Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_single.h"
48 #include "kernelutil_x86_sse2_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_elec->data;
122     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }  
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155         
156         fix0             = _mm_setzero_ps();
157         fiy0             = _mm_setzero_ps();
158         fiz0             = _mm_setzero_ps();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_ps();
166         vvdwsum          = _mm_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               x+j_coord_offsetC,x+j_coord_offsetD,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_ps(ix0,jx0);
189             dy00             = _mm_sub_ps(iy0,jy0);
190             dz00             = _mm_sub_ps(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_ps(rsq00);
196
197             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
201                                                               charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm_mul_ps(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm_mul_ps(iq0,jq0);
215             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
216                                          vdwparam+vdwioffset0+vdwjidx0B,
217                                          vdwparam+vdwioffset0+vdwjidx0C,
218                                          vdwparam+vdwioffset0+vdwjidx0D,
219                                          &c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm_mul_ps(r00,vftabscale);
223             vfitab           = _mm_cvttps_epi32(rt);
224             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
225             vfitab           = _mm_slli_epi32(vfitab,2);
226
227             /* CUBIC SPLINE TABLE ELECTROSTATICS */
228             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
229             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
230             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
231             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
232             _MM_TRANSPOSE4_PS(Y,F,G,H);
233             Heps             = _mm_mul_ps(vfeps,H);
234             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
235             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
236             velec            = _mm_mul_ps(qq00,VV);
237             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
238             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
244             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
245             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
246             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm_add_ps(velecsum,velec);
250             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
251
252             fscal            = _mm_add_ps(felec,fvdw);
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm_mul_ps(fscal,dx00);
256             ty               = _mm_mul_ps(fscal,dy00);
257             tz               = _mm_mul_ps(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm_add_ps(fix0,tx);
261             fiy0             = _mm_add_ps(fiy0,ty);
262             fiz0             = _mm_add_ps(fiz0,tz);
263
264             fjptrA             = f+j_coord_offsetA;
265             fjptrB             = f+j_coord_offsetB;
266             fjptrC             = f+j_coord_offsetC;
267             fjptrD             = f+j_coord_offsetD;
268             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
269             
270             /* Inner loop uses 56 flops */
271         }
272
273         if(jidx<j_index_end)
274         {
275
276             /* Get j neighbor index, and coordinate index */
277             jnrlistA         = jjnr[jidx];
278             jnrlistB         = jjnr[jidx+1];
279             jnrlistC         = jjnr[jidx+2];
280             jnrlistD         = jjnr[jidx+3];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
284              */
285             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
286             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
287             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
288             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
289             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
290             j_coord_offsetA  = DIM*jnrA;
291             j_coord_offsetB  = DIM*jnrB;
292             j_coord_offsetC  = DIM*jnrC;
293             j_coord_offsetD  = DIM*jnrD;
294
295             /* load j atom coordinates */
296             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
297                                               x+j_coord_offsetC,x+j_coord_offsetD,
298                                               &jx0,&jy0,&jz0);
299
300             /* Calculate displacement vector */
301             dx00             = _mm_sub_ps(ix0,jx0);
302             dy00             = _mm_sub_ps(iy0,jy0);
303             dz00             = _mm_sub_ps(iz0,jz0);
304
305             /* Calculate squared distance and things based on it */
306             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
307
308             rinv00           = gmx_mm_invsqrt_ps(rsq00);
309
310             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
311
312             /* Load parameters for j particles */
313             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
314                                                               charge+jnrC+0,charge+jnrD+0);
315             vdwjidx0A        = 2*vdwtype[jnrA+0];
316             vdwjidx0B        = 2*vdwtype[jnrB+0];
317             vdwjidx0C        = 2*vdwtype[jnrC+0];
318             vdwjidx0D        = 2*vdwtype[jnrD+0];
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r00              = _mm_mul_ps(rsq00,rinv00);
325             r00              = _mm_andnot_ps(dummy_mask,r00);
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq00             = _mm_mul_ps(iq0,jq0);
329             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
330                                          vdwparam+vdwioffset0+vdwjidx0B,
331                                          vdwparam+vdwioffset0+vdwjidx0C,
332                                          vdwparam+vdwioffset0+vdwjidx0D,
333                                          &c6_00,&c12_00);
334
335             /* Calculate table index by multiplying r with table scale and truncate to integer */
336             rt               = _mm_mul_ps(r00,vftabscale);
337             vfitab           = _mm_cvttps_epi32(rt);
338             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
339             vfitab           = _mm_slli_epi32(vfitab,2);
340
341             /* CUBIC SPLINE TABLE ELECTROSTATICS */
342             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
343             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
344             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
345             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
346             _MM_TRANSPOSE4_PS(Y,F,G,H);
347             Heps             = _mm_mul_ps(vfeps,H);
348             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
349             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
350             velec            = _mm_mul_ps(qq00,VV);
351             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
352             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
353
354             /* LENNARD-JONES DISPERSION/REPULSION */
355
356             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
357             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
358             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
359             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
360             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
361
362             /* Update potential sum for this i atom from the interaction with this j atom. */
363             velec            = _mm_andnot_ps(dummy_mask,velec);
364             velecsum         = _mm_add_ps(velecsum,velec);
365             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
366             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
367
368             fscal            = _mm_add_ps(felec,fvdw);
369
370             fscal            = _mm_andnot_ps(dummy_mask,fscal);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_ps(fscal,dx00);
374             ty               = _mm_mul_ps(fscal,dy00);
375             tz               = _mm_mul_ps(fscal,dz00);
376
377             /* Update vectorial force */
378             fix0             = _mm_add_ps(fix0,tx);
379             fiy0             = _mm_add_ps(fiy0,ty);
380             fiz0             = _mm_add_ps(fiz0,tz);
381
382             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
383             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
384             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
385             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
386             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
387             
388             /* Inner loop uses 57 flops */
389         }
390
391         /* End of innermost loop */
392
393         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
394                                               f+i_coord_offset,fshift+i_shift_offset);
395
396         ggid                        = gid[iidx];
397         /* Update potential energies */
398         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
399         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
400
401         /* Increment number of inner iterations */
402         inneriter                  += j_index_end - j_index_start;
403
404         /* Outer loop uses 9 flops */
405     }
406
407     /* Increment number of outer iterations */
408     outeriter        += nri;
409
410     /* Update outer/inner flops */
411
412     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
413 }
414 /*
415  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
416  * Electrostatics interaction: CubicSplineTable
417  * VdW interaction:            LennardJones
418  * Geometry:                   Particle-Particle
419  * Calculate force/pot:        Force
420  */
421 void
422 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
423                     (t_nblist                    * gmx_restrict       nlist,
424                      rvec                        * gmx_restrict          xx,
425                      rvec                        * gmx_restrict          ff,
426                      t_forcerec                  * gmx_restrict          fr,
427                      t_mdatoms                   * gmx_restrict     mdatoms,
428                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
429                      t_nrnb                      * gmx_restrict        nrnb)
430 {
431     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
432      * just 0 for non-waters.
433      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
434      * jnr indices corresponding to data put in the four positions in the SIMD register.
435      */
436     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
437     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
438     int              jnrA,jnrB,jnrC,jnrD;
439     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
440     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
441     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
442     real             rcutoff_scalar;
443     real             *shiftvec,*fshift,*x,*f;
444     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
445     real             scratch[4*DIM];
446     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
447     int              vdwioffset0;
448     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
449     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
450     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
451     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
452     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              nvdwtype;
455     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
456     int              *vdwtype;
457     real             *vdwparam;
458     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
459     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
460     __m128i          vfitab;
461     __m128i          ifour       = _mm_set1_epi32(4);
462     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
463     real             *vftab;
464     __m128           dummy_mask,cutoff_mask;
465     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
466     __m128           one     = _mm_set1_ps(1.0);
467     __m128           two     = _mm_set1_ps(2.0);
468     x                = xx[0];
469     f                = ff[0];
470
471     nri              = nlist->nri;
472     iinr             = nlist->iinr;
473     jindex           = nlist->jindex;
474     jjnr             = nlist->jjnr;
475     shiftidx         = nlist->shift;
476     gid              = nlist->gid;
477     shiftvec         = fr->shift_vec[0];
478     fshift           = fr->fshift[0];
479     facel            = _mm_set1_ps(fr->epsfac);
480     charge           = mdatoms->chargeA;
481     nvdwtype         = fr->ntype;
482     vdwparam         = fr->nbfp;
483     vdwtype          = mdatoms->typeA;
484
485     vftab            = kernel_data->table_elec->data;
486     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
487
488     /* Avoid stupid compiler warnings */
489     jnrA = jnrB = jnrC = jnrD = 0;
490     j_coord_offsetA = 0;
491     j_coord_offsetB = 0;
492     j_coord_offsetC = 0;
493     j_coord_offsetD = 0;
494
495     outeriter        = 0;
496     inneriter        = 0;
497
498     for(iidx=0;iidx<4*DIM;iidx++)
499     {
500         scratch[iidx] = 0.0;
501     }  
502
503     /* Start outer loop over neighborlists */
504     for(iidx=0; iidx<nri; iidx++)
505     {
506         /* Load shift vector for this list */
507         i_shift_offset   = DIM*shiftidx[iidx];
508
509         /* Load limits for loop over neighbors */
510         j_index_start    = jindex[iidx];
511         j_index_end      = jindex[iidx+1];
512
513         /* Get outer coordinate index */
514         inr              = iinr[iidx];
515         i_coord_offset   = DIM*inr;
516
517         /* Load i particle coords and add shift vector */
518         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
519         
520         fix0             = _mm_setzero_ps();
521         fiy0             = _mm_setzero_ps();
522         fiz0             = _mm_setzero_ps();
523
524         /* Load parameters for i particles */
525         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
526         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
527
528         /* Start inner kernel loop */
529         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrA             = jjnr[jidx];
534             jnrB             = jjnr[jidx+1];
535             jnrC             = jjnr[jidx+2];
536             jnrD             = jjnr[jidx+3];
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541
542             /* load j atom coordinates */
543             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
544                                               x+j_coord_offsetC,x+j_coord_offsetD,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_ps(ix0,jx0);
549             dy00             = _mm_sub_ps(iy0,jy0);
550             dz00             = _mm_sub_ps(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm_invsqrt_ps(rsq00);
556
557             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
561                                                               charge+jnrC+0,charge+jnrD+0);
562             vdwjidx0A        = 2*vdwtype[jnrA+0];
563             vdwjidx0B        = 2*vdwtype[jnrB+0];
564             vdwjidx0C        = 2*vdwtype[jnrC+0];
565             vdwjidx0D        = 2*vdwtype[jnrD+0];
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             r00              = _mm_mul_ps(rsq00,rinv00);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq00             = _mm_mul_ps(iq0,jq0);
575             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,
577                                          vdwparam+vdwioffset0+vdwjidx0C,
578                                          vdwparam+vdwioffset0+vdwjidx0D,
579                                          &c6_00,&c12_00);
580
581             /* Calculate table index by multiplying r with table scale and truncate to integer */
582             rt               = _mm_mul_ps(r00,vftabscale);
583             vfitab           = _mm_cvttps_epi32(rt);
584             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
585             vfitab           = _mm_slli_epi32(vfitab,2);
586
587             /* CUBIC SPLINE TABLE ELECTROSTATICS */
588             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
589             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
590             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
591             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
592             _MM_TRANSPOSE4_PS(Y,F,G,H);
593             Heps             = _mm_mul_ps(vfeps,H);
594             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
595             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
596             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
597
598             /* LENNARD-JONES DISPERSION/REPULSION */
599
600             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
601             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
602
603             fscal            = _mm_add_ps(felec,fvdw);
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm_mul_ps(fscal,dx00);
607             ty               = _mm_mul_ps(fscal,dy00);
608             tz               = _mm_mul_ps(fscal,dz00);
609
610             /* Update vectorial force */
611             fix0             = _mm_add_ps(fix0,tx);
612             fiy0             = _mm_add_ps(fiy0,ty);
613             fiz0             = _mm_add_ps(fiz0,tz);
614
615             fjptrA             = f+j_coord_offsetA;
616             fjptrB             = f+j_coord_offsetB;
617             fjptrC             = f+j_coord_offsetC;
618             fjptrD             = f+j_coord_offsetD;
619             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
620             
621             /* Inner loop uses 47 flops */
622         }
623
624         if(jidx<j_index_end)
625         {
626
627             /* Get j neighbor index, and coordinate index */
628             jnrlistA         = jjnr[jidx];
629             jnrlistB         = jjnr[jidx+1];
630             jnrlistC         = jjnr[jidx+2];
631             jnrlistD         = jjnr[jidx+3];
632             /* Sign of each element will be negative for non-real atoms.
633              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
634              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
635              */
636             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
637             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
638             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
639             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
640             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
641             j_coord_offsetA  = DIM*jnrA;
642             j_coord_offsetB  = DIM*jnrB;
643             j_coord_offsetC  = DIM*jnrC;
644             j_coord_offsetD  = DIM*jnrD;
645
646             /* load j atom coordinates */
647             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
648                                               x+j_coord_offsetC,x+j_coord_offsetD,
649                                               &jx0,&jy0,&jz0);
650
651             /* Calculate displacement vector */
652             dx00             = _mm_sub_ps(ix0,jx0);
653             dy00             = _mm_sub_ps(iy0,jy0);
654             dz00             = _mm_sub_ps(iz0,jz0);
655
656             /* Calculate squared distance and things based on it */
657             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
658
659             rinv00           = gmx_mm_invsqrt_ps(rsq00);
660
661             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
662
663             /* Load parameters for j particles */
664             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
665                                                               charge+jnrC+0,charge+jnrD+0);
666             vdwjidx0A        = 2*vdwtype[jnrA+0];
667             vdwjidx0B        = 2*vdwtype[jnrB+0];
668             vdwjidx0C        = 2*vdwtype[jnrC+0];
669             vdwjidx0D        = 2*vdwtype[jnrD+0];
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             r00              = _mm_mul_ps(rsq00,rinv00);
676             r00              = _mm_andnot_ps(dummy_mask,r00);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq00             = _mm_mul_ps(iq0,jq0);
680             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
681                                          vdwparam+vdwioffset0+vdwjidx0B,
682                                          vdwparam+vdwioffset0+vdwjidx0C,
683                                          vdwparam+vdwioffset0+vdwjidx0D,
684                                          &c6_00,&c12_00);
685
686             /* Calculate table index by multiplying r with table scale and truncate to integer */
687             rt               = _mm_mul_ps(r00,vftabscale);
688             vfitab           = _mm_cvttps_epi32(rt);
689             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
690             vfitab           = _mm_slli_epi32(vfitab,2);
691
692             /* CUBIC SPLINE TABLE ELECTROSTATICS */
693             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
694             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
695             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
696             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
697             _MM_TRANSPOSE4_PS(Y,F,G,H);
698             Heps             = _mm_mul_ps(vfeps,H);
699             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
700             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
701             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
702
703             /* LENNARD-JONES DISPERSION/REPULSION */
704
705             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
706             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
707
708             fscal            = _mm_add_ps(felec,fvdw);
709
710             fscal            = _mm_andnot_ps(dummy_mask,fscal);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm_mul_ps(fscal,dx00);
714             ty               = _mm_mul_ps(fscal,dy00);
715             tz               = _mm_mul_ps(fscal,dz00);
716
717             /* Update vectorial force */
718             fix0             = _mm_add_ps(fix0,tx);
719             fiy0             = _mm_add_ps(fiy0,ty);
720             fiz0             = _mm_add_ps(fiz0,tz);
721
722             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
723             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
724             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
725             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
726             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
727             
728             /* Inner loop uses 48 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
734                                               f+i_coord_offset,fshift+i_shift_offset);
735
736         /* Increment number of inner iterations */
737         inneriter                  += j_index_end - j_index_start;
738
739         /* Outer loop uses 7 flops */
740     }
741
742     /* Increment number of outer iterations */
743     outeriter        += nri;
744
745     /* Update outer/inner flops */
746
747     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
748 }