Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_sse2_single.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_single.h"
34 #include "kernelutil_x86_sse2_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_sse2_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_elec->data;
114     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
119     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
120     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }  
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
154                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
155         
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159         fix1             = _mm_setzero_ps();
160         fiy1             = _mm_setzero_ps();
161         fiz1             = _mm_setzero_ps();
162         fix2             = _mm_setzero_ps();
163         fiy2             = _mm_setzero_ps();
164         fiz2             = _mm_setzero_ps();
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_ps();
168         vvdwsum          = _mm_setzero_ps();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               x+j_coord_offsetC,x+j_coord_offsetD,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_ps(ix0,jx0);
191             dy00             = _mm_sub_ps(iy0,jy0);
192             dz00             = _mm_sub_ps(iz0,jz0);
193             dx10             = _mm_sub_ps(ix1,jx0);
194             dy10             = _mm_sub_ps(iy1,jy0);
195             dz10             = _mm_sub_ps(iz1,jz0);
196             dx20             = _mm_sub_ps(ix2,jx0);
197             dy20             = _mm_sub_ps(iy2,jy0);
198             dz20             = _mm_sub_ps(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206             rinv10           = gmx_mm_invsqrt_ps(rsq10);
207             rinv20           = gmx_mm_invsqrt_ps(rsq20);
208
209             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213                                                               charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             fjx0             = _mm_setzero_ps();
220             fjy0             = _mm_setzero_ps();
221             fjz0             = _mm_setzero_ps();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm_mul_ps(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm_mul_ps(iq0,jq0);
231             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
232                                          vdwparam+vdwioffset0+vdwjidx0B,
233                                          vdwparam+vdwioffset0+vdwjidx0C,
234                                          vdwparam+vdwioffset0+vdwjidx0D,
235                                          &c6_00,&c12_00);
236
237             /* Calculate table index by multiplying r with table scale and truncate to integer */
238             rt               = _mm_mul_ps(r00,vftabscale);
239             vfitab           = _mm_cvttps_epi32(rt);
240             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
241             vfitab           = _mm_slli_epi32(vfitab,2);
242
243             /* CUBIC SPLINE TABLE ELECTROSTATICS */
244             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
245             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
246             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
247             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
248             _MM_TRANSPOSE4_PS(Y,F,G,H);
249             Heps             = _mm_mul_ps(vfeps,H);
250             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
251             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
252             velec            = _mm_mul_ps(qq00,VV);
253             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
254             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
260             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
261             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
262             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_ps(velecsum,velec);
266             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
267
268             fscal            = _mm_add_ps(felec,fvdw);
269
270             /* Calculate temporary vectorial force */
271             tx               = _mm_mul_ps(fscal,dx00);
272             ty               = _mm_mul_ps(fscal,dy00);
273             tz               = _mm_mul_ps(fscal,dz00);
274
275             /* Update vectorial force */
276             fix0             = _mm_add_ps(fix0,tx);
277             fiy0             = _mm_add_ps(fiy0,ty);
278             fiz0             = _mm_add_ps(fiz0,tz);
279
280             fjx0             = _mm_add_ps(fjx0,tx);
281             fjy0             = _mm_add_ps(fjy0,ty);
282             fjz0             = _mm_add_ps(fjz0,tz);
283             
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             r10              = _mm_mul_ps(rsq10,rinv10);
289
290             /* Compute parameters for interactions between i and j atoms */
291             qq10             = _mm_mul_ps(iq1,jq0);
292
293             /* Calculate table index by multiplying r with table scale and truncate to integer */
294             rt               = _mm_mul_ps(r10,vftabscale);
295             vfitab           = _mm_cvttps_epi32(rt);
296             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
297             vfitab           = _mm_slli_epi32(vfitab,2);
298
299             /* CUBIC SPLINE TABLE ELECTROSTATICS */
300             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
301             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
302             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
303             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
304             _MM_TRANSPOSE4_PS(Y,F,G,H);
305             Heps             = _mm_mul_ps(vfeps,H);
306             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
307             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
308             velec            = _mm_mul_ps(qq10,VV);
309             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
310             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317             /* Calculate temporary vectorial force */
318             tx               = _mm_mul_ps(fscal,dx10);
319             ty               = _mm_mul_ps(fscal,dy10);
320             tz               = _mm_mul_ps(fscal,dz10);
321
322             /* Update vectorial force */
323             fix1             = _mm_add_ps(fix1,tx);
324             fiy1             = _mm_add_ps(fiy1,ty);
325             fiz1             = _mm_add_ps(fiz1,tz);
326
327             fjx0             = _mm_add_ps(fjx0,tx);
328             fjy0             = _mm_add_ps(fjy0,ty);
329             fjz0             = _mm_add_ps(fjz0,tz);
330             
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r20              = _mm_mul_ps(rsq20,rinv20);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_ps(iq2,jq0);
339
340             /* Calculate table index by multiplying r with table scale and truncate to integer */
341             rt               = _mm_mul_ps(r20,vftabscale);
342             vfitab           = _mm_cvttps_epi32(rt);
343             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
344             vfitab           = _mm_slli_epi32(vfitab,2);
345
346             /* CUBIC SPLINE TABLE ELECTROSTATICS */
347             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
348             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
349             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
350             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
351             _MM_TRANSPOSE4_PS(Y,F,G,H);
352             Heps             = _mm_mul_ps(vfeps,H);
353             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
354             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
355             velec            = _mm_mul_ps(qq20,VV);
356             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
357             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_ps(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_ps(fscal,dx20);
366             ty               = _mm_mul_ps(fscal,dy20);
367             tz               = _mm_mul_ps(fscal,dz20);
368
369             /* Update vectorial force */
370             fix2             = _mm_add_ps(fix2,tx);
371             fiy2             = _mm_add_ps(fiy2,ty);
372             fiz2             = _mm_add_ps(fiz2,tz);
373
374             fjx0             = _mm_add_ps(fjx0,tx);
375             fjy0             = _mm_add_ps(fjy0,ty);
376             fjz0             = _mm_add_ps(fjz0,tz);
377             
378             fjptrA             = f+j_coord_offsetA;
379             fjptrB             = f+j_coord_offsetB;
380             fjptrC             = f+j_coord_offsetC;
381             fjptrD             = f+j_coord_offsetD;
382
383             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
384
385             /* Inner loop uses 142 flops */
386         }
387
388         if(jidx<j_index_end)
389         {
390
391             /* Get j neighbor index, and coordinate index */
392             jnrlistA         = jjnr[jidx];
393             jnrlistB         = jjnr[jidx+1];
394             jnrlistC         = jjnr[jidx+2];
395             jnrlistD         = jjnr[jidx+3];
396             /* Sign of each element will be negative for non-real atoms.
397              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
398              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
399              */
400             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
401             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
402             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
403             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
404             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
405             j_coord_offsetA  = DIM*jnrA;
406             j_coord_offsetB  = DIM*jnrB;
407             j_coord_offsetC  = DIM*jnrC;
408             j_coord_offsetD  = DIM*jnrD;
409
410             /* load j atom coordinates */
411             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
412                                               x+j_coord_offsetC,x+j_coord_offsetD,
413                                               &jx0,&jy0,&jz0);
414
415             /* Calculate displacement vector */
416             dx00             = _mm_sub_ps(ix0,jx0);
417             dy00             = _mm_sub_ps(iy0,jy0);
418             dz00             = _mm_sub_ps(iz0,jz0);
419             dx10             = _mm_sub_ps(ix1,jx0);
420             dy10             = _mm_sub_ps(iy1,jy0);
421             dz10             = _mm_sub_ps(iz1,jz0);
422             dx20             = _mm_sub_ps(ix2,jx0);
423             dy20             = _mm_sub_ps(iy2,jy0);
424             dz20             = _mm_sub_ps(iz2,jz0);
425
426             /* Calculate squared distance and things based on it */
427             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
428             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
429             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
430
431             rinv00           = gmx_mm_invsqrt_ps(rsq00);
432             rinv10           = gmx_mm_invsqrt_ps(rsq10);
433             rinv20           = gmx_mm_invsqrt_ps(rsq20);
434
435             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
436
437             /* Load parameters for j particles */
438             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
439                                                               charge+jnrC+0,charge+jnrD+0);
440             vdwjidx0A        = 2*vdwtype[jnrA+0];
441             vdwjidx0B        = 2*vdwtype[jnrB+0];
442             vdwjidx0C        = 2*vdwtype[jnrC+0];
443             vdwjidx0D        = 2*vdwtype[jnrD+0];
444
445             fjx0             = _mm_setzero_ps();
446             fjy0             = _mm_setzero_ps();
447             fjz0             = _mm_setzero_ps();
448
449             /**************************
450              * CALCULATE INTERACTIONS *
451              **************************/
452
453             r00              = _mm_mul_ps(rsq00,rinv00);
454             r00              = _mm_andnot_ps(dummy_mask,r00);
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq00             = _mm_mul_ps(iq0,jq0);
458             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
459                                          vdwparam+vdwioffset0+vdwjidx0B,
460                                          vdwparam+vdwioffset0+vdwjidx0C,
461                                          vdwparam+vdwioffset0+vdwjidx0D,
462                                          &c6_00,&c12_00);
463
464             /* Calculate table index by multiplying r with table scale and truncate to integer */
465             rt               = _mm_mul_ps(r00,vftabscale);
466             vfitab           = _mm_cvttps_epi32(rt);
467             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
468             vfitab           = _mm_slli_epi32(vfitab,2);
469
470             /* CUBIC SPLINE TABLE ELECTROSTATICS */
471             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
472             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
473             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
474             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
475             _MM_TRANSPOSE4_PS(Y,F,G,H);
476             Heps             = _mm_mul_ps(vfeps,H);
477             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
478             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
479             velec            = _mm_mul_ps(qq00,VV);
480             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
481             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
482
483             /* LENNARD-JONES DISPERSION/REPULSION */
484
485             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
486             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
487             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
488             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
489             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
490
491             /* Update potential sum for this i atom from the interaction with this j atom. */
492             velec            = _mm_andnot_ps(dummy_mask,velec);
493             velecsum         = _mm_add_ps(velecsum,velec);
494             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
495             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
496
497             fscal            = _mm_add_ps(felec,fvdw);
498
499             fscal            = _mm_andnot_ps(dummy_mask,fscal);
500
501             /* Calculate temporary vectorial force */
502             tx               = _mm_mul_ps(fscal,dx00);
503             ty               = _mm_mul_ps(fscal,dy00);
504             tz               = _mm_mul_ps(fscal,dz00);
505
506             /* Update vectorial force */
507             fix0             = _mm_add_ps(fix0,tx);
508             fiy0             = _mm_add_ps(fiy0,ty);
509             fiz0             = _mm_add_ps(fiz0,tz);
510
511             fjx0             = _mm_add_ps(fjx0,tx);
512             fjy0             = _mm_add_ps(fjy0,ty);
513             fjz0             = _mm_add_ps(fjz0,tz);
514             
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r10              = _mm_mul_ps(rsq10,rinv10);
520             r10              = _mm_andnot_ps(dummy_mask,r10);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq10             = _mm_mul_ps(iq1,jq0);
524
525             /* Calculate table index by multiplying r with table scale and truncate to integer */
526             rt               = _mm_mul_ps(r10,vftabscale);
527             vfitab           = _mm_cvttps_epi32(rt);
528             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
529             vfitab           = _mm_slli_epi32(vfitab,2);
530
531             /* CUBIC SPLINE TABLE ELECTROSTATICS */
532             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
533             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
534             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
535             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
536             _MM_TRANSPOSE4_PS(Y,F,G,H);
537             Heps             = _mm_mul_ps(vfeps,H);
538             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
539             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
540             velec            = _mm_mul_ps(qq10,VV);
541             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
542             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_andnot_ps(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_ps(fscal,dx10);
554             ty               = _mm_mul_ps(fscal,dy10);
555             tz               = _mm_mul_ps(fscal,dz10);
556
557             /* Update vectorial force */
558             fix1             = _mm_add_ps(fix1,tx);
559             fiy1             = _mm_add_ps(fiy1,ty);
560             fiz1             = _mm_add_ps(fiz1,tz);
561
562             fjx0             = _mm_add_ps(fjx0,tx);
563             fjy0             = _mm_add_ps(fjy0,ty);
564             fjz0             = _mm_add_ps(fjz0,tz);
565             
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r20              = _mm_mul_ps(rsq20,rinv20);
571             r20              = _mm_andnot_ps(dummy_mask,r20);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq20             = _mm_mul_ps(iq2,jq0);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm_mul_ps(r20,vftabscale);
578             vfitab           = _mm_cvttps_epi32(rt);
579             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
580             vfitab           = _mm_slli_epi32(vfitab,2);
581
582             /* CUBIC SPLINE TABLE ELECTROSTATICS */
583             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
584             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
585             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
586             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
587             _MM_TRANSPOSE4_PS(Y,F,G,H);
588             Heps             = _mm_mul_ps(vfeps,H);
589             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
590             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
591             velec            = _mm_mul_ps(qq20,VV);
592             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
593             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
594
595             /* Update potential sum for this i atom from the interaction with this j atom. */
596             velec            = _mm_andnot_ps(dummy_mask,velec);
597             velecsum         = _mm_add_ps(velecsum,velec);
598
599             fscal            = felec;
600
601             fscal            = _mm_andnot_ps(dummy_mask,fscal);
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm_mul_ps(fscal,dx20);
605             ty               = _mm_mul_ps(fscal,dy20);
606             tz               = _mm_mul_ps(fscal,dz20);
607
608             /* Update vectorial force */
609             fix2             = _mm_add_ps(fix2,tx);
610             fiy2             = _mm_add_ps(fiy2,ty);
611             fiz2             = _mm_add_ps(fiz2,tz);
612
613             fjx0             = _mm_add_ps(fjx0,tx);
614             fjy0             = _mm_add_ps(fjy0,ty);
615             fjz0             = _mm_add_ps(fjz0,tz);
616             
617             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
618             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
619             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
620             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
621
622             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
623
624             /* Inner loop uses 145 flops */
625         }
626
627         /* End of innermost loop */
628
629         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
630                                               f+i_coord_offset,fshift+i_shift_offset);
631
632         ggid                        = gid[iidx];
633         /* Update potential energies */
634         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
635         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
636
637         /* Increment number of inner iterations */
638         inneriter                  += j_index_end - j_index_start;
639
640         /* Outer loop uses 20 flops */
641     }
642
643     /* Increment number of outer iterations */
644     outeriter        += nri;
645
646     /* Update outer/inner flops */
647
648     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
649 }
650 /*
651  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
652  * Electrostatics interaction: CubicSplineTable
653  * VdW interaction:            LennardJones
654  * Geometry:                   Water3-Particle
655  * Calculate force/pot:        Force
656  */
657 void
658 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_sse2_single
659                     (t_nblist * gmx_restrict                nlist,
660                      rvec * gmx_restrict                    xx,
661                      rvec * gmx_restrict                    ff,
662                      t_forcerec * gmx_restrict              fr,
663                      t_mdatoms * gmx_restrict               mdatoms,
664                      nb_kernel_data_t * gmx_restrict        kernel_data,
665                      t_nrnb * gmx_restrict                  nrnb)
666 {
667     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
668      * just 0 for non-waters.
669      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
670      * jnr indices corresponding to data put in the four positions in the SIMD register.
671      */
672     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
673     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
674     int              jnrA,jnrB,jnrC,jnrD;
675     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
676     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
677     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
678     real             rcutoff_scalar;
679     real             *shiftvec,*fshift,*x,*f;
680     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
681     real             scratch[4*DIM];
682     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
683     int              vdwioffset0;
684     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
685     int              vdwioffset1;
686     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
687     int              vdwioffset2;
688     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
689     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
690     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
691     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
692     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
693     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
694     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
695     real             *charge;
696     int              nvdwtype;
697     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
698     int              *vdwtype;
699     real             *vdwparam;
700     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
701     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
702     __m128i          vfitab;
703     __m128i          ifour       = _mm_set1_epi32(4);
704     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
705     real             *vftab;
706     __m128           dummy_mask,cutoff_mask;
707     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
708     __m128           one     = _mm_set1_ps(1.0);
709     __m128           two     = _mm_set1_ps(2.0);
710     x                = xx[0];
711     f                = ff[0];
712
713     nri              = nlist->nri;
714     iinr             = nlist->iinr;
715     jindex           = nlist->jindex;
716     jjnr             = nlist->jjnr;
717     shiftidx         = nlist->shift;
718     gid              = nlist->gid;
719     shiftvec         = fr->shift_vec[0];
720     fshift           = fr->fshift[0];
721     facel            = _mm_set1_ps(fr->epsfac);
722     charge           = mdatoms->chargeA;
723     nvdwtype         = fr->ntype;
724     vdwparam         = fr->nbfp;
725     vdwtype          = mdatoms->typeA;
726
727     vftab            = kernel_data->table_elec->data;
728     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
729
730     /* Setup water-specific parameters */
731     inr              = nlist->iinr[0];
732     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
733     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
734     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
735     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
736
737     /* Avoid stupid compiler warnings */
738     jnrA = jnrB = jnrC = jnrD = 0;
739     j_coord_offsetA = 0;
740     j_coord_offsetB = 0;
741     j_coord_offsetC = 0;
742     j_coord_offsetD = 0;
743
744     outeriter        = 0;
745     inneriter        = 0;
746
747     for(iidx=0;iidx<4*DIM;iidx++)
748     {
749         scratch[iidx] = 0.0;
750     }  
751
752     /* Start outer loop over neighborlists */
753     for(iidx=0; iidx<nri; iidx++)
754     {
755         /* Load shift vector for this list */
756         i_shift_offset   = DIM*shiftidx[iidx];
757
758         /* Load limits for loop over neighbors */
759         j_index_start    = jindex[iidx];
760         j_index_end      = jindex[iidx+1];
761
762         /* Get outer coordinate index */
763         inr              = iinr[iidx];
764         i_coord_offset   = DIM*inr;
765
766         /* Load i particle coords and add shift vector */
767         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
768                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
769         
770         fix0             = _mm_setzero_ps();
771         fiy0             = _mm_setzero_ps();
772         fiz0             = _mm_setzero_ps();
773         fix1             = _mm_setzero_ps();
774         fiy1             = _mm_setzero_ps();
775         fiz1             = _mm_setzero_ps();
776         fix2             = _mm_setzero_ps();
777         fiy2             = _mm_setzero_ps();
778         fiz2             = _mm_setzero_ps();
779
780         /* Start inner kernel loop */
781         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
782         {
783
784             /* Get j neighbor index, and coordinate index */
785             jnrA             = jjnr[jidx];
786             jnrB             = jjnr[jidx+1];
787             jnrC             = jjnr[jidx+2];
788             jnrD             = jjnr[jidx+3];
789             j_coord_offsetA  = DIM*jnrA;
790             j_coord_offsetB  = DIM*jnrB;
791             j_coord_offsetC  = DIM*jnrC;
792             j_coord_offsetD  = DIM*jnrD;
793
794             /* load j atom coordinates */
795             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
796                                               x+j_coord_offsetC,x+j_coord_offsetD,
797                                               &jx0,&jy0,&jz0);
798
799             /* Calculate displacement vector */
800             dx00             = _mm_sub_ps(ix0,jx0);
801             dy00             = _mm_sub_ps(iy0,jy0);
802             dz00             = _mm_sub_ps(iz0,jz0);
803             dx10             = _mm_sub_ps(ix1,jx0);
804             dy10             = _mm_sub_ps(iy1,jy0);
805             dz10             = _mm_sub_ps(iz1,jz0);
806             dx20             = _mm_sub_ps(ix2,jx0);
807             dy20             = _mm_sub_ps(iy2,jy0);
808             dz20             = _mm_sub_ps(iz2,jz0);
809
810             /* Calculate squared distance and things based on it */
811             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
812             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
813             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
814
815             rinv00           = gmx_mm_invsqrt_ps(rsq00);
816             rinv10           = gmx_mm_invsqrt_ps(rsq10);
817             rinv20           = gmx_mm_invsqrt_ps(rsq20);
818
819             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
820
821             /* Load parameters for j particles */
822             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
823                                                               charge+jnrC+0,charge+jnrD+0);
824             vdwjidx0A        = 2*vdwtype[jnrA+0];
825             vdwjidx0B        = 2*vdwtype[jnrB+0];
826             vdwjidx0C        = 2*vdwtype[jnrC+0];
827             vdwjidx0D        = 2*vdwtype[jnrD+0];
828
829             fjx0             = _mm_setzero_ps();
830             fjy0             = _mm_setzero_ps();
831             fjz0             = _mm_setzero_ps();
832
833             /**************************
834              * CALCULATE INTERACTIONS *
835              **************************/
836
837             r00              = _mm_mul_ps(rsq00,rinv00);
838
839             /* Compute parameters for interactions between i and j atoms */
840             qq00             = _mm_mul_ps(iq0,jq0);
841             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
842                                          vdwparam+vdwioffset0+vdwjidx0B,
843                                          vdwparam+vdwioffset0+vdwjidx0C,
844                                          vdwparam+vdwioffset0+vdwjidx0D,
845                                          &c6_00,&c12_00);
846
847             /* Calculate table index by multiplying r with table scale and truncate to integer */
848             rt               = _mm_mul_ps(r00,vftabscale);
849             vfitab           = _mm_cvttps_epi32(rt);
850             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
851             vfitab           = _mm_slli_epi32(vfitab,2);
852
853             /* CUBIC SPLINE TABLE ELECTROSTATICS */
854             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
855             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
856             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
857             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
858             _MM_TRANSPOSE4_PS(Y,F,G,H);
859             Heps             = _mm_mul_ps(vfeps,H);
860             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
861             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
862             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
863
864             /* LENNARD-JONES DISPERSION/REPULSION */
865
866             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
867             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
868
869             fscal            = _mm_add_ps(felec,fvdw);
870
871             /* Calculate temporary vectorial force */
872             tx               = _mm_mul_ps(fscal,dx00);
873             ty               = _mm_mul_ps(fscal,dy00);
874             tz               = _mm_mul_ps(fscal,dz00);
875
876             /* Update vectorial force */
877             fix0             = _mm_add_ps(fix0,tx);
878             fiy0             = _mm_add_ps(fiy0,ty);
879             fiz0             = _mm_add_ps(fiz0,tz);
880
881             fjx0             = _mm_add_ps(fjx0,tx);
882             fjy0             = _mm_add_ps(fjy0,ty);
883             fjz0             = _mm_add_ps(fjz0,tz);
884             
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r10              = _mm_mul_ps(rsq10,rinv10);
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq10             = _mm_mul_ps(iq1,jq0);
893
894             /* Calculate table index by multiplying r with table scale and truncate to integer */
895             rt               = _mm_mul_ps(r10,vftabscale);
896             vfitab           = _mm_cvttps_epi32(rt);
897             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
898             vfitab           = _mm_slli_epi32(vfitab,2);
899
900             /* CUBIC SPLINE TABLE ELECTROSTATICS */
901             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
902             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
903             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
904             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
905             _MM_TRANSPOSE4_PS(Y,F,G,H);
906             Heps             = _mm_mul_ps(vfeps,H);
907             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
908             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
909             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
910
911             fscal            = felec;
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_ps(fscal,dx10);
915             ty               = _mm_mul_ps(fscal,dy10);
916             tz               = _mm_mul_ps(fscal,dz10);
917
918             /* Update vectorial force */
919             fix1             = _mm_add_ps(fix1,tx);
920             fiy1             = _mm_add_ps(fiy1,ty);
921             fiz1             = _mm_add_ps(fiz1,tz);
922
923             fjx0             = _mm_add_ps(fjx0,tx);
924             fjy0             = _mm_add_ps(fjy0,ty);
925             fjz0             = _mm_add_ps(fjz0,tz);
926             
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r20              = _mm_mul_ps(rsq20,rinv20);
932
933             /* Compute parameters for interactions between i and j atoms */
934             qq20             = _mm_mul_ps(iq2,jq0);
935
936             /* Calculate table index by multiplying r with table scale and truncate to integer */
937             rt               = _mm_mul_ps(r20,vftabscale);
938             vfitab           = _mm_cvttps_epi32(rt);
939             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
940             vfitab           = _mm_slli_epi32(vfitab,2);
941
942             /* CUBIC SPLINE TABLE ELECTROSTATICS */
943             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
944             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
945             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
946             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
947             _MM_TRANSPOSE4_PS(Y,F,G,H);
948             Heps             = _mm_mul_ps(vfeps,H);
949             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
950             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
951             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
952
953             fscal            = felec;
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_ps(fscal,dx20);
957             ty               = _mm_mul_ps(fscal,dy20);
958             tz               = _mm_mul_ps(fscal,dz20);
959
960             /* Update vectorial force */
961             fix2             = _mm_add_ps(fix2,tx);
962             fiy2             = _mm_add_ps(fiy2,ty);
963             fiz2             = _mm_add_ps(fiz2,tz);
964
965             fjx0             = _mm_add_ps(fjx0,tx);
966             fjy0             = _mm_add_ps(fjy0,ty);
967             fjz0             = _mm_add_ps(fjz0,tz);
968             
969             fjptrA             = f+j_coord_offsetA;
970             fjptrB             = f+j_coord_offsetB;
971             fjptrC             = f+j_coord_offsetC;
972             fjptrD             = f+j_coord_offsetD;
973
974             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 125 flops */
977         }
978
979         if(jidx<j_index_end)
980         {
981
982             /* Get j neighbor index, and coordinate index */
983             jnrlistA         = jjnr[jidx];
984             jnrlistB         = jjnr[jidx+1];
985             jnrlistC         = jjnr[jidx+2];
986             jnrlistD         = jjnr[jidx+3];
987             /* Sign of each element will be negative for non-real atoms.
988              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
989              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
990              */
991             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
992             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
993             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
994             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
995             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
996             j_coord_offsetA  = DIM*jnrA;
997             j_coord_offsetB  = DIM*jnrB;
998             j_coord_offsetC  = DIM*jnrC;
999             j_coord_offsetD  = DIM*jnrD;
1000
1001             /* load j atom coordinates */
1002             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1003                                               x+j_coord_offsetC,x+j_coord_offsetD,
1004                                               &jx0,&jy0,&jz0);
1005
1006             /* Calculate displacement vector */
1007             dx00             = _mm_sub_ps(ix0,jx0);
1008             dy00             = _mm_sub_ps(iy0,jy0);
1009             dz00             = _mm_sub_ps(iz0,jz0);
1010             dx10             = _mm_sub_ps(ix1,jx0);
1011             dy10             = _mm_sub_ps(iy1,jy0);
1012             dz10             = _mm_sub_ps(iz1,jz0);
1013             dx20             = _mm_sub_ps(ix2,jx0);
1014             dy20             = _mm_sub_ps(iy2,jy0);
1015             dz20             = _mm_sub_ps(iz2,jz0);
1016
1017             /* Calculate squared distance and things based on it */
1018             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1019             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1020             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1021
1022             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1023             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1024             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1025
1026             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1027
1028             /* Load parameters for j particles */
1029             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1030                                                               charge+jnrC+0,charge+jnrD+0);
1031             vdwjidx0A        = 2*vdwtype[jnrA+0];
1032             vdwjidx0B        = 2*vdwtype[jnrB+0];
1033             vdwjidx0C        = 2*vdwtype[jnrC+0];
1034             vdwjidx0D        = 2*vdwtype[jnrD+0];
1035
1036             fjx0             = _mm_setzero_ps();
1037             fjy0             = _mm_setzero_ps();
1038             fjz0             = _mm_setzero_ps();
1039
1040             /**************************
1041              * CALCULATE INTERACTIONS *
1042              **************************/
1043
1044             r00              = _mm_mul_ps(rsq00,rinv00);
1045             r00              = _mm_andnot_ps(dummy_mask,r00);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq00             = _mm_mul_ps(iq0,jq0);
1049             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1050                                          vdwparam+vdwioffset0+vdwjidx0B,
1051                                          vdwparam+vdwioffset0+vdwjidx0C,
1052                                          vdwparam+vdwioffset0+vdwjidx0D,
1053                                          &c6_00,&c12_00);
1054
1055             /* Calculate table index by multiplying r with table scale and truncate to integer */
1056             rt               = _mm_mul_ps(r00,vftabscale);
1057             vfitab           = _mm_cvttps_epi32(rt);
1058             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1059             vfitab           = _mm_slli_epi32(vfitab,2);
1060
1061             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1062             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1063             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1064             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1065             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1066             _MM_TRANSPOSE4_PS(Y,F,G,H);
1067             Heps             = _mm_mul_ps(vfeps,H);
1068             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1069             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1070             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1071
1072             /* LENNARD-JONES DISPERSION/REPULSION */
1073
1074             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1075             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1076
1077             fscal            = _mm_add_ps(felec,fvdw);
1078
1079             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_ps(fscal,dx00);
1083             ty               = _mm_mul_ps(fscal,dy00);
1084             tz               = _mm_mul_ps(fscal,dz00);
1085
1086             /* Update vectorial force */
1087             fix0             = _mm_add_ps(fix0,tx);
1088             fiy0             = _mm_add_ps(fiy0,ty);
1089             fiz0             = _mm_add_ps(fiz0,tz);
1090
1091             fjx0             = _mm_add_ps(fjx0,tx);
1092             fjy0             = _mm_add_ps(fjy0,ty);
1093             fjz0             = _mm_add_ps(fjz0,tz);
1094             
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r10              = _mm_mul_ps(rsq10,rinv10);
1100             r10              = _mm_andnot_ps(dummy_mask,r10);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq10             = _mm_mul_ps(iq1,jq0);
1104
1105             /* Calculate table index by multiplying r with table scale and truncate to integer */
1106             rt               = _mm_mul_ps(r10,vftabscale);
1107             vfitab           = _mm_cvttps_epi32(rt);
1108             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1109             vfitab           = _mm_slli_epi32(vfitab,2);
1110
1111             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1112             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1113             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1114             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1115             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1116             _MM_TRANSPOSE4_PS(Y,F,G,H);
1117             Heps             = _mm_mul_ps(vfeps,H);
1118             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1119             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1120             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1121
1122             fscal            = felec;
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm_mul_ps(fscal,dx10);
1128             ty               = _mm_mul_ps(fscal,dy10);
1129             tz               = _mm_mul_ps(fscal,dz10);
1130
1131             /* Update vectorial force */
1132             fix1             = _mm_add_ps(fix1,tx);
1133             fiy1             = _mm_add_ps(fiy1,ty);
1134             fiz1             = _mm_add_ps(fiz1,tz);
1135
1136             fjx0             = _mm_add_ps(fjx0,tx);
1137             fjy0             = _mm_add_ps(fjy0,ty);
1138             fjz0             = _mm_add_ps(fjz0,tz);
1139             
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             r20              = _mm_mul_ps(rsq20,rinv20);
1145             r20              = _mm_andnot_ps(dummy_mask,r20);
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             qq20             = _mm_mul_ps(iq2,jq0);
1149
1150             /* Calculate table index by multiplying r with table scale and truncate to integer */
1151             rt               = _mm_mul_ps(r20,vftabscale);
1152             vfitab           = _mm_cvttps_epi32(rt);
1153             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1154             vfitab           = _mm_slli_epi32(vfitab,2);
1155
1156             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1157             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1158             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1159             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1160             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1161             _MM_TRANSPOSE4_PS(Y,F,G,H);
1162             Heps             = _mm_mul_ps(vfeps,H);
1163             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1164             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1165             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1166
1167             fscal            = felec;
1168
1169             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1170
1171             /* Calculate temporary vectorial force */
1172             tx               = _mm_mul_ps(fscal,dx20);
1173             ty               = _mm_mul_ps(fscal,dy20);
1174             tz               = _mm_mul_ps(fscal,dz20);
1175
1176             /* Update vectorial force */
1177             fix2             = _mm_add_ps(fix2,tx);
1178             fiy2             = _mm_add_ps(fiy2,ty);
1179             fiz2             = _mm_add_ps(fiz2,tz);
1180
1181             fjx0             = _mm_add_ps(fjx0,tx);
1182             fjy0             = _mm_add_ps(fjy0,ty);
1183             fjz0             = _mm_add_ps(fjz0,tz);
1184             
1185             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1186             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1187             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1188             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1189
1190             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1191
1192             /* Inner loop uses 128 flops */
1193         }
1194
1195         /* End of innermost loop */
1196
1197         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1198                                               f+i_coord_offset,fshift+i_shift_offset);
1199
1200         /* Increment number of inner iterations */
1201         inneriter                  += j_index_end - j_index_start;
1202
1203         /* Outer loop uses 18 flops */
1204     }
1205
1206     /* Increment number of outer iterations */
1207     outeriter        += nri;
1208
1209     /* Update outer/inner flops */
1210
1211     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*128);
1212 }