner flops */
581
582     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27);
583 }