Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_elec->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
132     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
133     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     for(iidx=0;iidx<4*DIM;iidx++)
147     {
148         scratch[iidx] = 0.0;
149     }  
150
151     /* Start outer loop over neighborlists */
152     for(iidx=0; iidx<nri; iidx++)
153     {
154         /* Load shift vector for this list */
155         i_shift_offset   = DIM*shiftidx[iidx];
156
157         /* Load limits for loop over neighbors */
158         j_index_start    = jindex[iidx];
159         j_index_end      = jindex[iidx+1];
160
161         /* Get outer coordinate index */
162         inr              = iinr[iidx];
163         i_coord_offset   = DIM*inr;
164
165         /* Load i particle coords and add shift vector */
166         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
167                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
168         
169         fix0             = _mm_setzero_ps();
170         fiy0             = _mm_setzero_ps();
171         fiz0             = _mm_setzero_ps();
172         fix1             = _mm_setzero_ps();
173         fiy1             = _mm_setzero_ps();
174         fiz1             = _mm_setzero_ps();
175         fix2             = _mm_setzero_ps();
176         fiy2             = _mm_setzero_ps();
177         fiz2             = _mm_setzero_ps();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206             dx10             = _mm_sub_ps(ix1,jx0);
207             dy10             = _mm_sub_ps(iy1,jy0);
208             dz10             = _mm_sub_ps(iz1,jz0);
209             dx20             = _mm_sub_ps(ix2,jx0);
210             dy20             = _mm_sub_ps(iy2,jy0);
211             dz20             = _mm_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = sse2_invsqrt_f(rsq00);
219             rinv10           = sse2_invsqrt_f(rsq10);
220             rinv20           = sse2_invsqrt_f(rsq20);
221
222             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226                                                               charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             fjx0             = _mm_setzero_ps();
233             fjy0             = _mm_setzero_ps();
234             fjz0             = _mm_setzero_ps();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm_mul_ps(iq0,jq0);
244             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
245                                          vdwparam+vdwioffset0+vdwjidx0B,
246                                          vdwparam+vdwioffset0+vdwjidx0C,
247                                          vdwparam+vdwioffset0+vdwjidx0D,
248                                          &c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm_mul_ps(r00,vftabscale);
252             vfitab           = _mm_cvttps_epi32(rt);
253             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
254             vfitab           = _mm_slli_epi32(vfitab,2);
255
256             /* CUBIC SPLINE TABLE ELECTROSTATICS */
257             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
260             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
261             _MM_TRANSPOSE4_PS(Y,F,G,H);
262             Heps             = _mm_mul_ps(vfeps,H);
263             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
264             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
265             velec            = _mm_mul_ps(qq00,VV);
266             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
267             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
268
269             /* LENNARD-JONES DISPERSION/REPULSION */
270
271             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
272             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
273             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
274             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
275             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             velecsum         = _mm_add_ps(velecsum,velec);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm_mul_ps(fscal,dx00);
285             ty               = _mm_mul_ps(fscal,dy00);
286             tz               = _mm_mul_ps(fscal,dz00);
287
288             /* Update vectorial force */
289             fix0             = _mm_add_ps(fix0,tx);
290             fiy0             = _mm_add_ps(fiy0,ty);
291             fiz0             = _mm_add_ps(fiz0,tz);
292
293             fjx0             = _mm_add_ps(fjx0,tx);
294             fjy0             = _mm_add_ps(fjy0,ty);
295             fjz0             = _mm_add_ps(fjz0,tz);
296             
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _mm_mul_ps(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_ps(iq1,jq0);
305
306             /* Calculate table index by multiplying r with table scale and truncate to integer */
307             rt               = _mm_mul_ps(r10,vftabscale);
308             vfitab           = _mm_cvttps_epi32(rt);
309             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
310             vfitab           = _mm_slli_epi32(vfitab,2);
311
312             /* CUBIC SPLINE TABLE ELECTROSTATICS */
313             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
314             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
315             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
316             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
317             _MM_TRANSPOSE4_PS(Y,F,G,H);
318             Heps             = _mm_mul_ps(vfeps,H);
319             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
320             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
321             velec            = _mm_mul_ps(qq10,VV);
322             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
323             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_ps(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_ps(fscal,dx10);
332             ty               = _mm_mul_ps(fscal,dy10);
333             tz               = _mm_mul_ps(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_ps(fix1,tx);
337             fiy1             = _mm_add_ps(fiy1,ty);
338             fiz1             = _mm_add_ps(fiz1,tz);
339
340             fjx0             = _mm_add_ps(fjx0,tx);
341             fjy0             = _mm_add_ps(fjy0,ty);
342             fjz0             = _mm_add_ps(fjz0,tz);
343             
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_ps(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_ps(iq2,jq0);
352
353             /* Calculate table index by multiplying r with table scale and truncate to integer */
354             rt               = _mm_mul_ps(r20,vftabscale);
355             vfitab           = _mm_cvttps_epi32(rt);
356             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
357             vfitab           = _mm_slli_epi32(vfitab,2);
358
359             /* CUBIC SPLINE TABLE ELECTROSTATICS */
360             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
361             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
362             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
363             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
364             _MM_TRANSPOSE4_PS(Y,F,G,H);
365             Heps             = _mm_mul_ps(vfeps,H);
366             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
367             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
368             velec            = _mm_mul_ps(qq20,VV);
369             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
370             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_ps(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_ps(fscal,dx20);
379             ty               = _mm_mul_ps(fscal,dy20);
380             tz               = _mm_mul_ps(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm_add_ps(fix2,tx);
384             fiy2             = _mm_add_ps(fiy2,ty);
385             fiz2             = _mm_add_ps(fiz2,tz);
386
387             fjx0             = _mm_add_ps(fjx0,tx);
388             fjy0             = _mm_add_ps(fjy0,ty);
389             fjz0             = _mm_add_ps(fjz0,tz);
390             
391             fjptrA             = f+j_coord_offsetA;
392             fjptrB             = f+j_coord_offsetB;
393             fjptrC             = f+j_coord_offsetC;
394             fjptrD             = f+j_coord_offsetD;
395
396             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
397
398             /* Inner loop uses 142 flops */
399         }
400
401         if(jidx<j_index_end)
402         {
403
404             /* Get j neighbor index, and coordinate index */
405             jnrlistA         = jjnr[jidx];
406             jnrlistB         = jjnr[jidx+1];
407             jnrlistC         = jjnr[jidx+2];
408             jnrlistD         = jjnr[jidx+3];
409             /* Sign of each element will be negative for non-real atoms.
410              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
411              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
412              */
413             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
414             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
415             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
416             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
417             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
418             j_coord_offsetA  = DIM*jnrA;
419             j_coord_offsetB  = DIM*jnrB;
420             j_coord_offsetC  = DIM*jnrC;
421             j_coord_offsetD  = DIM*jnrD;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
425                                               x+j_coord_offsetC,x+j_coord_offsetD,
426                                               &jx0,&jy0,&jz0);
427
428             /* Calculate displacement vector */
429             dx00             = _mm_sub_ps(ix0,jx0);
430             dy00             = _mm_sub_ps(iy0,jy0);
431             dz00             = _mm_sub_ps(iz0,jz0);
432             dx10             = _mm_sub_ps(ix1,jx0);
433             dy10             = _mm_sub_ps(iy1,jy0);
434             dz10             = _mm_sub_ps(iz1,jz0);
435             dx20             = _mm_sub_ps(ix2,jx0);
436             dy20             = _mm_sub_ps(iy2,jy0);
437             dz20             = _mm_sub_ps(iz2,jz0);
438
439             /* Calculate squared distance and things based on it */
440             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
441             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
442             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
443
444             rinv00           = sse2_invsqrt_f(rsq00);
445             rinv10           = sse2_invsqrt_f(rsq10);
446             rinv20           = sse2_invsqrt_f(rsq20);
447
448             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
452                                                               charge+jnrC+0,charge+jnrD+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454             vdwjidx0B        = 2*vdwtype[jnrB+0];
455             vdwjidx0C        = 2*vdwtype[jnrC+0];
456             vdwjidx0D        = 2*vdwtype[jnrD+0];
457
458             fjx0             = _mm_setzero_ps();
459             fjy0             = _mm_setzero_ps();
460             fjz0             = _mm_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r00              = _mm_mul_ps(rsq00,rinv00);
467             r00              = _mm_andnot_ps(dummy_mask,r00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_ps(iq0,jq0);
471             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
472                                          vdwparam+vdwioffset0+vdwjidx0B,
473                                          vdwparam+vdwioffset0+vdwjidx0C,
474                                          vdwparam+vdwioffset0+vdwjidx0D,
475                                          &c6_00,&c12_00);
476
477             /* Calculate table index by multiplying r with table scale and truncate to integer */
478             rt               = _mm_mul_ps(r00,vftabscale);
479             vfitab           = _mm_cvttps_epi32(rt);
480             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
481             vfitab           = _mm_slli_epi32(vfitab,2);
482
483             /* CUBIC SPLINE TABLE ELECTROSTATICS */
484             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
485             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
486             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
487             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
488             _MM_TRANSPOSE4_PS(Y,F,G,H);
489             Heps             = _mm_mul_ps(vfeps,H);
490             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
491             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
492             velec            = _mm_mul_ps(qq00,VV);
493             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
494             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
495
496             /* LENNARD-JONES DISPERSION/REPULSION */
497
498             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
499             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
500             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
501             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
502             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
503
504             /* Update potential sum for this i atom from the interaction with this j atom. */
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = _mm_add_ps(felec,fvdw);
511
512             fscal            = _mm_andnot_ps(dummy_mask,fscal);
513
514             /* Calculate temporary vectorial force */
515             tx               = _mm_mul_ps(fscal,dx00);
516             ty               = _mm_mul_ps(fscal,dy00);
517             tz               = _mm_mul_ps(fscal,dz00);
518
519             /* Update vectorial force */
520             fix0             = _mm_add_ps(fix0,tx);
521             fiy0             = _mm_add_ps(fiy0,ty);
522             fiz0             = _mm_add_ps(fiz0,tz);
523
524             fjx0             = _mm_add_ps(fjx0,tx);
525             fjy0             = _mm_add_ps(fjy0,ty);
526             fjz0             = _mm_add_ps(fjz0,tz);
527             
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r10              = _mm_mul_ps(rsq10,rinv10);
533             r10              = _mm_andnot_ps(dummy_mask,r10);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq10             = _mm_mul_ps(iq1,jq0);
537
538             /* Calculate table index by multiplying r with table scale and truncate to integer */
539             rt               = _mm_mul_ps(r10,vftabscale);
540             vfitab           = _mm_cvttps_epi32(rt);
541             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
542             vfitab           = _mm_slli_epi32(vfitab,2);
543
544             /* CUBIC SPLINE TABLE ELECTROSTATICS */
545             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
546             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
547             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
548             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
549             _MM_TRANSPOSE4_PS(Y,F,G,H);
550             Heps             = _mm_mul_ps(vfeps,H);
551             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
552             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
553             velec            = _mm_mul_ps(qq10,VV);
554             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
555             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_andnot_ps(dummy_mask,velec);
559             velecsum         = _mm_add_ps(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_andnot_ps(dummy_mask,fscal);
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_ps(fscal,dx10);
567             ty               = _mm_mul_ps(fscal,dy10);
568             tz               = _mm_mul_ps(fscal,dz10);
569
570             /* Update vectorial force */
571             fix1             = _mm_add_ps(fix1,tx);
572             fiy1             = _mm_add_ps(fiy1,ty);
573             fiz1             = _mm_add_ps(fiz1,tz);
574
575             fjx0             = _mm_add_ps(fjx0,tx);
576             fjy0             = _mm_add_ps(fjy0,ty);
577             fjz0             = _mm_add_ps(fjz0,tz);
578             
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r20              = _mm_mul_ps(rsq20,rinv20);
584             r20              = _mm_andnot_ps(dummy_mask,r20);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq20             = _mm_mul_ps(iq2,jq0);
588
589             /* Calculate table index by multiplying r with table scale and truncate to integer */
590             rt               = _mm_mul_ps(r20,vftabscale);
591             vfitab           = _mm_cvttps_epi32(rt);
592             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
593             vfitab           = _mm_slli_epi32(vfitab,2);
594
595             /* CUBIC SPLINE TABLE ELECTROSTATICS */
596             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
597             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
598             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
599             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
600             _MM_TRANSPOSE4_PS(Y,F,G,H);
601             Heps             = _mm_mul_ps(vfeps,H);
602             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
603             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
604             velec            = _mm_mul_ps(qq20,VV);
605             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
606             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_andnot_ps(dummy_mask,velec);
610             velecsum         = _mm_add_ps(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_ps(fscal,dx20);
618             ty               = _mm_mul_ps(fscal,dy20);
619             tz               = _mm_mul_ps(fscal,dz20);
620
621             /* Update vectorial force */
622             fix2             = _mm_add_ps(fix2,tx);
623             fiy2             = _mm_add_ps(fiy2,ty);
624             fiz2             = _mm_add_ps(fiz2,tz);
625
626             fjx0             = _mm_add_ps(fjx0,tx);
627             fjy0             = _mm_add_ps(fjy0,ty);
628             fjz0             = _mm_add_ps(fjz0,tz);
629             
630             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
631             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
632             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
633             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
634
635             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
636
637             /* Inner loop uses 145 flops */
638         }
639
640         /* End of innermost loop */
641
642         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
643                                               f+i_coord_offset,fshift+i_shift_offset);
644
645         ggid                        = gid[iidx];
646         /* Update potential energies */
647         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
648         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
649
650         /* Increment number of inner iterations */
651         inneriter                  += j_index_end - j_index_start;
652
653         /* Outer loop uses 20 flops */
654     }
655
656     /* Increment number of outer iterations */
657     outeriter        += nri;
658
659     /* Update outer/inner flops */
660
661     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
662 }
663 /*
664  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
665  * Electrostatics interaction: CubicSplineTable
666  * VdW interaction:            LennardJones
667  * Geometry:                   Water3-Particle
668  * Calculate force/pot:        Force
669  */
670 void
671 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
672                     (t_nblist                    * gmx_restrict       nlist,
673                      rvec                        * gmx_restrict          xx,
674                      rvec                        * gmx_restrict          ff,
675                      struct t_forcerec           * gmx_restrict          fr,
676                      t_mdatoms                   * gmx_restrict     mdatoms,
677                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
678                      t_nrnb                      * gmx_restrict        nrnb)
679 {
680     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
681      * just 0 for non-waters.
682      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
683      * jnr indices corresponding to data put in the four positions in the SIMD register.
684      */
685     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
686     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
687     int              jnrA,jnrB,jnrC,jnrD;
688     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
689     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
690     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
691     real             rcutoff_scalar;
692     real             *shiftvec,*fshift,*x,*f;
693     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
694     real             scratch[4*DIM];
695     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
696     int              vdwioffset0;
697     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
698     int              vdwioffset1;
699     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
700     int              vdwioffset2;
701     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
702     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
703     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
704     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
705     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
706     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
707     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
708     real             *charge;
709     int              nvdwtype;
710     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
711     int              *vdwtype;
712     real             *vdwparam;
713     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
714     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
715     __m128i          vfitab;
716     __m128i          ifour       = _mm_set1_epi32(4);
717     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
718     real             *vftab;
719     __m128           dummy_mask,cutoff_mask;
720     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
721     __m128           one     = _mm_set1_ps(1.0);
722     __m128           two     = _mm_set1_ps(2.0);
723     x                = xx[0];
724     f                = ff[0];
725
726     nri              = nlist->nri;
727     iinr             = nlist->iinr;
728     jindex           = nlist->jindex;
729     jjnr             = nlist->jjnr;
730     shiftidx         = nlist->shift;
731     gid              = nlist->gid;
732     shiftvec         = fr->shift_vec[0];
733     fshift           = fr->fshift[0];
734     facel            = _mm_set1_ps(fr->ic->epsfac);
735     charge           = mdatoms->chargeA;
736     nvdwtype         = fr->ntype;
737     vdwparam         = fr->nbfp;
738     vdwtype          = mdatoms->typeA;
739
740     vftab            = kernel_data->table_elec->data;
741     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
742
743     /* Setup water-specific parameters */
744     inr              = nlist->iinr[0];
745     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
746     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
747     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
748     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = jnrC = jnrD = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754     j_coord_offsetC = 0;
755     j_coord_offsetD = 0;
756
757     outeriter        = 0;
758     inneriter        = 0;
759
760     for(iidx=0;iidx<4*DIM;iidx++)
761     {
762         scratch[iidx] = 0.0;
763     }  
764
765     /* Start outer loop over neighborlists */
766     for(iidx=0; iidx<nri; iidx++)
767     {
768         /* Load shift vector for this list */
769         i_shift_offset   = DIM*shiftidx[iidx];
770
771         /* Load limits for loop over neighbors */
772         j_index_start    = jindex[iidx];
773         j_index_end      = jindex[iidx+1];
774
775         /* Get outer coordinate index */
776         inr              = iinr[iidx];
777         i_coord_offset   = DIM*inr;
778
779         /* Load i particle coords and add shift vector */
780         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
781                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
782         
783         fix0             = _mm_setzero_ps();
784         fiy0             = _mm_setzero_ps();
785         fiz0             = _mm_setzero_ps();
786         fix1             = _mm_setzero_ps();
787         fiy1             = _mm_setzero_ps();
788         fiz1             = _mm_setzero_ps();
789         fix2             = _mm_setzero_ps();
790         fiy2             = _mm_setzero_ps();
791         fiz2             = _mm_setzero_ps();
792
793         /* Start inner kernel loop */
794         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
795         {
796
797             /* Get j neighbor index, and coordinate index */
798             jnrA             = jjnr[jidx];
799             jnrB             = jjnr[jidx+1];
800             jnrC             = jjnr[jidx+2];
801             jnrD             = jjnr[jidx+3];
802             j_coord_offsetA  = DIM*jnrA;
803             j_coord_offsetB  = DIM*jnrB;
804             j_coord_offsetC  = DIM*jnrC;
805             j_coord_offsetD  = DIM*jnrD;
806
807             /* load j atom coordinates */
808             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
809                                               x+j_coord_offsetC,x+j_coord_offsetD,
810                                               &jx0,&jy0,&jz0);
811
812             /* Calculate displacement vector */
813             dx00             = _mm_sub_ps(ix0,jx0);
814             dy00             = _mm_sub_ps(iy0,jy0);
815             dz00             = _mm_sub_ps(iz0,jz0);
816             dx10             = _mm_sub_ps(ix1,jx0);
817             dy10             = _mm_sub_ps(iy1,jy0);
818             dz10             = _mm_sub_ps(iz1,jz0);
819             dx20             = _mm_sub_ps(ix2,jx0);
820             dy20             = _mm_sub_ps(iy2,jy0);
821             dz20             = _mm_sub_ps(iz2,jz0);
822
823             /* Calculate squared distance and things based on it */
824             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
825             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
826             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
827
828             rinv00           = sse2_invsqrt_f(rsq00);
829             rinv10           = sse2_invsqrt_f(rsq10);
830             rinv20           = sse2_invsqrt_f(rsq20);
831
832             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
833
834             /* Load parameters for j particles */
835             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
836                                                               charge+jnrC+0,charge+jnrD+0);
837             vdwjidx0A        = 2*vdwtype[jnrA+0];
838             vdwjidx0B        = 2*vdwtype[jnrB+0];
839             vdwjidx0C        = 2*vdwtype[jnrC+0];
840             vdwjidx0D        = 2*vdwtype[jnrD+0];
841
842             fjx0             = _mm_setzero_ps();
843             fjy0             = _mm_setzero_ps();
844             fjz0             = _mm_setzero_ps();
845
846             /**************************
847              * CALCULATE INTERACTIONS *
848              **************************/
849
850             r00              = _mm_mul_ps(rsq00,rinv00);
851
852             /* Compute parameters for interactions between i and j atoms */
853             qq00             = _mm_mul_ps(iq0,jq0);
854             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
855                                          vdwparam+vdwioffset0+vdwjidx0B,
856                                          vdwparam+vdwioffset0+vdwjidx0C,
857                                          vdwparam+vdwioffset0+vdwjidx0D,
858                                          &c6_00,&c12_00);
859
860             /* Calculate table index by multiplying r with table scale and truncate to integer */
861             rt               = _mm_mul_ps(r00,vftabscale);
862             vfitab           = _mm_cvttps_epi32(rt);
863             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
864             vfitab           = _mm_slli_epi32(vfitab,2);
865
866             /* CUBIC SPLINE TABLE ELECTROSTATICS */
867             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
868             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
869             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
870             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
871             _MM_TRANSPOSE4_PS(Y,F,G,H);
872             Heps             = _mm_mul_ps(vfeps,H);
873             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
874             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
875             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
876
877             /* LENNARD-JONES DISPERSION/REPULSION */
878
879             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
880             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
881
882             fscal            = _mm_add_ps(felec,fvdw);
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_ps(fscal,dx00);
886             ty               = _mm_mul_ps(fscal,dy00);
887             tz               = _mm_mul_ps(fscal,dz00);
888
889             /* Update vectorial force */
890             fix0             = _mm_add_ps(fix0,tx);
891             fiy0             = _mm_add_ps(fiy0,ty);
892             fiz0             = _mm_add_ps(fiz0,tz);
893
894             fjx0             = _mm_add_ps(fjx0,tx);
895             fjy0             = _mm_add_ps(fjy0,ty);
896             fjz0             = _mm_add_ps(fjz0,tz);
897             
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             r10              = _mm_mul_ps(rsq10,rinv10);
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq10             = _mm_mul_ps(iq1,jq0);
906
907             /* Calculate table index by multiplying r with table scale and truncate to integer */
908             rt               = _mm_mul_ps(r10,vftabscale);
909             vfitab           = _mm_cvttps_epi32(rt);
910             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
911             vfitab           = _mm_slli_epi32(vfitab,2);
912
913             /* CUBIC SPLINE TABLE ELECTROSTATICS */
914             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
915             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
916             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
917             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
918             _MM_TRANSPOSE4_PS(Y,F,G,H);
919             Heps             = _mm_mul_ps(vfeps,H);
920             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
921             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
922             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
923
924             fscal            = felec;
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_ps(fscal,dx10);
928             ty               = _mm_mul_ps(fscal,dy10);
929             tz               = _mm_mul_ps(fscal,dz10);
930
931             /* Update vectorial force */
932             fix1             = _mm_add_ps(fix1,tx);
933             fiy1             = _mm_add_ps(fiy1,ty);
934             fiz1             = _mm_add_ps(fiz1,tz);
935
936             fjx0             = _mm_add_ps(fjx0,tx);
937             fjy0             = _mm_add_ps(fjy0,ty);
938             fjz0             = _mm_add_ps(fjz0,tz);
939             
940             /**************************
941              * CALCULATE INTERACTIONS *
942              **************************/
943
944             r20              = _mm_mul_ps(rsq20,rinv20);
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq20             = _mm_mul_ps(iq2,jq0);
948
949             /* Calculate table index by multiplying r with table scale and truncate to integer */
950             rt               = _mm_mul_ps(r20,vftabscale);
951             vfitab           = _mm_cvttps_epi32(rt);
952             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
953             vfitab           = _mm_slli_epi32(vfitab,2);
954
955             /* CUBIC SPLINE TABLE ELECTROSTATICS */
956             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
957             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
958             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
959             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
960             _MM_TRANSPOSE4_PS(Y,F,G,H);
961             Heps             = _mm_mul_ps(vfeps,H);
962             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
963             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
964             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
965
966             fscal            = felec;
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_ps(fscal,dx20);
970             ty               = _mm_mul_ps(fscal,dy20);
971             tz               = _mm_mul_ps(fscal,dz20);
972
973             /* Update vectorial force */
974             fix2             = _mm_add_ps(fix2,tx);
975             fiy2             = _mm_add_ps(fiy2,ty);
976             fiz2             = _mm_add_ps(fiz2,tz);
977
978             fjx0             = _mm_add_ps(fjx0,tx);
979             fjy0             = _mm_add_ps(fjy0,ty);
980             fjz0             = _mm_add_ps(fjz0,tz);
981             
982             fjptrA             = f+j_coord_offsetA;
983             fjptrB             = f+j_coord_offsetB;
984             fjptrC             = f+j_coord_offsetC;
985             fjptrD             = f+j_coord_offsetD;
986
987             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
988
989             /* Inner loop uses 125 flops */
990         }
991
992         if(jidx<j_index_end)
993         {
994
995             /* Get j neighbor index, and coordinate index */
996             jnrlistA         = jjnr[jidx];
997             jnrlistB         = jjnr[jidx+1];
998             jnrlistC         = jjnr[jidx+2];
999             jnrlistD         = jjnr[jidx+3];
1000             /* Sign of each element will be negative for non-real atoms.
1001              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1002              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1003              */
1004             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1005             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1006             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1007             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1008             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1009             j_coord_offsetA  = DIM*jnrA;
1010             j_coord_offsetB  = DIM*jnrB;
1011             j_coord_offsetC  = DIM*jnrC;
1012             j_coord_offsetD  = DIM*jnrD;
1013
1014             /* load j atom coordinates */
1015             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1016                                               x+j_coord_offsetC,x+j_coord_offsetD,
1017                                               &jx0,&jy0,&jz0);
1018
1019             /* Calculate displacement vector */
1020             dx00             = _mm_sub_ps(ix0,jx0);
1021             dy00             = _mm_sub_ps(iy0,jy0);
1022             dz00             = _mm_sub_ps(iz0,jz0);
1023             dx10             = _mm_sub_ps(ix1,jx0);
1024             dy10             = _mm_sub_ps(iy1,jy0);
1025             dz10             = _mm_sub_ps(iz1,jz0);
1026             dx20             = _mm_sub_ps(ix2,jx0);
1027             dy20             = _mm_sub_ps(iy2,jy0);
1028             dz20             = _mm_sub_ps(iz2,jz0);
1029
1030             /* Calculate squared distance and things based on it */
1031             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1032             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1033             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1034
1035             rinv00           = sse2_invsqrt_f(rsq00);
1036             rinv10           = sse2_invsqrt_f(rsq10);
1037             rinv20           = sse2_invsqrt_f(rsq20);
1038
1039             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1040
1041             /* Load parameters for j particles */
1042             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1043                                                               charge+jnrC+0,charge+jnrD+0);
1044             vdwjidx0A        = 2*vdwtype[jnrA+0];
1045             vdwjidx0B        = 2*vdwtype[jnrB+0];
1046             vdwjidx0C        = 2*vdwtype[jnrC+0];
1047             vdwjidx0D        = 2*vdwtype[jnrD+0];
1048
1049             fjx0             = _mm_setzero_ps();
1050             fjy0             = _mm_setzero_ps();
1051             fjz0             = _mm_setzero_ps();
1052
1053             /**************************
1054              * CALCULATE INTERACTIONS *
1055              **************************/
1056
1057             r00              = _mm_mul_ps(rsq00,rinv00);
1058             r00              = _mm_andnot_ps(dummy_mask,r00);
1059
1060             /* Compute parameters for interactions between i and j atoms */
1061             qq00             = _mm_mul_ps(iq0,jq0);
1062             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1063                                          vdwparam+vdwioffset0+vdwjidx0B,
1064                                          vdwparam+vdwioffset0+vdwjidx0C,
1065                                          vdwparam+vdwioffset0+vdwjidx0D,
1066                                          &c6_00,&c12_00);
1067
1068             /* Calculate table index by multiplying r with table scale and truncate to integer */
1069             rt               = _mm_mul_ps(r00,vftabscale);
1070             vfitab           = _mm_cvttps_epi32(rt);
1071             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1072             vfitab           = _mm_slli_epi32(vfitab,2);
1073
1074             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1075             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1076             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1077             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1078             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1079             _MM_TRANSPOSE4_PS(Y,F,G,H);
1080             Heps             = _mm_mul_ps(vfeps,H);
1081             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1082             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1083             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1084
1085             /* LENNARD-JONES DISPERSION/REPULSION */
1086
1087             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1088             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1089
1090             fscal            = _mm_add_ps(felec,fvdw);
1091
1092             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm_mul_ps(fscal,dx00);
1096             ty               = _mm_mul_ps(fscal,dy00);
1097             tz               = _mm_mul_ps(fscal,dz00);
1098
1099             /* Update vectorial force */
1100             fix0             = _mm_add_ps(fix0,tx);
1101             fiy0             = _mm_add_ps(fiy0,ty);
1102             fiz0             = _mm_add_ps(fiz0,tz);
1103
1104             fjx0             = _mm_add_ps(fjx0,tx);
1105             fjy0             = _mm_add_ps(fjy0,ty);
1106             fjz0             = _mm_add_ps(fjz0,tz);
1107             
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             r10              = _mm_mul_ps(rsq10,rinv10);
1113             r10              = _mm_andnot_ps(dummy_mask,r10);
1114
1115             /* Compute parameters for interactions between i and j atoms */
1116             qq10             = _mm_mul_ps(iq1,jq0);
1117
1118             /* Calculate table index by multiplying r with table scale and truncate to integer */
1119             rt               = _mm_mul_ps(r10,vftabscale);
1120             vfitab           = _mm_cvttps_epi32(rt);
1121             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1122             vfitab           = _mm_slli_epi32(vfitab,2);
1123
1124             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1125             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1126             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1127             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1128             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1129             _MM_TRANSPOSE4_PS(Y,F,G,H);
1130             Heps             = _mm_mul_ps(vfeps,H);
1131             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1132             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1133             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1134
1135             fscal            = felec;
1136
1137             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1138
1139             /* Calculate temporary vectorial force */
1140             tx               = _mm_mul_ps(fscal,dx10);
1141             ty               = _mm_mul_ps(fscal,dy10);
1142             tz               = _mm_mul_ps(fscal,dz10);
1143
1144             /* Update vectorial force */
1145             fix1             = _mm_add_ps(fix1,tx);
1146             fiy1             = _mm_add_ps(fiy1,ty);
1147             fiz1             = _mm_add_ps(fiz1,tz);
1148
1149             fjx0             = _mm_add_ps(fjx0,tx);
1150             fjy0             = _mm_add_ps(fjy0,ty);
1151             fjz0             = _mm_add_ps(fjz0,tz);
1152             
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r20              = _mm_mul_ps(rsq20,rinv20);
1158             r20              = _mm_andnot_ps(dummy_mask,r20);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq20             = _mm_mul_ps(iq2,jq0);
1162
1163             /* Calculate table index by multiplying r with table scale and truncate to integer */
1164             rt               = _mm_mul_ps(r20,vftabscale);
1165             vfitab           = _mm_cvttps_epi32(rt);
1166             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1167             vfitab           = _mm_slli_epi32(vfitab,2);
1168
1169             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1170             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1171             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1172             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1173             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1174             _MM_TRANSPOSE4_PS(Y,F,G,H);
1175             Heps             = _mm_mul_ps(vfeps,H);
1176             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1177             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1178             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm_mul_ps(fscal,dx20);
1186             ty               = _mm_mul_ps(fscal,dy20);
1187             tz               = _mm_mul_ps(fscal,dz20);
1188
1189             /* Update vectorial force */
1190             fix2             = _mm_add_ps(fix2,tx);
1191             fiy2             = _mm_add_ps(fiy2,ty);
1192             fiz2             = _mm_add_ps(fiz2,tz);
1193
1194             fjx0             = _mm_add_ps(fjx0,tx);
1195             fjy0             = _mm_add_ps(fjy0,ty);
1196             fjz0             = _mm_add_ps(fjz0,tz);
1197             
1198             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1199             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1200             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1201             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1202
1203             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1204
1205             /* Inner loop uses 128 flops */
1206         }
1207
1208         /* End of innermost loop */
1209
1210         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1211                                               f+i_coord_offset,fshift+i_shift_offset);
1212
1213         /* Increment number of inner iterations */
1214         inneriter                  += j_index_end - j_index_start;
1215
1216         /* Outer loop uses 18 flops */
1217     }
1218
1219     /* Increment number of outer iterations */
1220     outeriter        += nri;
1221
1222     /* Update outer/inner flops */
1223
1224     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1225 }