5fcca8049123a28bdd9202878f0ead2ba92f8af8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: Coulomb
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = jnrC = jnrD = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121     j_coord_offsetC = 0;
122     j_coord_offsetD = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     for(iidx=0;iidx<4*DIM;iidx++)
128     {
129         scratch[iidx] = 0.0;
130     }  
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148         
149         fix0             = _mm_setzero_ps();
150         fiy0             = _mm_setzero_ps();
151         fiz0             = _mm_setzero_ps();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
155         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_ps();
159         vvdwsum          = _mm_setzero_ps();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
177                                               x+j_coord_offsetC,x+j_coord_offsetD,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_ps(ix0,jx0);
182             dy00             = _mm_sub_ps(iy0,jy0);
183             dz00             = _mm_sub_ps(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_ps(rsq00);
189
190             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
194                                                               charge+jnrC+0,charge+jnrD+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197             vdwjidx0C        = 2*vdwtype[jnrC+0];
198             vdwjidx0D        = 2*vdwtype[jnrD+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_ps(iq0,jq0);
206             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,
208                                          vdwparam+vdwioffset0+vdwjidx0C,
209                                          vdwparam+vdwioffset0+vdwjidx0D,
210                                          &c6_00,&c12_00);
211
212             /* COULOMB ELECTROSTATICS */
213             velec            = _mm_mul_ps(qq00,rinv00);
214             felec            = _mm_mul_ps(velec,rinvsq00);
215
216             /* LENNARD-JONES DISPERSION/REPULSION */
217
218             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
219             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
220             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
221             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
222             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
223
224             /* Update potential sum for this i atom from the interaction with this j atom. */
225             velecsum         = _mm_add_ps(velecsum,velec);
226             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
227
228             fscal            = _mm_add_ps(felec,fvdw);
229
230             /* Calculate temporary vectorial force */
231             tx               = _mm_mul_ps(fscal,dx00);
232             ty               = _mm_mul_ps(fscal,dy00);
233             tz               = _mm_mul_ps(fscal,dz00);
234
235             /* Update vectorial force */
236             fix0             = _mm_add_ps(fix0,tx);
237             fiy0             = _mm_add_ps(fiy0,ty);
238             fiz0             = _mm_add_ps(fiz0,tz);
239
240             fjptrA             = f+j_coord_offsetA;
241             fjptrB             = f+j_coord_offsetB;
242             fjptrC             = f+j_coord_offsetC;
243             fjptrD             = f+j_coord_offsetD;
244             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
245             
246             /* Inner loop uses 40 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             /* Get j neighbor index, and coordinate index */
253             jnrlistA         = jjnr[jidx];
254             jnrlistB         = jjnr[jidx+1];
255             jnrlistC         = jjnr[jidx+2];
256             jnrlistD         = jjnr[jidx+3];
257             /* Sign of each element will be negative for non-real atoms.
258              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
259              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
260              */
261             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
262             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
263             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
264             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
265             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
266             j_coord_offsetA  = DIM*jnrA;
267             j_coord_offsetB  = DIM*jnrB;
268             j_coord_offsetC  = DIM*jnrC;
269             j_coord_offsetD  = DIM*jnrD;
270
271             /* load j atom coordinates */
272             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
273                                               x+j_coord_offsetC,x+j_coord_offsetD,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm_sub_ps(ix0,jx0);
278             dy00             = _mm_sub_ps(iy0,jy0);
279             dz00             = _mm_sub_ps(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
283
284             rinv00           = gmx_mm_invsqrt_ps(rsq00);
285
286             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
290                                                               charge+jnrC+0,charge+jnrD+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292             vdwjidx0B        = 2*vdwtype[jnrB+0];
293             vdwjidx0C        = 2*vdwtype[jnrC+0];
294             vdwjidx0D        = 2*vdwtype[jnrD+0];
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_ps(iq0,jq0);
302             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
303                                          vdwparam+vdwioffset0+vdwjidx0B,
304                                          vdwparam+vdwioffset0+vdwjidx0C,
305                                          vdwparam+vdwioffset0+vdwjidx0D,
306                                          &c6_00,&c12_00);
307
308             /* COULOMB ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq00,rinv00);
310             felec            = _mm_mul_ps(velec,rinvsq00);
311
312             /* LENNARD-JONES DISPERSION/REPULSION */
313
314             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
315             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
316             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
317             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
318             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_andnot_ps(dummy_mask,velec);
322             velecsum         = _mm_add_ps(velecsum,velec);
323             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
324             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
325
326             fscal            = _mm_add_ps(felec,fvdw);
327
328             fscal            = _mm_andnot_ps(dummy_mask,fscal);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx00);
332             ty               = _mm_mul_ps(fscal,dy00);
333             tz               = _mm_mul_ps(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm_add_ps(fix0,tx);
337             fiy0             = _mm_add_ps(fiy0,ty);
338             fiz0             = _mm_add_ps(fiz0,tz);
339
340             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
341             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
342             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
343             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
344             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
345             
346             /* Inner loop uses 40 flops */
347         }
348
349         /* End of innermost loop */
350
351         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
352                                               f+i_coord_offset,fshift+i_shift_offset);
353
354         ggid                        = gid[iidx];
355         /* Update potential energies */
356         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
357         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
358
359         /* Increment number of inner iterations */
360         inneriter                  += j_index_end - j_index_start;
361
362         /* Outer loop uses 9 flops */
363     }
364
365     /* Increment number of outer iterations */
366     outeriter        += nri;
367
368     /* Update outer/inner flops */
369
370     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*40);
371 }
372 /*
373  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
374  * Electrostatics interaction: Coulomb
375  * VdW interaction:            LennardJones
376  * Geometry:                   Particle-Particle
377  * Calculate force/pot:        Force
378  */
379 void
380 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_sse2_single
381                     (t_nblist                    * gmx_restrict       nlist,
382                      rvec                        * gmx_restrict          xx,
383                      rvec                        * gmx_restrict          ff,
384                      t_forcerec                  * gmx_restrict          fr,
385                      t_mdatoms                   * gmx_restrict     mdatoms,
386                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
387                      t_nrnb                      * gmx_restrict        nrnb)
388 {
389     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
390      * just 0 for non-waters.
391      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
392      * jnr indices corresponding to data put in the four positions in the SIMD register.
393      */
394     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
395     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
396     int              jnrA,jnrB,jnrC,jnrD;
397     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
398     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
399     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
400     real             rcutoff_scalar;
401     real             *shiftvec,*fshift,*x,*f;
402     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
403     real             scratch[4*DIM];
404     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
405     int              vdwioffset0;
406     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
407     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
408     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
409     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
410     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
411     real             *charge;
412     int              nvdwtype;
413     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
414     int              *vdwtype;
415     real             *vdwparam;
416     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
417     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
418     __m128           dummy_mask,cutoff_mask;
419     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
420     __m128           one     = _mm_set1_ps(1.0);
421     __m128           two     = _mm_set1_ps(2.0);
422     x                = xx[0];
423     f                = ff[0];
424
425     nri              = nlist->nri;
426     iinr             = nlist->iinr;
427     jindex           = nlist->jindex;
428     jjnr             = nlist->jjnr;
429     shiftidx         = nlist->shift;
430     gid              = nlist->gid;
431     shiftvec         = fr->shift_vec[0];
432     fshift           = fr->fshift[0];
433     facel            = _mm_set1_ps(fr->epsfac);
434     charge           = mdatoms->chargeA;
435     nvdwtype         = fr->ntype;
436     vdwparam         = fr->nbfp;
437     vdwtype          = mdatoms->typeA;
438
439     /* Avoid stupid compiler warnings */
440     jnrA = jnrB = jnrC = jnrD = 0;
441     j_coord_offsetA = 0;
442     j_coord_offsetB = 0;
443     j_coord_offsetC = 0;
444     j_coord_offsetD = 0;
445
446     outeriter        = 0;
447     inneriter        = 0;
448
449     for(iidx=0;iidx<4*DIM;iidx++)
450     {
451         scratch[iidx] = 0.0;
452     }  
453
454     /* Start outer loop over neighborlists */
455     for(iidx=0; iidx<nri; iidx++)
456     {
457         /* Load shift vector for this list */
458         i_shift_offset   = DIM*shiftidx[iidx];
459
460         /* Load limits for loop over neighbors */
461         j_index_start    = jindex[iidx];
462         j_index_end      = jindex[iidx+1];
463
464         /* Get outer coordinate index */
465         inr              = iinr[iidx];
466         i_coord_offset   = DIM*inr;
467
468         /* Load i particle coords and add shift vector */
469         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
470         
471         fix0             = _mm_setzero_ps();
472         fiy0             = _mm_setzero_ps();
473         fiz0             = _mm_setzero_ps();
474
475         /* Load parameters for i particles */
476         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
477         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
478
479         /* Start inner kernel loop */
480         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
481         {
482
483             /* Get j neighbor index, and coordinate index */
484             jnrA             = jjnr[jidx];
485             jnrB             = jjnr[jidx+1];
486             jnrC             = jjnr[jidx+2];
487             jnrD             = jjnr[jidx+3];
488             j_coord_offsetA  = DIM*jnrA;
489             j_coord_offsetB  = DIM*jnrB;
490             j_coord_offsetC  = DIM*jnrC;
491             j_coord_offsetD  = DIM*jnrD;
492
493             /* load j atom coordinates */
494             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
495                                               x+j_coord_offsetC,x+j_coord_offsetD,
496                                               &jx0,&jy0,&jz0);
497
498             /* Calculate displacement vector */
499             dx00             = _mm_sub_ps(ix0,jx0);
500             dy00             = _mm_sub_ps(iy0,jy0);
501             dz00             = _mm_sub_ps(iz0,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
505
506             rinv00           = gmx_mm_invsqrt_ps(rsq00);
507
508             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
509
510             /* Load parameters for j particles */
511             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
512                                                               charge+jnrC+0,charge+jnrD+0);
513             vdwjidx0A        = 2*vdwtype[jnrA+0];
514             vdwjidx0B        = 2*vdwtype[jnrB+0];
515             vdwjidx0C        = 2*vdwtype[jnrC+0];
516             vdwjidx0D        = 2*vdwtype[jnrD+0];
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq00             = _mm_mul_ps(iq0,jq0);
524             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
525                                          vdwparam+vdwioffset0+vdwjidx0B,
526                                          vdwparam+vdwioffset0+vdwjidx0C,
527                                          vdwparam+vdwioffset0+vdwjidx0D,
528                                          &c6_00,&c12_00);
529
530             /* COULOMB ELECTROSTATICS */
531             velec            = _mm_mul_ps(qq00,rinv00);
532             felec            = _mm_mul_ps(velec,rinvsq00);
533
534             /* LENNARD-JONES DISPERSION/REPULSION */
535
536             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
537             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
538
539             fscal            = _mm_add_ps(felec,fvdw);
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_ps(fscal,dx00);
543             ty               = _mm_mul_ps(fscal,dy00);
544             tz               = _mm_mul_ps(fscal,dz00);
545
546             /* Update vectorial force */
547             fix0             = _mm_add_ps(fix0,tx);
548             fiy0             = _mm_add_ps(fiy0,ty);
549             fiz0             = _mm_add_ps(fiz0,tz);
550
551             fjptrA             = f+j_coord_offsetA;
552             fjptrB             = f+j_coord_offsetB;
553             fjptrC             = f+j_coord_offsetC;
554             fjptrD             = f+j_coord_offsetD;
555             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
556             
557             /* Inner loop uses 34 flops */
558         }
559
560         if(jidx<j_index_end)
561         {
562
563             /* Get j neighbor index, and coordinate index */
564             jnrlistA         = jjnr[jidx];
565             jnrlistB         = jjnr[jidx+1];
566             jnrlistC         = jjnr[jidx+2];
567             jnrlistD         = jjnr[jidx+3];
568             /* Sign of each element will be negative for non-real atoms.
569              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
570              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
571              */
572             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
573             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
574             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
575             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
576             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
577             j_coord_offsetA  = DIM*jnrA;
578             j_coord_offsetB  = DIM*jnrB;
579             j_coord_offsetC  = DIM*jnrC;
580             j_coord_offsetD  = DIM*jnrD;
581
582             /* load j atom coordinates */
583             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
584                                               x+j_coord_offsetC,x+j_coord_offsetD,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm_sub_ps(ix0,jx0);
589             dy00             = _mm_sub_ps(iy0,jy0);
590             dz00             = _mm_sub_ps(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm_invsqrt_ps(rsq00);
596
597             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
601                                                               charge+jnrC+0,charge+jnrD+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603             vdwjidx0B        = 2*vdwtype[jnrB+0];
604             vdwjidx0C        = 2*vdwtype[jnrC+0];
605             vdwjidx0D        = 2*vdwtype[jnrD+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm_mul_ps(iq0,jq0);
613             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
614                                          vdwparam+vdwioffset0+vdwjidx0B,
615                                          vdwparam+vdwioffset0+vdwjidx0C,
616                                          vdwparam+vdwioffset0+vdwjidx0D,
617                                          &c6_00,&c12_00);
618
619             /* COULOMB ELECTROSTATICS */
620             velec            = _mm_mul_ps(qq00,rinv00);
621             felec            = _mm_mul_ps(velec,rinvsq00);
622
623             /* LENNARD-JONES DISPERSION/REPULSION */
624
625             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
626             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
627
628             fscal            = _mm_add_ps(felec,fvdw);
629
630             fscal            = _mm_andnot_ps(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm_mul_ps(fscal,dx00);
634             ty               = _mm_mul_ps(fscal,dy00);
635             tz               = _mm_mul_ps(fscal,dz00);
636
637             /* Update vectorial force */
638             fix0             = _mm_add_ps(fix0,tx);
639             fiy0             = _mm_add_ps(fiy0,ty);
640             fiz0             = _mm_add_ps(fiz0,tz);
641
642             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
643             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
644             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
645             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
646             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
647             
648             /* Inner loop uses 34 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
654                                               f+i_coord_offset,fshift+i_shift_offset);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 7 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
668 }