Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }  
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171         
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224
225             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
229                                                               charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm_setzero_ps();
236             fjy0             = _mm_setzero_ps();
237             fjz0             = _mm_setzero_ps();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_ps(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_ps(iq0,jq0);
247             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,
249                                          vdwparam+vdwioffset0+vdwjidx0C,
250                                          vdwparam+vdwioffset0+vdwjidx0D,
251                                          &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm_mul_ps(r00,vftabscale);
255             vfitab           = _mm_cvttps_epi32(rt);
256             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
257             vfitab           = _mm_slli_epi32(vfitab,2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Heps             = _mm_mul_ps(vfeps,H);
266             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
267             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
268             velec            = _mm_mul_ps(qq00,VV);
269             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
270             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
276             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
277             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
278             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_ps(velecsum,velec);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm_mul_ps(fscal,dx00);
288             ty               = _mm_mul_ps(fscal,dy00);
289             tz               = _mm_mul_ps(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm_add_ps(fix0,tx);
293             fiy0             = _mm_add_ps(fiy0,ty);
294             fiz0             = _mm_add_ps(fiz0,tz);
295
296             fjx0             = _mm_add_ps(fjx0,tx);
297             fjy0             = _mm_add_ps(fjy0,ty);
298             fjz0             = _mm_add_ps(fjz0,tz);
299             
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _mm_mul_ps(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_ps(iq1,jq0);
308
309             /* Calculate table index by multiplying r with table scale and truncate to integer */
310             rt               = _mm_mul_ps(r10,vftabscale);
311             vfitab           = _mm_cvttps_epi32(rt);
312             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
313             vfitab           = _mm_slli_epi32(vfitab,2);
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
317             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
318             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
319             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
320             _MM_TRANSPOSE4_PS(Y,F,G,H);
321             Heps             = _mm_mul_ps(vfeps,H);
322             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
323             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
324             velec            = _mm_mul_ps(qq10,VV);
325             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
326             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_ps(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_ps(fscal,dx10);
335             ty               = _mm_mul_ps(fscal,dy10);
336             tz               = _mm_mul_ps(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_ps(fix1,tx);
340             fiy1             = _mm_add_ps(fiy1,ty);
341             fiz1             = _mm_add_ps(fiz1,tz);
342
343             fjx0             = _mm_add_ps(fjx0,tx);
344             fjy0             = _mm_add_ps(fjy0,ty);
345             fjz0             = _mm_add_ps(fjz0,tz);
346             
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm_mul_ps(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_ps(iq2,jq0);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm_mul_ps(r20,vftabscale);
358             vfitab           = _mm_cvttps_epi32(rt);
359             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
360             vfitab           = _mm_slli_epi32(vfitab,2);
361
362             /* CUBIC SPLINE TABLE ELECTROSTATICS */
363             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
364             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
365             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
366             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
367             _MM_TRANSPOSE4_PS(Y,F,G,H);
368             Heps             = _mm_mul_ps(vfeps,H);
369             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
370             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
371             velec            = _mm_mul_ps(qq20,VV);
372             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
373             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velecsum         = _mm_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm_mul_ps(fscal,dx20);
382             ty               = _mm_mul_ps(fscal,dy20);
383             tz               = _mm_mul_ps(fscal,dz20);
384
385             /* Update vectorial force */
386             fix2             = _mm_add_ps(fix2,tx);
387             fiy2             = _mm_add_ps(fiy2,ty);
388             fiz2             = _mm_add_ps(fiz2,tz);
389
390             fjx0             = _mm_add_ps(fjx0,tx);
391             fjy0             = _mm_add_ps(fjy0,ty);
392             fjz0             = _mm_add_ps(fjz0,tz);
393             
394             fjptrA             = f+j_coord_offsetA;
395             fjptrB             = f+j_coord_offsetB;
396             fjptrC             = f+j_coord_offsetC;
397             fjptrD             = f+j_coord_offsetD;
398
399             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
400
401             /* Inner loop uses 142 flops */
402         }
403
404         if(jidx<j_index_end)
405         {
406
407             /* Get j neighbor index, and coordinate index */
408             jnrlistA         = jjnr[jidx];
409             jnrlistB         = jjnr[jidx+1];
410             jnrlistC         = jjnr[jidx+2];
411             jnrlistD         = jjnr[jidx+3];
412             /* Sign of each element will be negative for non-real atoms.
413              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
414              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
415              */
416             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
417             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
418             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
419             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
420             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
421             j_coord_offsetA  = DIM*jnrA;
422             j_coord_offsetB  = DIM*jnrB;
423             j_coord_offsetC  = DIM*jnrC;
424             j_coord_offsetD  = DIM*jnrD;
425
426             /* load j atom coordinates */
427             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
428                                               x+j_coord_offsetC,x+j_coord_offsetD,
429                                               &jx0,&jy0,&jz0);
430
431             /* Calculate displacement vector */
432             dx00             = _mm_sub_ps(ix0,jx0);
433             dy00             = _mm_sub_ps(iy0,jy0);
434             dz00             = _mm_sub_ps(iz0,jz0);
435             dx10             = _mm_sub_ps(ix1,jx0);
436             dy10             = _mm_sub_ps(iy1,jy0);
437             dz10             = _mm_sub_ps(iz1,jz0);
438             dx20             = _mm_sub_ps(ix2,jx0);
439             dy20             = _mm_sub_ps(iy2,jy0);
440             dz20             = _mm_sub_ps(iz2,jz0);
441
442             /* Calculate squared distance and things based on it */
443             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
444             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
445             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
446
447             rinv00           = gmx_mm_invsqrt_ps(rsq00);
448             rinv10           = gmx_mm_invsqrt_ps(rsq10);
449             rinv20           = gmx_mm_invsqrt_ps(rsq20);
450
451             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
452
453             /* Load parameters for j particles */
454             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
455                                                               charge+jnrC+0,charge+jnrD+0);
456             vdwjidx0A        = 2*vdwtype[jnrA+0];
457             vdwjidx0B        = 2*vdwtype[jnrB+0];
458             vdwjidx0C        = 2*vdwtype[jnrC+0];
459             vdwjidx0D        = 2*vdwtype[jnrD+0];
460
461             fjx0             = _mm_setzero_ps();
462             fjy0             = _mm_setzero_ps();
463             fjz0             = _mm_setzero_ps();
464
465             /**************************
466              * CALCULATE INTERACTIONS *
467              **************************/
468
469             r00              = _mm_mul_ps(rsq00,rinv00);
470             r00              = _mm_andnot_ps(dummy_mask,r00);
471
472             /* Compute parameters for interactions between i and j atoms */
473             qq00             = _mm_mul_ps(iq0,jq0);
474             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
475                                          vdwparam+vdwioffset0+vdwjidx0B,
476                                          vdwparam+vdwioffset0+vdwjidx0C,
477                                          vdwparam+vdwioffset0+vdwjidx0D,
478                                          &c6_00,&c12_00);
479
480             /* Calculate table index by multiplying r with table scale and truncate to integer */
481             rt               = _mm_mul_ps(r00,vftabscale);
482             vfitab           = _mm_cvttps_epi32(rt);
483             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
484             vfitab           = _mm_slli_epi32(vfitab,2);
485
486             /* CUBIC SPLINE TABLE ELECTROSTATICS */
487             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
488             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
489             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
490             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
491             _MM_TRANSPOSE4_PS(Y,F,G,H);
492             Heps             = _mm_mul_ps(vfeps,H);
493             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
494             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
495             velec            = _mm_mul_ps(qq00,VV);
496             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
497             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
498
499             /* LENNARD-JONES DISPERSION/REPULSION */
500
501             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
502             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
503             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
504             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
505             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
506
507             /* Update potential sum for this i atom from the interaction with this j atom. */
508             velec            = _mm_andnot_ps(dummy_mask,velec);
509             velecsum         = _mm_add_ps(velecsum,velec);
510             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
511             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
512
513             fscal            = _mm_add_ps(felec,fvdw);
514
515             fscal            = _mm_andnot_ps(dummy_mask,fscal);
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_ps(fscal,dx00);
519             ty               = _mm_mul_ps(fscal,dy00);
520             tz               = _mm_mul_ps(fscal,dz00);
521
522             /* Update vectorial force */
523             fix0             = _mm_add_ps(fix0,tx);
524             fiy0             = _mm_add_ps(fiy0,ty);
525             fiz0             = _mm_add_ps(fiz0,tz);
526
527             fjx0             = _mm_add_ps(fjx0,tx);
528             fjy0             = _mm_add_ps(fjy0,ty);
529             fjz0             = _mm_add_ps(fjz0,tz);
530             
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r10              = _mm_mul_ps(rsq10,rinv10);
536             r10              = _mm_andnot_ps(dummy_mask,r10);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq10             = _mm_mul_ps(iq1,jq0);
540
541             /* Calculate table index by multiplying r with table scale and truncate to integer */
542             rt               = _mm_mul_ps(r10,vftabscale);
543             vfitab           = _mm_cvttps_epi32(rt);
544             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
545             vfitab           = _mm_slli_epi32(vfitab,2);
546
547             /* CUBIC SPLINE TABLE ELECTROSTATICS */
548             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
549             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
550             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
551             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
552             _MM_TRANSPOSE4_PS(Y,F,G,H);
553             Heps             = _mm_mul_ps(vfeps,H);
554             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
555             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
556             velec            = _mm_mul_ps(qq10,VV);
557             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
558             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm_andnot_ps(dummy_mask,velec);
562             velecsum         = _mm_add_ps(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm_andnot_ps(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm_mul_ps(fscal,dx10);
570             ty               = _mm_mul_ps(fscal,dy10);
571             tz               = _mm_mul_ps(fscal,dz10);
572
573             /* Update vectorial force */
574             fix1             = _mm_add_ps(fix1,tx);
575             fiy1             = _mm_add_ps(fiy1,ty);
576             fiz1             = _mm_add_ps(fiz1,tz);
577
578             fjx0             = _mm_add_ps(fjx0,tx);
579             fjy0             = _mm_add_ps(fjy0,ty);
580             fjz0             = _mm_add_ps(fjz0,tz);
581             
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             r20              = _mm_mul_ps(rsq20,rinv20);
587             r20              = _mm_andnot_ps(dummy_mask,r20);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq20             = _mm_mul_ps(iq2,jq0);
591
592             /* Calculate table index by multiplying r with table scale and truncate to integer */
593             rt               = _mm_mul_ps(r20,vftabscale);
594             vfitab           = _mm_cvttps_epi32(rt);
595             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
596             vfitab           = _mm_slli_epi32(vfitab,2);
597
598             /* CUBIC SPLINE TABLE ELECTROSTATICS */
599             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
600             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
601             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
602             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
603             _MM_TRANSPOSE4_PS(Y,F,G,H);
604             Heps             = _mm_mul_ps(vfeps,H);
605             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
606             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
607             velec            = _mm_mul_ps(qq20,VV);
608             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
609             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
610
611             /* Update potential sum for this i atom from the interaction with this j atom. */
612             velec            = _mm_andnot_ps(dummy_mask,velec);
613             velecsum         = _mm_add_ps(velecsum,velec);
614
615             fscal            = felec;
616
617             fscal            = _mm_andnot_ps(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm_mul_ps(fscal,dx20);
621             ty               = _mm_mul_ps(fscal,dy20);
622             tz               = _mm_mul_ps(fscal,dz20);
623
624             /* Update vectorial force */
625             fix2             = _mm_add_ps(fix2,tx);
626             fiy2             = _mm_add_ps(fiy2,ty);
627             fiz2             = _mm_add_ps(fiz2,tz);
628
629             fjx0             = _mm_add_ps(fjx0,tx);
630             fjy0             = _mm_add_ps(fjy0,ty);
631             fjz0             = _mm_add_ps(fjz0,tz);
632             
633             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
634             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
635             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
636             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
637
638             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
639
640             /* Inner loop uses 145 flops */
641         }
642
643         /* End of innermost loop */
644
645         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
646                                               f+i_coord_offset,fshift+i_shift_offset);
647
648         ggid                        = gid[iidx];
649         /* Update potential energies */
650         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
651         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
652
653         /* Increment number of inner iterations */
654         inneriter                  += j_index_end - j_index_start;
655
656         /* Outer loop uses 20 flops */
657     }
658
659     /* Increment number of outer iterations */
660     outeriter        += nri;
661
662     /* Update outer/inner flops */
663
664     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
665 }
666 /*
667  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
668  * Electrostatics interaction: CubicSplineTable
669  * VdW interaction:            LennardJones
670  * Geometry:                   Water3-Particle
671  * Calculate force/pot:        Force
672  */
673 void
674 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
675                     (t_nblist                    * gmx_restrict       nlist,
676                      rvec                        * gmx_restrict          xx,
677                      rvec                        * gmx_restrict          ff,
678                      t_forcerec                  * gmx_restrict          fr,
679                      t_mdatoms                   * gmx_restrict     mdatoms,
680                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
681                      t_nrnb                      * gmx_restrict        nrnb)
682 {
683     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
684      * just 0 for non-waters.
685      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
686      * jnr indices corresponding to data put in the four positions in the SIMD register.
687      */
688     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
689     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
690     int              jnrA,jnrB,jnrC,jnrD;
691     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
692     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
693     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
694     real             rcutoff_scalar;
695     real             *shiftvec,*fshift,*x,*f;
696     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
697     real             scratch[4*DIM];
698     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
699     int              vdwioffset0;
700     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
701     int              vdwioffset1;
702     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
703     int              vdwioffset2;
704     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
705     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
706     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
707     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
708     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
709     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
710     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
711     real             *charge;
712     int              nvdwtype;
713     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
714     int              *vdwtype;
715     real             *vdwparam;
716     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
717     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
718     __m128i          vfitab;
719     __m128i          ifour       = _mm_set1_epi32(4);
720     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
721     real             *vftab;
722     __m128           dummy_mask,cutoff_mask;
723     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
724     __m128           one     = _mm_set1_ps(1.0);
725     __m128           two     = _mm_set1_ps(2.0);
726     x                = xx[0];
727     f                = ff[0];
728
729     nri              = nlist->nri;
730     iinr             = nlist->iinr;
731     jindex           = nlist->jindex;
732     jjnr             = nlist->jjnr;
733     shiftidx         = nlist->shift;
734     gid              = nlist->gid;
735     shiftvec         = fr->shift_vec[0];
736     fshift           = fr->fshift[0];
737     facel            = _mm_set1_ps(fr->epsfac);
738     charge           = mdatoms->chargeA;
739     nvdwtype         = fr->ntype;
740     vdwparam         = fr->nbfp;
741     vdwtype          = mdatoms->typeA;
742
743     vftab            = kernel_data->table_elec->data;
744     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
745
746     /* Setup water-specific parameters */
747     inr              = nlist->iinr[0];
748     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
749     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
750     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
751     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
752
753     /* Avoid stupid compiler warnings */
754     jnrA = jnrB = jnrC = jnrD = 0;
755     j_coord_offsetA = 0;
756     j_coord_offsetB = 0;
757     j_coord_offsetC = 0;
758     j_coord_offsetD = 0;
759
760     outeriter        = 0;
761     inneriter        = 0;
762
763     for(iidx=0;iidx<4*DIM;iidx++)
764     {
765         scratch[iidx] = 0.0;
766     }  
767
768     /* Start outer loop over neighborlists */
769     for(iidx=0; iidx<nri; iidx++)
770     {
771         /* Load shift vector for this list */
772         i_shift_offset   = DIM*shiftidx[iidx];
773
774         /* Load limits for loop over neighbors */
775         j_index_start    = jindex[iidx];
776         j_index_end      = jindex[iidx+1];
777
778         /* Get outer coordinate index */
779         inr              = iinr[iidx];
780         i_coord_offset   = DIM*inr;
781
782         /* Load i particle coords and add shift vector */
783         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
784                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
785         
786         fix0             = _mm_setzero_ps();
787         fiy0             = _mm_setzero_ps();
788         fiz0             = _mm_setzero_ps();
789         fix1             = _mm_setzero_ps();
790         fiy1             = _mm_setzero_ps();
791         fiz1             = _mm_setzero_ps();
792         fix2             = _mm_setzero_ps();
793         fiy2             = _mm_setzero_ps();
794         fiz2             = _mm_setzero_ps();
795
796         /* Start inner kernel loop */
797         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrA             = jjnr[jidx];
802             jnrB             = jjnr[jidx+1];
803             jnrC             = jjnr[jidx+2];
804             jnrD             = jjnr[jidx+3];
805             j_coord_offsetA  = DIM*jnrA;
806             j_coord_offsetB  = DIM*jnrB;
807             j_coord_offsetC  = DIM*jnrC;
808             j_coord_offsetD  = DIM*jnrD;
809
810             /* load j atom coordinates */
811             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
812                                               x+j_coord_offsetC,x+j_coord_offsetD,
813                                               &jx0,&jy0,&jz0);
814
815             /* Calculate displacement vector */
816             dx00             = _mm_sub_ps(ix0,jx0);
817             dy00             = _mm_sub_ps(iy0,jy0);
818             dz00             = _mm_sub_ps(iz0,jz0);
819             dx10             = _mm_sub_ps(ix1,jx0);
820             dy10             = _mm_sub_ps(iy1,jy0);
821             dz10             = _mm_sub_ps(iz1,jz0);
822             dx20             = _mm_sub_ps(ix2,jx0);
823             dy20             = _mm_sub_ps(iy2,jy0);
824             dz20             = _mm_sub_ps(iz2,jz0);
825
826             /* Calculate squared distance and things based on it */
827             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
828             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
829             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
830
831             rinv00           = gmx_mm_invsqrt_ps(rsq00);
832             rinv10           = gmx_mm_invsqrt_ps(rsq10);
833             rinv20           = gmx_mm_invsqrt_ps(rsq20);
834
835             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
836
837             /* Load parameters for j particles */
838             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
839                                                               charge+jnrC+0,charge+jnrD+0);
840             vdwjidx0A        = 2*vdwtype[jnrA+0];
841             vdwjidx0B        = 2*vdwtype[jnrB+0];
842             vdwjidx0C        = 2*vdwtype[jnrC+0];
843             vdwjidx0D        = 2*vdwtype[jnrD+0];
844
845             fjx0             = _mm_setzero_ps();
846             fjy0             = _mm_setzero_ps();
847             fjz0             = _mm_setzero_ps();
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r00              = _mm_mul_ps(rsq00,rinv00);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq00             = _mm_mul_ps(iq0,jq0);
857             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
858                                          vdwparam+vdwioffset0+vdwjidx0B,
859                                          vdwparam+vdwioffset0+vdwjidx0C,
860                                          vdwparam+vdwioffset0+vdwjidx0D,
861                                          &c6_00,&c12_00);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm_mul_ps(r00,vftabscale);
865             vfitab           = _mm_cvttps_epi32(rt);
866             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
867             vfitab           = _mm_slli_epi32(vfitab,2);
868
869             /* CUBIC SPLINE TABLE ELECTROSTATICS */
870             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
871             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
872             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
873             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
874             _MM_TRANSPOSE4_PS(Y,F,G,H);
875             Heps             = _mm_mul_ps(vfeps,H);
876             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
877             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
878             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
879
880             /* LENNARD-JONES DISPERSION/REPULSION */
881
882             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
883             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
884
885             fscal            = _mm_add_ps(felec,fvdw);
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_ps(fscal,dx00);
889             ty               = _mm_mul_ps(fscal,dy00);
890             tz               = _mm_mul_ps(fscal,dz00);
891
892             /* Update vectorial force */
893             fix0             = _mm_add_ps(fix0,tx);
894             fiy0             = _mm_add_ps(fiy0,ty);
895             fiz0             = _mm_add_ps(fiz0,tz);
896
897             fjx0             = _mm_add_ps(fjx0,tx);
898             fjy0             = _mm_add_ps(fjy0,ty);
899             fjz0             = _mm_add_ps(fjz0,tz);
900             
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r10              = _mm_mul_ps(rsq10,rinv10);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq10             = _mm_mul_ps(iq1,jq0);
909
910             /* Calculate table index by multiplying r with table scale and truncate to integer */
911             rt               = _mm_mul_ps(r10,vftabscale);
912             vfitab           = _mm_cvttps_epi32(rt);
913             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
914             vfitab           = _mm_slli_epi32(vfitab,2);
915
916             /* CUBIC SPLINE TABLE ELECTROSTATICS */
917             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
918             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
919             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
920             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
921             _MM_TRANSPOSE4_PS(Y,F,G,H);
922             Heps             = _mm_mul_ps(vfeps,H);
923             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
924             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
925             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
926
927             fscal            = felec;
928
929             /* Calculate temporary vectorial force */
930             tx               = _mm_mul_ps(fscal,dx10);
931             ty               = _mm_mul_ps(fscal,dy10);
932             tz               = _mm_mul_ps(fscal,dz10);
933
934             /* Update vectorial force */
935             fix1             = _mm_add_ps(fix1,tx);
936             fiy1             = _mm_add_ps(fiy1,ty);
937             fiz1             = _mm_add_ps(fiz1,tz);
938
939             fjx0             = _mm_add_ps(fjx0,tx);
940             fjy0             = _mm_add_ps(fjy0,ty);
941             fjz0             = _mm_add_ps(fjz0,tz);
942             
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r20              = _mm_mul_ps(rsq20,rinv20);
948
949             /* Compute parameters for interactions between i and j atoms */
950             qq20             = _mm_mul_ps(iq2,jq0);
951
952             /* Calculate table index by multiplying r with table scale and truncate to integer */
953             rt               = _mm_mul_ps(r20,vftabscale);
954             vfitab           = _mm_cvttps_epi32(rt);
955             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
956             vfitab           = _mm_slli_epi32(vfitab,2);
957
958             /* CUBIC SPLINE TABLE ELECTROSTATICS */
959             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
960             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
961             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
962             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
963             _MM_TRANSPOSE4_PS(Y,F,G,H);
964             Heps             = _mm_mul_ps(vfeps,H);
965             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
966             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
967             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_ps(fscal,dx20);
973             ty               = _mm_mul_ps(fscal,dy20);
974             tz               = _mm_mul_ps(fscal,dz20);
975
976             /* Update vectorial force */
977             fix2             = _mm_add_ps(fix2,tx);
978             fiy2             = _mm_add_ps(fiy2,ty);
979             fiz2             = _mm_add_ps(fiz2,tz);
980
981             fjx0             = _mm_add_ps(fjx0,tx);
982             fjy0             = _mm_add_ps(fjy0,ty);
983             fjz0             = _mm_add_ps(fjz0,tz);
984             
985             fjptrA             = f+j_coord_offsetA;
986             fjptrB             = f+j_coord_offsetB;
987             fjptrC             = f+j_coord_offsetC;
988             fjptrD             = f+j_coord_offsetD;
989
990             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
991
992             /* Inner loop uses 125 flops */
993         }
994
995         if(jidx<j_index_end)
996         {
997
998             /* Get j neighbor index, and coordinate index */
999             jnrlistA         = jjnr[jidx];
1000             jnrlistB         = jjnr[jidx+1];
1001             jnrlistC         = jjnr[jidx+2];
1002             jnrlistD         = jjnr[jidx+3];
1003             /* Sign of each element will be negative for non-real atoms.
1004              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1005              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1006              */
1007             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1008             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1009             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1010             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1011             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1012             j_coord_offsetA  = DIM*jnrA;
1013             j_coord_offsetB  = DIM*jnrB;
1014             j_coord_offsetC  = DIM*jnrC;
1015             j_coord_offsetD  = DIM*jnrD;
1016
1017             /* load j atom coordinates */
1018             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1019                                               x+j_coord_offsetC,x+j_coord_offsetD,
1020                                               &jx0,&jy0,&jz0);
1021
1022             /* Calculate displacement vector */
1023             dx00             = _mm_sub_ps(ix0,jx0);
1024             dy00             = _mm_sub_ps(iy0,jy0);
1025             dz00             = _mm_sub_ps(iz0,jz0);
1026             dx10             = _mm_sub_ps(ix1,jx0);
1027             dy10             = _mm_sub_ps(iy1,jy0);
1028             dz10             = _mm_sub_ps(iz1,jz0);
1029             dx20             = _mm_sub_ps(ix2,jx0);
1030             dy20             = _mm_sub_ps(iy2,jy0);
1031             dz20             = _mm_sub_ps(iz2,jz0);
1032
1033             /* Calculate squared distance and things based on it */
1034             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1035             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1036             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1037
1038             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1039             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1040             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1041
1042             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1043
1044             /* Load parameters for j particles */
1045             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1046                                                               charge+jnrC+0,charge+jnrD+0);
1047             vdwjidx0A        = 2*vdwtype[jnrA+0];
1048             vdwjidx0B        = 2*vdwtype[jnrB+0];
1049             vdwjidx0C        = 2*vdwtype[jnrC+0];
1050             vdwjidx0D        = 2*vdwtype[jnrD+0];
1051
1052             fjx0             = _mm_setzero_ps();
1053             fjy0             = _mm_setzero_ps();
1054             fjz0             = _mm_setzero_ps();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r00              = _mm_mul_ps(rsq00,rinv00);
1061             r00              = _mm_andnot_ps(dummy_mask,r00);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq00             = _mm_mul_ps(iq0,jq0);
1065             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1066                                          vdwparam+vdwioffset0+vdwjidx0B,
1067                                          vdwparam+vdwioffset0+vdwjidx0C,
1068                                          vdwparam+vdwioffset0+vdwjidx0D,
1069                                          &c6_00,&c12_00);
1070
1071             /* Calculate table index by multiplying r with table scale and truncate to integer */
1072             rt               = _mm_mul_ps(r00,vftabscale);
1073             vfitab           = _mm_cvttps_epi32(rt);
1074             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1075             vfitab           = _mm_slli_epi32(vfitab,2);
1076
1077             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1078             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1079             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1080             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1081             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1082             _MM_TRANSPOSE4_PS(Y,F,G,H);
1083             Heps             = _mm_mul_ps(vfeps,H);
1084             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1085             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1086             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1087
1088             /* LENNARD-JONES DISPERSION/REPULSION */
1089
1090             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1091             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1092
1093             fscal            = _mm_add_ps(felec,fvdw);
1094
1095             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_ps(fscal,dx00);
1099             ty               = _mm_mul_ps(fscal,dy00);
1100             tz               = _mm_mul_ps(fscal,dz00);
1101
1102             /* Update vectorial force */
1103             fix0             = _mm_add_ps(fix0,tx);
1104             fiy0             = _mm_add_ps(fiy0,ty);
1105             fiz0             = _mm_add_ps(fiz0,tz);
1106
1107             fjx0             = _mm_add_ps(fjx0,tx);
1108             fjy0             = _mm_add_ps(fjy0,ty);
1109             fjz0             = _mm_add_ps(fjz0,tz);
1110             
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r10              = _mm_mul_ps(rsq10,rinv10);
1116             r10              = _mm_andnot_ps(dummy_mask,r10);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq10             = _mm_mul_ps(iq1,jq0);
1120
1121             /* Calculate table index by multiplying r with table scale and truncate to integer */
1122             rt               = _mm_mul_ps(r10,vftabscale);
1123             vfitab           = _mm_cvttps_epi32(rt);
1124             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1125             vfitab           = _mm_slli_epi32(vfitab,2);
1126
1127             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1128             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1129             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1130             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1131             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1132             _MM_TRANSPOSE4_PS(Y,F,G,H);
1133             Heps             = _mm_mul_ps(vfeps,H);
1134             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1135             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1136             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = _mm_mul_ps(fscal,dx10);
1144             ty               = _mm_mul_ps(fscal,dy10);
1145             tz               = _mm_mul_ps(fscal,dz10);
1146
1147             /* Update vectorial force */
1148             fix1             = _mm_add_ps(fix1,tx);
1149             fiy1             = _mm_add_ps(fiy1,ty);
1150             fiz1             = _mm_add_ps(fiz1,tz);
1151
1152             fjx0             = _mm_add_ps(fjx0,tx);
1153             fjy0             = _mm_add_ps(fjy0,ty);
1154             fjz0             = _mm_add_ps(fjz0,tz);
1155             
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             r20              = _mm_mul_ps(rsq20,rinv20);
1161             r20              = _mm_andnot_ps(dummy_mask,r20);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq20             = _mm_mul_ps(iq2,jq0);
1165
1166             /* Calculate table index by multiplying r with table scale and truncate to integer */
1167             rt               = _mm_mul_ps(r20,vftabscale);
1168             vfitab           = _mm_cvttps_epi32(rt);
1169             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1170             vfitab           = _mm_slli_epi32(vfitab,2);
1171
1172             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1173             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1174             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1175             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1176             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1177             _MM_TRANSPOSE4_PS(Y,F,G,H);
1178             Heps             = _mm_mul_ps(vfeps,H);
1179             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1180             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1181             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1182
1183             fscal            = felec;
1184
1185             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm_mul_ps(fscal,dx20);
1189             ty               = _mm_mul_ps(fscal,dy20);
1190             tz               = _mm_mul_ps(fscal,dz20);
1191
1192             /* Update vectorial force */
1193             fix2             = _mm_add_ps(fix2,tx);
1194             fiy2             = _mm_add_ps(fiy2,ty);
1195             fiz2             = _mm_add_ps(fiz2,tz);
1196
1197             fjx0             = _mm_add_ps(fjx0,tx);
1198             fjy0             = _mm_add_ps(fjy0,ty);
1199             fjz0             = _mm_add_ps(fjz0,tz);
1200             
1201             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1202             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1203             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1204             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1205
1206             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1207
1208             /* Inner loop uses 128 flops */
1209         }
1210
1211         /* End of innermost loop */
1212
1213         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1214                                               f+i_coord_offset,fshift+i_shift_offset);
1215
1216         /* Increment number of inner iterations */
1217         inneriter                  += j_index_end - j_index_start;
1218
1219         /* Outer loop uses 18 flops */
1220     }
1221
1222     /* Increment number of outer iterations */
1223     outeriter        += nri;
1224
1225     /* Update outer/inner flops */
1226
1227     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1228 }