Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse2_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
122     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
123     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }  
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158         
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168         fix3             = _mm_setzero_ps();
169         fiy3             = _mm_setzero_ps();
170         fiz3             = _mm_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199             dx10             = _mm_sub_ps(ix1,jx0);
200             dy10             = _mm_sub_ps(iy1,jy0);
201             dz10             = _mm_sub_ps(iz1,jz0);
202             dx20             = _mm_sub_ps(ix2,jx0);
203             dy20             = _mm_sub_ps(iy2,jy0);
204             dz20             = _mm_sub_ps(iz2,jz0);
205             dx30             = _mm_sub_ps(ix3,jx0);
206             dy30             = _mm_sub_ps(iy3,jy0);
207             dz30             = _mm_sub_ps(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218             rinv30           = gmx_mm_invsqrt_ps(rsq30);
219
220             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
221             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
222             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             fjx0             = _mm_setzero_ps();
233             fjy0             = _mm_setzero_ps();
234             fjz0             = _mm_setzero_ps();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_ps(r00,vftabscale);
251             vfitab           = _mm_cvttps_epi32(rt);
252             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
253             vfitab           = _mm_slli_epi32(vfitab,3);
254
255             /* CUBIC SPLINE TABLE DISPERSION */
256             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
258             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
259             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
260             _MM_TRANSPOSE4_PS(Y,F,G,H);
261             Heps             = _mm_mul_ps(vfeps,H);
262             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
263             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
264             vvdw6            = _mm_mul_ps(c6_00,VV);
265             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
266             fvdw6            = _mm_mul_ps(c6_00,FF);
267
268             /* CUBIC SPLINE TABLE REPULSION */
269             vfitab           = _mm_add_epi32(vfitab,ifour);
270             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
271             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
272             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
273             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
274             _MM_TRANSPOSE4_PS(Y,F,G,H);
275             Heps             = _mm_mul_ps(vfeps,H);
276             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
277             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
278             vvdw12           = _mm_mul_ps(c12_00,VV);
279             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
280             fvdw12           = _mm_mul_ps(c12_00,FF);
281             vvdw             = _mm_add_ps(vvdw12,vvdw6);
282             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_ps(fscal,dx00);
291             ty               = _mm_mul_ps(fscal,dy00);
292             tz               = _mm_mul_ps(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_ps(fix0,tx);
296             fiy0             = _mm_add_ps(fiy0,ty);
297             fiz0             = _mm_add_ps(fiz0,tz);
298
299             fjx0             = _mm_add_ps(fjx0,tx);
300             fjy0             = _mm_add_ps(fjy0,ty);
301             fjz0             = _mm_add_ps(fjz0,tz);
302             
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_ps(iq1,jq0);
309
310             /* COULOMB ELECTROSTATICS */
311             velec            = _mm_mul_ps(qq10,rinv10);
312             felec            = _mm_mul_ps(velec,rinvsq10);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm_add_ps(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_ps(fscal,dx10);
321             ty               = _mm_mul_ps(fscal,dy10);
322             tz               = _mm_mul_ps(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm_add_ps(fix1,tx);
326             fiy1             = _mm_add_ps(fiy1,ty);
327             fiz1             = _mm_add_ps(fiz1,tz);
328
329             fjx0             = _mm_add_ps(fjx0,tx);
330             fjy0             = _mm_add_ps(fjy0,ty);
331             fjz0             = _mm_add_ps(fjz0,tz);
332             
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_ps(iq2,jq0);
339
340             /* COULOMB ELECTROSTATICS */
341             velec            = _mm_mul_ps(qq20,rinv20);
342             felec            = _mm_mul_ps(velec,rinvsq20);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm_add_ps(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_ps(fscal,dx20);
351             ty               = _mm_mul_ps(fscal,dy20);
352             tz               = _mm_mul_ps(fscal,dz20);
353
354             /* Update vectorial force */
355             fix2             = _mm_add_ps(fix2,tx);
356             fiy2             = _mm_add_ps(fiy2,ty);
357             fiz2             = _mm_add_ps(fiz2,tz);
358
359             fjx0             = _mm_add_ps(fjx0,tx);
360             fjy0             = _mm_add_ps(fjy0,ty);
361             fjz0             = _mm_add_ps(fjz0,tz);
362             
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq30             = _mm_mul_ps(iq3,jq0);
369
370             /* COULOMB ELECTROSTATICS */
371             velec            = _mm_mul_ps(qq30,rinv30);
372             felec            = _mm_mul_ps(velec,rinvsq30);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm_add_ps(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_ps(fscal,dx30);
381             ty               = _mm_mul_ps(fscal,dy30);
382             tz               = _mm_mul_ps(fscal,dz30);
383
384             /* Update vectorial force */
385             fix3             = _mm_add_ps(fix3,tx);
386             fiy3             = _mm_add_ps(fiy3,ty);
387             fiz3             = _mm_add_ps(fiz3,tz);
388
389             fjx0             = _mm_add_ps(fjx0,tx);
390             fjy0             = _mm_add_ps(fjy0,ty);
391             fjz0             = _mm_add_ps(fjz0,tz);
392             
393             fjptrA             = f+j_coord_offsetA;
394             fjptrB             = f+j_coord_offsetB;
395             fjptrC             = f+j_coord_offsetC;
396             fjptrD             = f+j_coord_offsetD;
397
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
399
400             /* Inner loop uses 140 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
414              */
415             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               x+j_coord_offsetC,x+j_coord_offsetD,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_ps(ix0,jx0);
432             dy00             = _mm_sub_ps(iy0,jy0);
433             dz00             = _mm_sub_ps(iz0,jz0);
434             dx10             = _mm_sub_ps(ix1,jx0);
435             dy10             = _mm_sub_ps(iy1,jy0);
436             dz10             = _mm_sub_ps(iz1,jz0);
437             dx20             = _mm_sub_ps(ix2,jx0);
438             dy20             = _mm_sub_ps(iy2,jy0);
439             dz20             = _mm_sub_ps(iz2,jz0);
440             dx30             = _mm_sub_ps(ix3,jx0);
441             dy30             = _mm_sub_ps(iy3,jy0);
442             dz30             = _mm_sub_ps(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
446             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
447             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
448             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
449
450             rinv00           = gmx_mm_invsqrt_ps(rsq00);
451             rinv10           = gmx_mm_invsqrt_ps(rsq10);
452             rinv20           = gmx_mm_invsqrt_ps(rsq20);
453             rinv30           = gmx_mm_invsqrt_ps(rsq30);
454
455             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
456             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
457             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
458
459             /* Load parameters for j particles */
460             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
461                                                               charge+jnrC+0,charge+jnrD+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463             vdwjidx0B        = 2*vdwtype[jnrB+0];
464             vdwjidx0C        = 2*vdwtype[jnrC+0];
465             vdwjidx0D        = 2*vdwtype[jnrD+0];
466
467             fjx0             = _mm_setzero_ps();
468             fjy0             = _mm_setzero_ps();
469             fjz0             = _mm_setzero_ps();
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             r00              = _mm_mul_ps(rsq00,rinv00);
476             r00              = _mm_andnot_ps(dummy_mask,r00);
477
478             /* Compute parameters for interactions between i and j atoms */
479             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
480                                          vdwparam+vdwioffset0+vdwjidx0B,
481                                          vdwparam+vdwioffset0+vdwjidx0C,
482                                          vdwparam+vdwioffset0+vdwjidx0D,
483                                          &c6_00,&c12_00);
484
485             /* Calculate table index by multiplying r with table scale and truncate to integer */
486             rt               = _mm_mul_ps(r00,vftabscale);
487             vfitab           = _mm_cvttps_epi32(rt);
488             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
489             vfitab           = _mm_slli_epi32(vfitab,3);
490
491             /* CUBIC SPLINE TABLE DISPERSION */
492             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
493             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
494             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
495             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
496             _MM_TRANSPOSE4_PS(Y,F,G,H);
497             Heps             = _mm_mul_ps(vfeps,H);
498             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
499             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
500             vvdw6            = _mm_mul_ps(c6_00,VV);
501             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
502             fvdw6            = _mm_mul_ps(c6_00,FF);
503
504             /* CUBIC SPLINE TABLE REPULSION */
505             vfitab           = _mm_add_epi32(vfitab,ifour);
506             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
507             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
508             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
509             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
510             _MM_TRANSPOSE4_PS(Y,F,G,H);
511             Heps             = _mm_mul_ps(vfeps,H);
512             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
513             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
514             vvdw12           = _mm_mul_ps(c12_00,VV);
515             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
516             fvdw12           = _mm_mul_ps(c12_00,FF);
517             vvdw             = _mm_add_ps(vvdw12,vvdw6);
518             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
522             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
523
524             fscal            = fvdw;
525
526             fscal            = _mm_andnot_ps(dummy_mask,fscal);
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_ps(fscal,dx00);
530             ty               = _mm_mul_ps(fscal,dy00);
531             tz               = _mm_mul_ps(fscal,dz00);
532
533             /* Update vectorial force */
534             fix0             = _mm_add_ps(fix0,tx);
535             fiy0             = _mm_add_ps(fiy0,ty);
536             fiz0             = _mm_add_ps(fiz0,tz);
537
538             fjx0             = _mm_add_ps(fjx0,tx);
539             fjy0             = _mm_add_ps(fjy0,ty);
540             fjz0             = _mm_add_ps(fjz0,tz);
541             
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq10             = _mm_mul_ps(iq1,jq0);
548
549             /* COULOMB ELECTROSTATICS */
550             velec            = _mm_mul_ps(qq10,rinv10);
551             felec            = _mm_mul_ps(velec,rinvsq10);
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm_mul_ps(fscal,dx10);
563             ty               = _mm_mul_ps(fscal,dy10);
564             tz               = _mm_mul_ps(fscal,dz10);
565
566             /* Update vectorial force */
567             fix1             = _mm_add_ps(fix1,tx);
568             fiy1             = _mm_add_ps(fiy1,ty);
569             fiz1             = _mm_add_ps(fiz1,tz);
570
571             fjx0             = _mm_add_ps(fjx0,tx);
572             fjy0             = _mm_add_ps(fjy0,ty);
573             fjz0             = _mm_add_ps(fjz0,tz);
574             
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq20             = _mm_mul_ps(iq2,jq0);
581
582             /* COULOMB ELECTROSTATICS */
583             velec            = _mm_mul_ps(qq20,rinv20);
584             felec            = _mm_mul_ps(velec,rinvsq20);
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             velec            = _mm_andnot_ps(dummy_mask,velec);
588             velecsum         = _mm_add_ps(velecsum,velec);
589
590             fscal            = felec;
591
592             fscal            = _mm_andnot_ps(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm_mul_ps(fscal,dx20);
596             ty               = _mm_mul_ps(fscal,dy20);
597             tz               = _mm_mul_ps(fscal,dz20);
598
599             /* Update vectorial force */
600             fix2             = _mm_add_ps(fix2,tx);
601             fiy2             = _mm_add_ps(fiy2,ty);
602             fiz2             = _mm_add_ps(fiz2,tz);
603
604             fjx0             = _mm_add_ps(fjx0,tx);
605             fjy0             = _mm_add_ps(fjy0,ty);
606             fjz0             = _mm_add_ps(fjz0,tz);
607             
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq30             = _mm_mul_ps(iq3,jq0);
614
615             /* COULOMB ELECTROSTATICS */
616             velec            = _mm_mul_ps(qq30,rinv30);
617             felec            = _mm_mul_ps(velec,rinvsq30);
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_andnot_ps(dummy_mask,velec);
621             velecsum         = _mm_add_ps(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm_andnot_ps(dummy_mask,fscal);
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_ps(fscal,dx30);
629             ty               = _mm_mul_ps(fscal,dy30);
630             tz               = _mm_mul_ps(fscal,dz30);
631
632             /* Update vectorial force */
633             fix3             = _mm_add_ps(fix3,tx);
634             fiy3             = _mm_add_ps(fiy3,ty);
635             fiz3             = _mm_add_ps(fiz3,tz);
636
637             fjx0             = _mm_add_ps(fjx0,tx);
638             fjy0             = _mm_add_ps(fjy0,ty);
639             fjz0             = _mm_add_ps(fjz0,tz);
640             
641             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
642             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
643             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
644             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
645
646             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
647
648             /* Inner loop uses 141 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
654                                               f+i_coord_offset,fshift+i_shift_offset);
655
656         ggid                        = gid[iidx];
657         /* Update potential energies */
658         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
659         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 26 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
673 }
674 /*
675  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse2_single
676  * Electrostatics interaction: Coulomb
677  * VdW interaction:            CubicSplineTable
678  * Geometry:                   Water4-Particle
679  * Calculate force/pot:        Force
680  */
681 void
682 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_sse2_single
683                     (t_nblist * gmx_restrict                nlist,
684                      rvec * gmx_restrict                    xx,
685                      rvec * gmx_restrict                    ff,
686                      t_forcerec * gmx_restrict              fr,
687                      t_mdatoms * gmx_restrict               mdatoms,
688                      nb_kernel_data_t * gmx_restrict        kernel_data,
689                      t_nrnb * gmx_restrict                  nrnb)
690 {
691     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
692      * just 0 for non-waters.
693      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
694      * jnr indices corresponding to data put in the four positions in the SIMD register.
695      */
696     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
697     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
698     int              jnrA,jnrB,jnrC,jnrD;
699     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
700     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
705     real             scratch[4*DIM];
706     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
707     int              vdwioffset0;
708     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709     int              vdwioffset1;
710     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711     int              vdwioffset2;
712     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713     int              vdwioffset3;
714     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
715     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
716     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
717     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
718     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
719     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
720     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
721     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
722     real             *charge;
723     int              nvdwtype;
724     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
725     int              *vdwtype;
726     real             *vdwparam;
727     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
728     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
729     __m128i          vfitab;
730     __m128i          ifour       = _mm_set1_epi32(4);
731     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
732     real             *vftab;
733     __m128           dummy_mask,cutoff_mask;
734     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
735     __m128           one     = _mm_set1_ps(1.0);
736     __m128           two     = _mm_set1_ps(2.0);
737     x                = xx[0];
738     f                = ff[0];
739
740     nri              = nlist->nri;
741     iinr             = nlist->iinr;
742     jindex           = nlist->jindex;
743     jjnr             = nlist->jjnr;
744     shiftidx         = nlist->shift;
745     gid              = nlist->gid;
746     shiftvec         = fr->shift_vec[0];
747     fshift           = fr->fshift[0];
748     facel            = _mm_set1_ps(fr->epsfac);
749     charge           = mdatoms->chargeA;
750     nvdwtype         = fr->ntype;
751     vdwparam         = fr->nbfp;
752     vdwtype          = mdatoms->typeA;
753
754     vftab            = kernel_data->table_vdw->data;
755     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
756
757     /* Setup water-specific parameters */
758     inr              = nlist->iinr[0];
759     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
760     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
761     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
762     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = jnrC = jnrD = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768     j_coord_offsetC = 0;
769     j_coord_offsetD = 0;
770
771     outeriter        = 0;
772     inneriter        = 0;
773
774     for(iidx=0;iidx<4*DIM;iidx++)
775     {
776         scratch[iidx] = 0.0;
777     }  
778
779     /* Start outer loop over neighborlists */
780     for(iidx=0; iidx<nri; iidx++)
781     {
782         /* Load shift vector for this list */
783         i_shift_offset   = DIM*shiftidx[iidx];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
795                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
796         
797         fix0             = _mm_setzero_ps();
798         fiy0             = _mm_setzero_ps();
799         fiz0             = _mm_setzero_ps();
800         fix1             = _mm_setzero_ps();
801         fiy1             = _mm_setzero_ps();
802         fiz1             = _mm_setzero_ps();
803         fix2             = _mm_setzero_ps();
804         fiy2             = _mm_setzero_ps();
805         fiz2             = _mm_setzero_ps();
806         fix3             = _mm_setzero_ps();
807         fiy3             = _mm_setzero_ps();
808         fiz3             = _mm_setzero_ps();
809
810         /* Start inner kernel loop */
811         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
812         {
813
814             /* Get j neighbor index, and coordinate index */
815             jnrA             = jjnr[jidx];
816             jnrB             = jjnr[jidx+1];
817             jnrC             = jjnr[jidx+2];
818             jnrD             = jjnr[jidx+3];
819             j_coord_offsetA  = DIM*jnrA;
820             j_coord_offsetB  = DIM*jnrB;
821             j_coord_offsetC  = DIM*jnrC;
822             j_coord_offsetD  = DIM*jnrD;
823
824             /* load j atom coordinates */
825             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
826                                               x+j_coord_offsetC,x+j_coord_offsetD,
827                                               &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _mm_sub_ps(ix0,jx0);
831             dy00             = _mm_sub_ps(iy0,jy0);
832             dz00             = _mm_sub_ps(iz0,jz0);
833             dx10             = _mm_sub_ps(ix1,jx0);
834             dy10             = _mm_sub_ps(iy1,jy0);
835             dz10             = _mm_sub_ps(iz1,jz0);
836             dx20             = _mm_sub_ps(ix2,jx0);
837             dy20             = _mm_sub_ps(iy2,jy0);
838             dz20             = _mm_sub_ps(iz2,jz0);
839             dx30             = _mm_sub_ps(ix3,jx0);
840             dy30             = _mm_sub_ps(iy3,jy0);
841             dz30             = _mm_sub_ps(iz3,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
845             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
846             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
847             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
848
849             rinv00           = gmx_mm_invsqrt_ps(rsq00);
850             rinv10           = gmx_mm_invsqrt_ps(rsq10);
851             rinv20           = gmx_mm_invsqrt_ps(rsq20);
852             rinv30           = gmx_mm_invsqrt_ps(rsq30);
853
854             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
855             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
856             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
857
858             /* Load parameters for j particles */
859             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
860                                                               charge+jnrC+0,charge+jnrD+0);
861             vdwjidx0A        = 2*vdwtype[jnrA+0];
862             vdwjidx0B        = 2*vdwtype[jnrB+0];
863             vdwjidx0C        = 2*vdwtype[jnrC+0];
864             vdwjidx0D        = 2*vdwtype[jnrD+0];
865
866             fjx0             = _mm_setzero_ps();
867             fjy0             = _mm_setzero_ps();
868             fjz0             = _mm_setzero_ps();
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             r00              = _mm_mul_ps(rsq00,rinv00);
875
876             /* Compute parameters for interactions between i and j atoms */
877             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
878                                          vdwparam+vdwioffset0+vdwjidx0B,
879                                          vdwparam+vdwioffset0+vdwjidx0C,
880                                          vdwparam+vdwioffset0+vdwjidx0D,
881                                          &c6_00,&c12_00);
882
883             /* Calculate table index by multiplying r with table scale and truncate to integer */
884             rt               = _mm_mul_ps(r00,vftabscale);
885             vfitab           = _mm_cvttps_epi32(rt);
886             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
887             vfitab           = _mm_slli_epi32(vfitab,3);
888
889             /* CUBIC SPLINE TABLE DISPERSION */
890             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
891             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
892             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
893             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
894             _MM_TRANSPOSE4_PS(Y,F,G,H);
895             Heps             = _mm_mul_ps(vfeps,H);
896             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
897             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
898             fvdw6            = _mm_mul_ps(c6_00,FF);
899
900             /* CUBIC SPLINE TABLE REPULSION */
901             vfitab           = _mm_add_epi32(vfitab,ifour);
902             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
903             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
904             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
905             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
906             _MM_TRANSPOSE4_PS(Y,F,G,H);
907             Heps             = _mm_mul_ps(vfeps,H);
908             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
909             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
910             fvdw12           = _mm_mul_ps(c12_00,FF);
911             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
912
913             fscal            = fvdw;
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm_mul_ps(fscal,dx00);
917             ty               = _mm_mul_ps(fscal,dy00);
918             tz               = _mm_mul_ps(fscal,dz00);
919
920             /* Update vectorial force */
921             fix0             = _mm_add_ps(fix0,tx);
922             fiy0             = _mm_add_ps(fiy0,ty);
923             fiz0             = _mm_add_ps(fiz0,tz);
924
925             fjx0             = _mm_add_ps(fjx0,tx);
926             fjy0             = _mm_add_ps(fjy0,ty);
927             fjz0             = _mm_add_ps(fjz0,tz);
928             
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq10             = _mm_mul_ps(iq1,jq0);
935
936             /* COULOMB ELECTROSTATICS */
937             velec            = _mm_mul_ps(qq10,rinv10);
938             felec            = _mm_mul_ps(velec,rinvsq10);
939
940             fscal            = felec;
941
942             /* Calculate temporary vectorial force */
943             tx               = _mm_mul_ps(fscal,dx10);
944             ty               = _mm_mul_ps(fscal,dy10);
945             tz               = _mm_mul_ps(fscal,dz10);
946
947             /* Update vectorial force */
948             fix1             = _mm_add_ps(fix1,tx);
949             fiy1             = _mm_add_ps(fiy1,ty);
950             fiz1             = _mm_add_ps(fiz1,tz);
951
952             fjx0             = _mm_add_ps(fjx0,tx);
953             fjy0             = _mm_add_ps(fjy0,ty);
954             fjz0             = _mm_add_ps(fjz0,tz);
955             
956             /**************************
957              * CALCULATE INTERACTIONS *
958              **************************/
959
960             /* Compute parameters for interactions between i and j atoms */
961             qq20             = _mm_mul_ps(iq2,jq0);
962
963             /* COULOMB ELECTROSTATICS */
964             velec            = _mm_mul_ps(qq20,rinv20);
965             felec            = _mm_mul_ps(velec,rinvsq20);
966
967             fscal            = felec;
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_ps(fscal,dx20);
971             ty               = _mm_mul_ps(fscal,dy20);
972             tz               = _mm_mul_ps(fscal,dz20);
973
974             /* Update vectorial force */
975             fix2             = _mm_add_ps(fix2,tx);
976             fiy2             = _mm_add_ps(fiy2,ty);
977             fiz2             = _mm_add_ps(fiz2,tz);
978
979             fjx0             = _mm_add_ps(fjx0,tx);
980             fjy0             = _mm_add_ps(fjy0,ty);
981             fjz0             = _mm_add_ps(fjz0,tz);
982             
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq30             = _mm_mul_ps(iq3,jq0);
989
990             /* COULOMB ELECTROSTATICS */
991             velec            = _mm_mul_ps(qq30,rinv30);
992             felec            = _mm_mul_ps(velec,rinvsq30);
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm_mul_ps(fscal,dx30);
998             ty               = _mm_mul_ps(fscal,dy30);
999             tz               = _mm_mul_ps(fscal,dz30);
1000
1001             /* Update vectorial force */
1002             fix3             = _mm_add_ps(fix3,tx);
1003             fiy3             = _mm_add_ps(fiy3,ty);
1004             fiz3             = _mm_add_ps(fiz3,tz);
1005
1006             fjx0             = _mm_add_ps(fjx0,tx);
1007             fjy0             = _mm_add_ps(fjy0,ty);
1008             fjz0             = _mm_add_ps(fjz0,tz);
1009             
1010             fjptrA             = f+j_coord_offsetA;
1011             fjptrB             = f+j_coord_offsetB;
1012             fjptrC             = f+j_coord_offsetC;
1013             fjptrD             = f+j_coord_offsetD;
1014
1015             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1016
1017             /* Inner loop uses 129 flops */
1018         }
1019
1020         if(jidx<j_index_end)
1021         {
1022
1023             /* Get j neighbor index, and coordinate index */
1024             jnrlistA         = jjnr[jidx];
1025             jnrlistB         = jjnr[jidx+1];
1026             jnrlistC         = jjnr[jidx+2];
1027             jnrlistD         = jjnr[jidx+3];
1028             /* Sign of each element will be negative for non-real atoms.
1029              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1030              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1031              */
1032             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1033             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1034             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1035             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1036             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1037             j_coord_offsetA  = DIM*jnrA;
1038             j_coord_offsetB  = DIM*jnrB;
1039             j_coord_offsetC  = DIM*jnrC;
1040             j_coord_offsetD  = DIM*jnrD;
1041
1042             /* load j atom coordinates */
1043             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1044                                               x+j_coord_offsetC,x+j_coord_offsetD,
1045                                               &jx0,&jy0,&jz0);
1046
1047             /* Calculate displacement vector */
1048             dx00             = _mm_sub_ps(ix0,jx0);
1049             dy00             = _mm_sub_ps(iy0,jy0);
1050             dz00             = _mm_sub_ps(iz0,jz0);
1051             dx10             = _mm_sub_ps(ix1,jx0);
1052             dy10             = _mm_sub_ps(iy1,jy0);
1053             dz10             = _mm_sub_ps(iz1,jz0);
1054             dx20             = _mm_sub_ps(ix2,jx0);
1055             dy20             = _mm_sub_ps(iy2,jy0);
1056             dz20             = _mm_sub_ps(iz2,jz0);
1057             dx30             = _mm_sub_ps(ix3,jx0);
1058             dy30             = _mm_sub_ps(iy3,jy0);
1059             dz30             = _mm_sub_ps(iz3,jz0);
1060
1061             /* Calculate squared distance and things based on it */
1062             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1063             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1064             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1065             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1066
1067             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1068             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1069             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1070             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1071
1072             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1073             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1074             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1075
1076             /* Load parameters for j particles */
1077             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1078                                                               charge+jnrC+0,charge+jnrD+0);
1079             vdwjidx0A        = 2*vdwtype[jnrA+0];
1080             vdwjidx0B        = 2*vdwtype[jnrB+0];
1081             vdwjidx0C        = 2*vdwtype[jnrC+0];
1082             vdwjidx0D        = 2*vdwtype[jnrD+0];
1083
1084             fjx0             = _mm_setzero_ps();
1085             fjy0             = _mm_setzero_ps();
1086             fjz0             = _mm_setzero_ps();
1087
1088             /**************************
1089              * CALCULATE INTERACTIONS *
1090              **************************/
1091
1092             r00              = _mm_mul_ps(rsq00,rinv00);
1093             r00              = _mm_andnot_ps(dummy_mask,r00);
1094
1095             /* Compute parameters for interactions between i and j atoms */
1096             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1097                                          vdwparam+vdwioffset0+vdwjidx0B,
1098                                          vdwparam+vdwioffset0+vdwjidx0C,
1099                                          vdwparam+vdwioffset0+vdwjidx0D,
1100                                          &c6_00,&c12_00);
1101
1102             /* Calculate table index by multiplying r with table scale and truncate to integer */
1103             rt               = _mm_mul_ps(r00,vftabscale);
1104             vfitab           = _mm_cvttps_epi32(rt);
1105             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1106             vfitab           = _mm_slli_epi32(vfitab,3);
1107
1108             /* CUBIC SPLINE TABLE DISPERSION */
1109             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1110             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1111             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1112             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1113             _MM_TRANSPOSE4_PS(Y,F,G,H);
1114             Heps             = _mm_mul_ps(vfeps,H);
1115             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1116             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1117             fvdw6            = _mm_mul_ps(c6_00,FF);
1118
1119             /* CUBIC SPLINE TABLE REPULSION */
1120             vfitab           = _mm_add_epi32(vfitab,ifour);
1121             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1122             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1123             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1124             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1125             _MM_TRANSPOSE4_PS(Y,F,G,H);
1126             Heps             = _mm_mul_ps(vfeps,H);
1127             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1128             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1129             fvdw12           = _mm_mul_ps(c12_00,FF);
1130             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1131
1132             fscal            = fvdw;
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136             /* Calculate temporary vectorial force */
1137             tx               = _mm_mul_ps(fscal,dx00);
1138             ty               = _mm_mul_ps(fscal,dy00);
1139             tz               = _mm_mul_ps(fscal,dz00);
1140
1141             /* Update vectorial force */
1142             fix0             = _mm_add_ps(fix0,tx);
1143             fiy0             = _mm_add_ps(fiy0,ty);
1144             fiz0             = _mm_add_ps(fiz0,tz);
1145
1146             fjx0             = _mm_add_ps(fjx0,tx);
1147             fjy0             = _mm_add_ps(fjy0,ty);
1148             fjz0             = _mm_add_ps(fjz0,tz);
1149             
1150             /**************************
1151              * CALCULATE INTERACTIONS *
1152              **************************/
1153
1154             /* Compute parameters for interactions between i and j atoms */
1155             qq10             = _mm_mul_ps(iq1,jq0);
1156
1157             /* COULOMB ELECTROSTATICS */
1158             velec            = _mm_mul_ps(qq10,rinv10);
1159             felec            = _mm_mul_ps(velec,rinvsq10);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_ps(fscal,dx10);
1167             ty               = _mm_mul_ps(fscal,dy10);
1168             tz               = _mm_mul_ps(fscal,dz10);
1169
1170             /* Update vectorial force */
1171             fix1             = _mm_add_ps(fix1,tx);
1172             fiy1             = _mm_add_ps(fiy1,ty);
1173             fiz1             = _mm_add_ps(fiz1,tz);
1174
1175             fjx0             = _mm_add_ps(fjx0,tx);
1176             fjy0             = _mm_add_ps(fjy0,ty);
1177             fjz0             = _mm_add_ps(fjz0,tz);
1178             
1179             /**************************
1180              * CALCULATE INTERACTIONS *
1181              **************************/
1182
1183             /* Compute parameters for interactions between i and j atoms */
1184             qq20             = _mm_mul_ps(iq2,jq0);
1185
1186             /* COULOMB ELECTROSTATICS */
1187             velec            = _mm_mul_ps(qq20,rinv20);
1188             felec            = _mm_mul_ps(velec,rinvsq20);
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1193
1194             /* Calculate temporary vectorial force */
1195             tx               = _mm_mul_ps(fscal,dx20);
1196             ty               = _mm_mul_ps(fscal,dy20);
1197             tz               = _mm_mul_ps(fscal,dz20);
1198
1199             /* Update vectorial force */
1200             fix2             = _mm_add_ps(fix2,tx);
1201             fiy2             = _mm_add_ps(fiy2,ty);
1202             fiz2             = _mm_add_ps(fiz2,tz);
1203
1204             fjx0             = _mm_add_ps(fjx0,tx);
1205             fjy0             = _mm_add_ps(fjy0,ty);
1206             fjz0             = _mm_add_ps(fjz0,tz);
1207             
1208             /**************************
1209              * CALCULATE INTERACTIONS *
1210              **************************/
1211
1212             /* Compute parameters for interactions between i and j atoms */
1213             qq30             = _mm_mul_ps(iq3,jq0);
1214
1215             /* COULOMB ELECTROSTATICS */
1216             velec            = _mm_mul_ps(qq30,rinv30);
1217             felec            = _mm_mul_ps(velec,rinvsq30);
1218
1219             fscal            = felec;
1220
1221             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm_mul_ps(fscal,dx30);
1225             ty               = _mm_mul_ps(fscal,dy30);
1226             tz               = _mm_mul_ps(fscal,dz30);
1227
1228             /* Update vectorial force */
1229             fix3             = _mm_add_ps(fix3,tx);
1230             fiy3             = _mm_add_ps(fiy3,ty);
1231             fiz3             = _mm_add_ps(fiz3,tz);
1232
1233             fjx0             = _mm_add_ps(fjx0,tx);
1234             fjy0             = _mm_add_ps(fjy0,ty);
1235             fjz0             = _mm_add_ps(fjz0,tz);
1236             
1237             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1238             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1239             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1240             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1241
1242             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1243
1244             /* Inner loop uses 130 flops */
1245         }
1246
1247         /* End of innermost loop */
1248
1249         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1250                                               f+i_coord_offset,fshift+i_shift_offset);
1251
1252         /* Increment number of inner iterations */
1253         inneriter                  += j_index_end - j_index_start;
1254
1255         /* Outer loop uses 24 flops */
1256     }
1257
1258     /* Increment number of outer iterations */
1259     outeriter        += nri;
1260
1261     /* Update outer/inner flops */
1262
1263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1264 }