Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     /* Avoid stupid compiler warnings */
104     jnrA = jnrB = jnrC = jnrD = 0;
105     j_coord_offsetA = 0;
106     j_coord_offsetB = 0;
107     j_coord_offsetC = 0;
108     j_coord_offsetD = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     for(iidx=0;iidx<4*DIM;iidx++)
114     {
115         scratch[iidx] = 0.0;
116     }  
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123
124         /* Load limits for loop over neighbors */
125         j_index_start    = jindex[iidx];
126         j_index_end      = jindex[iidx+1];
127
128         /* Get outer coordinate index */
129         inr              = iinr[iidx];
130         i_coord_offset   = DIM*inr;
131
132         /* Load i particle coords and add shift vector */
133         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
134         
135         fix0             = _mm_setzero_ps();
136         fiy0             = _mm_setzero_ps();
137         fiz0             = _mm_setzero_ps();
138
139         /* Load parameters for i particles */
140         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
141         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143         /* Reset potential sums */
144         velecsum         = _mm_setzero_ps();
145         vvdwsum          = _mm_setzero_ps();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             jnrC             = jjnr[jidx+2];
155             jnrD             = jjnr[jidx+3];
156             j_coord_offsetA  = DIM*jnrA;
157             j_coord_offsetB  = DIM*jnrB;
158             j_coord_offsetC  = DIM*jnrC;
159             j_coord_offsetD  = DIM*jnrD;
160
161             /* load j atom coordinates */
162             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
163                                               x+j_coord_offsetC,x+j_coord_offsetD,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_ps(ix0,jx0);
168             dy00             = _mm_sub_ps(iy0,jy0);
169             dz00             = _mm_sub_ps(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_ps(rsq00);
175
176             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
177
178             /* Load parameters for j particles */
179             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
180                                                               charge+jnrC+0,charge+jnrD+0);
181             vdwjidx0A        = 2*vdwtype[jnrA+0];
182             vdwjidx0B        = 2*vdwtype[jnrB+0];
183             vdwjidx0C        = 2*vdwtype[jnrC+0];
184             vdwjidx0D        = 2*vdwtype[jnrD+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             /* Compute parameters for interactions between i and j atoms */
191             qq00             = _mm_mul_ps(iq0,jq0);
192             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
193                                          vdwparam+vdwioffset0+vdwjidx0B,
194                                          vdwparam+vdwioffset0+vdwjidx0C,
195                                          vdwparam+vdwioffset0+vdwjidx0D,
196                                          &c6_00,&c12_00);
197
198             /* COULOMB ELECTROSTATICS */
199             velec            = _mm_mul_ps(qq00,rinv00);
200             felec            = _mm_mul_ps(velec,rinvsq00);
201
202             /* LENNARD-JONES DISPERSION/REPULSION */
203
204             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
205             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
206             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
207             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
208             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
209
210             /* Update potential sum for this i atom from the interaction with this j atom. */
211             velecsum         = _mm_add_ps(velecsum,velec);
212             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
213
214             fscal            = _mm_add_ps(felec,fvdw);
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_ps(fscal,dx00);
218             ty               = _mm_mul_ps(fscal,dy00);
219             tz               = _mm_mul_ps(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm_add_ps(fix0,tx);
223             fiy0             = _mm_add_ps(fiy0,ty);
224             fiz0             = _mm_add_ps(fiz0,tz);
225
226             fjptrA             = f+j_coord_offsetA;
227             fjptrB             = f+j_coord_offsetB;
228             fjptrC             = f+j_coord_offsetC;
229             fjptrD             = f+j_coord_offsetD;
230             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
231             
232             /* Inner loop uses 40 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             /* Get j neighbor index, and coordinate index */
239             jnrlistA         = jjnr[jidx];
240             jnrlistB         = jjnr[jidx+1];
241             jnrlistC         = jjnr[jidx+2];
242             jnrlistD         = jjnr[jidx+3];
243             /* Sign of each element will be negative for non-real atoms.
244              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
245              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
246              */
247             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
248             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
249             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
250             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
251             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
252             j_coord_offsetA  = DIM*jnrA;
253             j_coord_offsetB  = DIM*jnrB;
254             j_coord_offsetC  = DIM*jnrC;
255             j_coord_offsetD  = DIM*jnrD;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
259                                               x+j_coord_offsetC,x+j_coord_offsetD,
260                                               &jx0,&jy0,&jz0);
261
262             /* Calculate displacement vector */
263             dx00             = _mm_sub_ps(ix0,jx0);
264             dy00             = _mm_sub_ps(iy0,jy0);
265             dz00             = _mm_sub_ps(iz0,jz0);
266
267             /* Calculate squared distance and things based on it */
268             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
269
270             rinv00           = gmx_mm_invsqrt_ps(rsq00);
271
272             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
273
274             /* Load parameters for j particles */
275             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
276                                                               charge+jnrC+0,charge+jnrD+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278             vdwjidx0B        = 2*vdwtype[jnrB+0];
279             vdwjidx0C        = 2*vdwtype[jnrC+0];
280             vdwjidx0D        = 2*vdwtype[jnrD+0];
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq00             = _mm_mul_ps(iq0,jq0);
288             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
289                                          vdwparam+vdwioffset0+vdwjidx0B,
290                                          vdwparam+vdwioffset0+vdwjidx0C,
291                                          vdwparam+vdwioffset0+vdwjidx0D,
292                                          &c6_00,&c12_00);
293
294             /* COULOMB ELECTROSTATICS */
295             velec            = _mm_mul_ps(qq00,rinv00);
296             felec            = _mm_mul_ps(velec,rinvsq00);
297
298             /* LENNARD-JONES DISPERSION/REPULSION */
299
300             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
301             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
302             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
303             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
304             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velec            = _mm_andnot_ps(dummy_mask,velec);
308             velecsum         = _mm_add_ps(velecsum,velec);
309             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
310             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
311
312             fscal            = _mm_add_ps(felec,fvdw);
313
314             fscal            = _mm_andnot_ps(dummy_mask,fscal);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm_mul_ps(fscal,dx00);
318             ty               = _mm_mul_ps(fscal,dy00);
319             tz               = _mm_mul_ps(fscal,dz00);
320
321             /* Update vectorial force */
322             fix0             = _mm_add_ps(fix0,tx);
323             fiy0             = _mm_add_ps(fiy0,ty);
324             fiz0             = _mm_add_ps(fiz0,tz);
325
326             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
327             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
328             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
329             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
330             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
331             
332             /* Inner loop uses 40 flops */
333         }
334
335         /* End of innermost loop */
336
337         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
338                                               f+i_coord_offset,fshift+i_shift_offset);
339
340         ggid                        = gid[iidx];
341         /* Update potential energies */
342         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
343         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
344
345         /* Increment number of inner iterations */
346         inneriter                  += j_index_end - j_index_start;
347
348         /* Outer loop uses 9 flops */
349     }
350
351     /* Increment number of outer iterations */
352     outeriter        += nri;
353
354     /* Update outer/inner flops */
355
356     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*40);
357 }
358 /*
359  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
360  * Electrostatics interaction: Coulomb
361  * VdW interaction:            LennardJones
362  * Geometry:                   Particle-Particle
363  * Calculate force/pot:        Force
364  */
365 void
366 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
367                     (t_nblist * gmx_restrict                nlist,
368                      rvec * gmx_restrict                    xx,
369                      rvec * gmx_restrict                    ff,
370                      t_forcerec * gmx_restrict              fr,
371                      t_mdatoms * gmx_restrict               mdatoms,
372                      nb_kernel_data_t * gmx_restrict        kernel_data,
373                      t_nrnb * gmx_restrict                  nrnb)
374 {
375     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
376      * just 0 for non-waters.
377      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
378      * jnr indices corresponding to data put in the four positions in the SIMD register.
379      */
380     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
381     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
382     int              jnrA,jnrB,jnrC,jnrD;
383     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
384     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
385     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
386     real             rcutoff_scalar;
387     real             *shiftvec,*fshift,*x,*f;
388     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
389     real             scratch[4*DIM];
390     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
391     int              vdwioffset0;
392     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
393     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
394     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
395     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
396     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
397     real             *charge;
398     int              nvdwtype;
399     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
400     int              *vdwtype;
401     real             *vdwparam;
402     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
403     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
404     __m128           dummy_mask,cutoff_mask;
405     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
406     __m128           one     = _mm_set1_ps(1.0);
407     __m128           two     = _mm_set1_ps(2.0);
408     x                = xx[0];
409     f                = ff[0];
410
411     nri              = nlist->nri;
412     iinr             = nlist->iinr;
413     jindex           = nlist->jindex;
414     jjnr             = nlist->jjnr;
415     shiftidx         = nlist->shift;
416     gid              = nlist->gid;
417     shiftvec         = fr->shift_vec[0];
418     fshift           = fr->fshift[0];
419     facel            = _mm_set1_ps(fr->epsfac);
420     charge           = mdatoms->chargeA;
421     nvdwtype         = fr->ntype;
422     vdwparam         = fr->nbfp;
423     vdwtype          = mdatoms->typeA;
424
425     /* Avoid stupid compiler warnings */
426     jnrA = jnrB = jnrC = jnrD = 0;
427     j_coord_offsetA = 0;
428     j_coord_offsetB = 0;
429     j_coord_offsetC = 0;
430     j_coord_offsetD = 0;
431
432     outeriter        = 0;
433     inneriter        = 0;
434
435     for(iidx=0;iidx<4*DIM;iidx++)
436     {
437         scratch[iidx] = 0.0;
438     }  
439
440     /* Start outer loop over neighborlists */
441     for(iidx=0; iidx<nri; iidx++)
442     {
443         /* Load shift vector for this list */
444         i_shift_offset   = DIM*shiftidx[iidx];
445
446         /* Load limits for loop over neighbors */
447         j_index_start    = jindex[iidx];
448         j_index_end      = jindex[iidx+1];
449
450         /* Get outer coordinate index */
451         inr              = iinr[iidx];
452         i_coord_offset   = DIM*inr;
453
454         /* Load i particle coords and add shift vector */
455         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
456         
457         fix0             = _mm_setzero_ps();
458         fiy0             = _mm_setzero_ps();
459         fiz0             = _mm_setzero_ps();
460
461         /* Load parameters for i particles */
462         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
463         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
464
465         /* Start inner kernel loop */
466         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
467         {
468
469             /* Get j neighbor index, and coordinate index */
470             jnrA             = jjnr[jidx];
471             jnrB             = jjnr[jidx+1];
472             jnrC             = jjnr[jidx+2];
473             jnrD             = jjnr[jidx+3];
474             j_coord_offsetA  = DIM*jnrA;
475             j_coord_offsetB  = DIM*jnrB;
476             j_coord_offsetC  = DIM*jnrC;
477             j_coord_offsetD  = DIM*jnrD;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               x+j_coord_offsetC,x+j_coord_offsetD,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_ps(ix0,jx0);
486             dy00             = _mm_sub_ps(iy0,jy0);
487             dz00             = _mm_sub_ps(iz0,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
491
492             rinv00           = gmx_mm_invsqrt_ps(rsq00);
493
494             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
495
496             /* Load parameters for j particles */
497             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
498                                                               charge+jnrC+0,charge+jnrD+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501             vdwjidx0C        = 2*vdwtype[jnrC+0];
502             vdwjidx0D        = 2*vdwtype[jnrD+0];
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_ps(iq0,jq0);
510             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,
512                                          vdwparam+vdwioffset0+vdwjidx0C,
513                                          vdwparam+vdwioffset0+vdwjidx0D,
514                                          &c6_00,&c12_00);
515
516             /* COULOMB ELECTROSTATICS */
517             velec            = _mm_mul_ps(qq00,rinv00);
518             felec            = _mm_mul_ps(velec,rinvsq00);
519
520             /* LENNARD-JONES DISPERSION/REPULSION */
521
522             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
523             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
524
525             fscal            = _mm_add_ps(felec,fvdw);
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm_mul_ps(fscal,dx00);
529             ty               = _mm_mul_ps(fscal,dy00);
530             tz               = _mm_mul_ps(fscal,dz00);
531
532             /* Update vectorial force */
533             fix0             = _mm_add_ps(fix0,tx);
534             fiy0             = _mm_add_ps(fiy0,ty);
535             fiz0             = _mm_add_ps(fiz0,tz);
536
537             fjptrA             = f+j_coord_offsetA;
538             fjptrB             = f+j_coord_offsetB;
539             fjptrC             = f+j_coord_offsetC;
540             fjptrD             = f+j_coord_offsetD;
541             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
542             
543             /* Inner loop uses 34 flops */
544         }
545
546         if(jidx<j_index_end)
547         {
548
549             /* Get j neighbor index, and coordinate index */
550             jnrlistA         = jjnr[jidx];
551             jnrlistB         = jjnr[jidx+1];
552             jnrlistC         = jjnr[jidx+2];
553             jnrlistD         = jjnr[jidx+3];
554             /* Sign of each element will be negative for non-real atoms.
555              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
556              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
557              */
558             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
559             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
560             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
561             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
562             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
563             j_coord_offsetA  = DIM*jnrA;
564             j_coord_offsetB  = DIM*jnrB;
565             j_coord_offsetC  = DIM*jnrC;
566             j_coord_offsetD  = DIM*jnrD;
567
568             /* load j atom coordinates */
569             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
570                                               x+j_coord_offsetC,x+j_coord_offsetD,
571                                               &jx0,&jy0,&jz0);
572
573             /* Calculate displacement vector */
574             dx00             = _mm_sub_ps(ix0,jx0);
575             dy00             = _mm_sub_ps(iy0,jy0);
576             dz00             = _mm_sub_ps(iz0,jz0);
577
578             /* Calculate squared distance and things based on it */
579             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
580
581             rinv00           = gmx_mm_invsqrt_ps(rsq00);
582
583             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
584
585             /* Load parameters for j particles */
586             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
587                                                               charge+jnrC+0,charge+jnrD+0);
588             vdwjidx0A        = 2*vdwtype[jnrA+0];
589             vdwjidx0B        = 2*vdwtype[jnrB+0];
590             vdwjidx0C        = 2*vdwtype[jnrC+0];
591             vdwjidx0D        = 2*vdwtype[jnrD+0];
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq00             = _mm_mul_ps(iq0,jq0);
599             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
600                                          vdwparam+vdwioffset0+vdwjidx0B,
601                                          vdwparam+vdwioffset0+vdwjidx0C,
602                                          vdwparam+vdwioffset0+vdwjidx0D,
603                                          &c6_00,&c12_00);
604
605             /* COULOMB ELECTROSTATICS */
606             velec            = _mm_mul_ps(qq00,rinv00);
607             felec            = _mm_mul_ps(velec,rinvsq00);
608
609             /* LENNARD-JONES DISPERSION/REPULSION */
610
611             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
612             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
613
614             fscal            = _mm_add_ps(felec,fvdw);
615
616             fscal            = _mm_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_ps(fscal,dx00);
620             ty               = _mm_mul_ps(fscal,dy00);
621             tz               = _mm_mul_ps(fscal,dz00);
622
623             /* Update vectorial force */
624             fix0             = _mm_add_ps(fix0,tx);
625             fiy0             = _mm_add_ps(fiy0,ty);
626             fiz0             = _mm_add_ps(fiz0,tz);
627
628             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
629             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
630             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
631             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
632             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
633             
634             /* Inner loop uses 34 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
640                                               f+i_coord_offset,fshift+i_shift_offset);
641
642         /* Increment number of inner iterations */
643         inneriter                  += j_index_end - j_index_start;
644
645         /* Outer loop uses 7 flops */
646     }
647
648     /* Increment number of outer iterations */
649     outeriter        += nri;
650
651     /* Update outer/inner flops */
652
653     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
654 }