Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_sse2_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_elec->data;
121     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     for(iidx=0;iidx<4*DIM;iidx++)
134     {
135         scratch[iidx] = 0.0;
136     }  
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154         
155         fix0             = _mm_setzero_ps();
156         fiy0             = _mm_setzero_ps();
157         fiz0             = _mm_setzero_ps();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_ps();
165         vvdwsum          = _mm_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               x+j_coord_offsetC,x+j_coord_offsetD,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_ps(ix0,jx0);
188             dy00             = _mm_sub_ps(iy0,jy0);
189             dz00             = _mm_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = sse2_invsqrt_f(rsq00);
195
196             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
200                                                               charge+jnrC+0,charge+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm_mul_ps(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_ps(iq0,jq0);
214             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,
216                                          vdwparam+vdwioffset0+vdwjidx0C,
217                                          vdwparam+vdwioffset0+vdwjidx0D,
218                                          &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm_mul_ps(r00,vftabscale);
222             vfitab           = _mm_cvttps_epi32(rt);
223             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
224             vfitab           = _mm_slli_epi32(vfitab,2);
225
226             /* CUBIC SPLINE TABLE ELECTROSTATICS */
227             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
228             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
229             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
230             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
231             _MM_TRANSPOSE4_PS(Y,F,G,H);
232             Heps             = _mm_mul_ps(vfeps,H);
233             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
234             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
235             velec            = _mm_mul_ps(qq00,VV);
236             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
237             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
238
239             /* LENNARD-JONES DISPERSION/REPULSION */
240
241             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
242             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
243             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
244             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
245             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm_add_ps(velecsum,velec);
249             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
250
251             fscal            = _mm_add_ps(felec,fvdw);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_ps(fscal,dx00);
255             ty               = _mm_mul_ps(fscal,dy00);
256             tz               = _mm_mul_ps(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_ps(fix0,tx);
260             fiy0             = _mm_add_ps(fiy0,ty);
261             fiz0             = _mm_add_ps(fiz0,tz);
262
263             fjptrA             = f+j_coord_offsetA;
264             fjptrB             = f+j_coord_offsetB;
265             fjptrC             = f+j_coord_offsetC;
266             fjptrD             = f+j_coord_offsetD;
267             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268             
269             /* Inner loop uses 56 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = sse2_invsqrt_f(rsq00);
308
309             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
310
311             /* Load parameters for j particles */
312             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
313                                                               charge+jnrC+0,charge+jnrD+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm_mul_ps(rsq00,rinv00);
324             r00              = _mm_andnot_ps(dummy_mask,r00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm_mul_ps(iq0,jq0);
328             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
329                                          vdwparam+vdwioffset0+vdwjidx0B,
330                                          vdwparam+vdwioffset0+vdwjidx0C,
331                                          vdwparam+vdwioffset0+vdwjidx0D,
332                                          &c6_00,&c12_00);
333
334             /* Calculate table index by multiplying r with table scale and truncate to integer */
335             rt               = _mm_mul_ps(r00,vftabscale);
336             vfitab           = _mm_cvttps_epi32(rt);
337             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
338             vfitab           = _mm_slli_epi32(vfitab,2);
339
340             /* CUBIC SPLINE TABLE ELECTROSTATICS */
341             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
342             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
343             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
344             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
345             _MM_TRANSPOSE4_PS(Y,F,G,H);
346             Heps             = _mm_mul_ps(vfeps,H);
347             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
348             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
349             velec            = _mm_mul_ps(qq00,VV);
350             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
351             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
352
353             /* LENNARD-JONES DISPERSION/REPULSION */
354
355             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
356             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
357             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
358             vvdw             = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
359             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_andnot_ps(dummy_mask,velec);
363             velecsum         = _mm_add_ps(velecsum,velec);
364             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
365             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
366
367             fscal            = _mm_add_ps(felec,fvdw);
368
369             fscal            = _mm_andnot_ps(dummy_mask,fscal);
370
371             /* Calculate temporary vectorial force */
372             tx               = _mm_mul_ps(fscal,dx00);
373             ty               = _mm_mul_ps(fscal,dy00);
374             tz               = _mm_mul_ps(fscal,dz00);
375
376             /* Update vectorial force */
377             fix0             = _mm_add_ps(fix0,tx);
378             fiy0             = _mm_add_ps(fiy0,ty);
379             fiz0             = _mm_add_ps(fiz0,tz);
380
381             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
382             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
383             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
384             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
385             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
386             
387             /* Inner loop uses 57 flops */
388         }
389
390         /* End of innermost loop */
391
392         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
393                                               f+i_coord_offset,fshift+i_shift_offset);
394
395         ggid                        = gid[iidx];
396         /* Update potential energies */
397         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
398         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
399
400         /* Increment number of inner iterations */
401         inneriter                  += j_index_end - j_index_start;
402
403         /* Outer loop uses 9 flops */
404     }
405
406     /* Increment number of outer iterations */
407     outeriter        += nri;
408
409     /* Update outer/inner flops */
410
411     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
412 }
413 /*
414  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
415  * Electrostatics interaction: CubicSplineTable
416  * VdW interaction:            LennardJones
417  * Geometry:                   Particle-Particle
418  * Calculate force/pot:        Force
419  */
420 void
421 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_sse2_single
422                     (t_nblist                    * gmx_restrict       nlist,
423                      rvec                        * gmx_restrict          xx,
424                      rvec                        * gmx_restrict          ff,
425                      struct t_forcerec           * gmx_restrict          fr,
426                      t_mdatoms                   * gmx_restrict     mdatoms,
427                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
428                      t_nrnb                      * gmx_restrict        nrnb)
429 {
430     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
431      * just 0 for non-waters.
432      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
433      * jnr indices corresponding to data put in the four positions in the SIMD register.
434      */
435     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
436     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437     int              jnrA,jnrB,jnrC,jnrD;
438     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
441     real             rcutoff_scalar;
442     real             *shiftvec,*fshift,*x,*f;
443     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444     real             scratch[4*DIM];
445     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446     int              vdwioffset0;
447     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
452     real             *charge;
453     int              nvdwtype;
454     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
455     int              *vdwtype;
456     real             *vdwparam;
457     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
458     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
459     __m128i          vfitab;
460     __m128i          ifour       = _mm_set1_epi32(4);
461     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
462     real             *vftab;
463     __m128           dummy_mask,cutoff_mask;
464     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
465     __m128           one     = _mm_set1_ps(1.0);
466     __m128           two     = _mm_set1_ps(2.0);
467     x                = xx[0];
468     f                = ff[0];
469
470     nri              = nlist->nri;
471     iinr             = nlist->iinr;
472     jindex           = nlist->jindex;
473     jjnr             = nlist->jjnr;
474     shiftidx         = nlist->shift;
475     gid              = nlist->gid;
476     shiftvec         = fr->shift_vec[0];
477     fshift           = fr->fshift[0];
478     facel            = _mm_set1_ps(fr->ic->epsfac);
479     charge           = mdatoms->chargeA;
480     nvdwtype         = fr->ntype;
481     vdwparam         = fr->nbfp;
482     vdwtype          = mdatoms->typeA;
483
484     vftab            = kernel_data->table_elec->data;
485     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
486
487     /* Avoid stupid compiler warnings */
488     jnrA = jnrB = jnrC = jnrD = 0;
489     j_coord_offsetA = 0;
490     j_coord_offsetB = 0;
491     j_coord_offsetC = 0;
492     j_coord_offsetD = 0;
493
494     outeriter        = 0;
495     inneriter        = 0;
496
497     for(iidx=0;iidx<4*DIM;iidx++)
498     {
499         scratch[iidx] = 0.0;
500     }  
501
502     /* Start outer loop over neighborlists */
503     for(iidx=0; iidx<nri; iidx++)
504     {
505         /* Load shift vector for this list */
506         i_shift_offset   = DIM*shiftidx[iidx];
507
508         /* Load limits for loop over neighbors */
509         j_index_start    = jindex[iidx];
510         j_index_end      = jindex[iidx+1];
511
512         /* Get outer coordinate index */
513         inr              = iinr[iidx];
514         i_coord_offset   = DIM*inr;
515
516         /* Load i particle coords and add shift vector */
517         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
518         
519         fix0             = _mm_setzero_ps();
520         fiy0             = _mm_setzero_ps();
521         fiz0             = _mm_setzero_ps();
522
523         /* Load parameters for i particles */
524         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
525         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
526
527         /* Start inner kernel loop */
528         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
529         {
530
531             /* Get j neighbor index, and coordinate index */
532             jnrA             = jjnr[jidx];
533             jnrB             = jjnr[jidx+1];
534             jnrC             = jjnr[jidx+2];
535             jnrD             = jjnr[jidx+3];
536             j_coord_offsetA  = DIM*jnrA;
537             j_coord_offsetB  = DIM*jnrB;
538             j_coord_offsetC  = DIM*jnrC;
539             j_coord_offsetD  = DIM*jnrD;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               x+j_coord_offsetC,x+j_coord_offsetD,
544                                               &jx0,&jy0,&jz0);
545
546             /* Calculate displacement vector */
547             dx00             = _mm_sub_ps(ix0,jx0);
548             dy00             = _mm_sub_ps(iy0,jy0);
549             dz00             = _mm_sub_ps(iz0,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554             rinv00           = sse2_invsqrt_f(rsq00);
555
556             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
557
558             /* Load parameters for j particles */
559             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
560                                                               charge+jnrC+0,charge+jnrD+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563             vdwjidx0C        = 2*vdwtype[jnrC+0];
564             vdwjidx0D        = 2*vdwtype[jnrD+0];
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r00              = _mm_mul_ps(rsq00,rinv00);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq00             = _mm_mul_ps(iq0,jq0);
574             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
575                                          vdwparam+vdwioffset0+vdwjidx0B,
576                                          vdwparam+vdwioffset0+vdwjidx0C,
577                                          vdwparam+vdwioffset0+vdwjidx0D,
578                                          &c6_00,&c12_00);
579
580             /* Calculate table index by multiplying r with table scale and truncate to integer */
581             rt               = _mm_mul_ps(r00,vftabscale);
582             vfitab           = _mm_cvttps_epi32(rt);
583             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
584             vfitab           = _mm_slli_epi32(vfitab,2);
585
586             /* CUBIC SPLINE TABLE ELECTROSTATICS */
587             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
588             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
589             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
590             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
591             _MM_TRANSPOSE4_PS(Y,F,G,H);
592             Heps             = _mm_mul_ps(vfeps,H);
593             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
594             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
595             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
596
597             /* LENNARD-JONES DISPERSION/REPULSION */
598
599             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
600             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
601
602             fscal            = _mm_add_ps(felec,fvdw);
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm_mul_ps(fscal,dx00);
606             ty               = _mm_mul_ps(fscal,dy00);
607             tz               = _mm_mul_ps(fscal,dz00);
608
609             /* Update vectorial force */
610             fix0             = _mm_add_ps(fix0,tx);
611             fiy0             = _mm_add_ps(fiy0,ty);
612             fiz0             = _mm_add_ps(fiz0,tz);
613
614             fjptrA             = f+j_coord_offsetA;
615             fjptrB             = f+j_coord_offsetB;
616             fjptrC             = f+j_coord_offsetC;
617             fjptrD             = f+j_coord_offsetD;
618             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
619             
620             /* Inner loop uses 47 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             /* Get j neighbor index, and coordinate index */
627             jnrlistA         = jjnr[jidx];
628             jnrlistB         = jjnr[jidx+1];
629             jnrlistC         = jjnr[jidx+2];
630             jnrlistD         = jjnr[jidx+3];
631             /* Sign of each element will be negative for non-real atoms.
632              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
633              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
634              */
635             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
636             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
637             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
638             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
639             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
640             j_coord_offsetA  = DIM*jnrA;
641             j_coord_offsetB  = DIM*jnrB;
642             j_coord_offsetC  = DIM*jnrC;
643             j_coord_offsetD  = DIM*jnrD;
644
645             /* load j atom coordinates */
646             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
647                                               x+j_coord_offsetC,x+j_coord_offsetD,
648                                               &jx0,&jy0,&jz0);
649
650             /* Calculate displacement vector */
651             dx00             = _mm_sub_ps(ix0,jx0);
652             dy00             = _mm_sub_ps(iy0,jy0);
653             dz00             = _mm_sub_ps(iz0,jz0);
654
655             /* Calculate squared distance and things based on it */
656             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
657
658             rinv00           = sse2_invsqrt_f(rsq00);
659
660             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
661
662             /* Load parameters for j particles */
663             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
664                                                               charge+jnrC+0,charge+jnrD+0);
665             vdwjidx0A        = 2*vdwtype[jnrA+0];
666             vdwjidx0B        = 2*vdwtype[jnrB+0];
667             vdwjidx0C        = 2*vdwtype[jnrC+0];
668             vdwjidx0D        = 2*vdwtype[jnrD+0];
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             r00              = _mm_mul_ps(rsq00,rinv00);
675             r00              = _mm_andnot_ps(dummy_mask,r00);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq00             = _mm_mul_ps(iq0,jq0);
679             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
680                                          vdwparam+vdwioffset0+vdwjidx0B,
681                                          vdwparam+vdwioffset0+vdwjidx0C,
682                                          vdwparam+vdwioffset0+vdwjidx0D,
683                                          &c6_00,&c12_00);
684
685             /* Calculate table index by multiplying r with table scale and truncate to integer */
686             rt               = _mm_mul_ps(r00,vftabscale);
687             vfitab           = _mm_cvttps_epi32(rt);
688             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
689             vfitab           = _mm_slli_epi32(vfitab,2);
690
691             /* CUBIC SPLINE TABLE ELECTROSTATICS */
692             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
693             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
694             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
695             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
696             _MM_TRANSPOSE4_PS(Y,F,G,H);
697             Heps             = _mm_mul_ps(vfeps,H);
698             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
699             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
700             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
701
702             /* LENNARD-JONES DISPERSION/REPULSION */
703
704             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
705             fvdw             = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
706
707             fscal            = _mm_add_ps(felec,fvdw);
708
709             fscal            = _mm_andnot_ps(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm_mul_ps(fscal,dx00);
713             ty               = _mm_mul_ps(fscal,dy00);
714             tz               = _mm_mul_ps(fscal,dz00);
715
716             /* Update vectorial force */
717             fix0             = _mm_add_ps(fix0,tx);
718             fiy0             = _mm_add_ps(fiy0,ty);
719             fiz0             = _mm_add_ps(fiz0,tz);
720
721             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
722             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
723             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
724             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
725             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
726             
727             /* Inner loop uses 48 flops */
728         }
729
730         /* End of innermost loop */
731
732         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
733                                               f+i_coord_offset,fshift+i_shift_offset);
734
735         /* Increment number of inner iterations */
736         inneriter                  += j_index_end - j_index_start;
737
738         /* Outer loop uses 7 flops */
739     }
740
741     /* Increment number of outer iterations */
742     outeriter        += nri;
743
744     /* Update outer/inner flops */
745
746     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
747 }